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Vertical support use and primate 
origins
Gabriel S. Yapuncich   1, Henry J. Feng1, Rachel H. Dunn2, Erik R. Seiffert   3 & Doug M. Boyer1

Adaptive scenarios of crown primate origins remain contentious due to uncertain order of acquisition 
and functional significance of the clade’s diagnostic traits. A feature of the talus bone in the ankle, 
known as the posterior trochlear shelf (PTS), is well-regarded as a derived crown primate trait, but 
its adaptive significance has been obscured by poorly understood function. Here we propose a novel 
biomechanical function for the PTS and model the talus as a cam mechanism. By surveying a large 
sample of primates and their closest relatives, we demonstrate that the PTS is most strongly developed 
in extant taxa that habitually grasp vertical supports with strongly dorsiflexed feet. Tali of the earliest 
fossils likely to represent crown primates exhibit more strongly developed PTS cam mechanisms 
than extant primates. As a cam, the PTS may increase grasping efficiency in dorsiflexed foot postures 
by increasing the path length of the flexor fibularis tendon, and thus improve the muscle’s ability to 
maintain flexed digits without increasing energetic demands. Comparisons are made to other passive 
digital flexion mechanisms suggested to exist in other vertebrates. These results provide robust 
anatomical evidence that the habitual vertical support use exerted a strong selective pressure during 
crown primate origins.

The talus is an important element for reconstructing positional behavior throughout primate evolution because 
the bone’s morphology correlates well with locomotor and postural behaviors of living euarchontans (the mam-
malian clade including Primates, Scandentia, Dermoptera) and it is frequently preserved in fossil assemblages1–4. 
However, despite a long history of study1,4–7, debate remains concerning the talar morphology of the common 
ancestor of crown primates and the positional behavior implied by this morphology. The posterior trochlear shelf 
(PTS) – a bony extension protruding from the posterior aspect of the talar body (Fig. 1) – is a prime example of 
a conspicuous but confounding talar feature: while PTS hypertrophy unequivocally diagnoses a crown primate 
talus1, there is no consensus regarding the feature’s functional significance2,7. Several biomechanical roles have 
been suggested, including creating a bony stop during plantarflexion1,2, supporting an elongated posterior cal-
caneal facet1,4, or redirecting stress within the talus4. The ambiguous function of the PTS means it is often char-
acterized but rarely emphasized in the description of fossil tali3,7. Resolving this gap in understanding of primate 
functional anatomy can provide novel insights into the origin of our order.

From a biomechanical perspective, PTS hypertrophy accentuates an asymmetry around the axis of the talocru-
ral joint. As a hinge joint, the talocrural joint is primarily involved in dorsi- and plantarflexion of the foot as the 
talus rotates sagittally around a largely transverse axis8 (although more complex movements in other anatomi-
cal planes occur at the joint as well9,10). A rotating, asymmetrical body can function as a cam mechanism (Fig. 
S1a), converting rotational into translational motion11. Cams consist of two moving elements: a driver, which is 
generally fixed at a rotational axis and has an asymmetry known as the rise, and a follower, which contacts the 
driver and follows a path dictated by the contour of the rise (Fig. S1a). We hypothesize that the talus functions as 
a driver rotating about the talocrural joint axis, the PTS serves as the rise, and the tendon of the flexor fibularis 
muscle (transmitted through a groove on the posterior aspect of the talus) as the follower. Rotation of the driver 
(dorsi- and plantarflexion of the foot) would “translate” the tendon proximally by increasing its path length, and a 
larger rise (i.e., PTS hypertrophy) would increase the effect. Since the PTS is located on the posterior aspect of the 
talus, the tendon’s path length would be maximized when the PTS is most distal to the origin of the flexor fibularis 
(i.e., when the foot is dorsiflexed) and the tendon would be “translated” toward the muscle’s origin, effectively 
contracting the muscle (Fig. 2).
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In non-human primates, the flexor fibularis typically inserts on the distal phalanges of the first, third, and 
fourth rays12, so the PTS cam mechanism could confer several biomechanical benefits in taxa with grasping feet. 
Given the muscle’s insertion patterns and assuming muscular contraction remains constant, translation of the 
tendon may induce additional flexion of digits critical for pedal grasping (Fig. 2). Alternatively, increasing the 
path length of the tendon during dorsiflexion could permit reduced muscular activity without a concomitant 
decrease in grasping ability. Finally, the PTS cam could increase the passive tension within the muscle: when 
stretched to a certain length, the actin-myosin interaction of sarcomeres is maximized, permitting increased 
force generation13. If the flexor fibularis can stretch the additional distance necessitated by a hypertrophied PTS, 
the cam mechanism could shift the muscle to a more efficient position along its length-tension curve. In the 
discussion, we examine the likelihood of each of these alternatives, but in all cases, a hypertrophied PTS would 
increase grasping efficiency (increased work for equivalent energy or equivalent work for reduced energy) in a 
dorsiflexed foot posture.

To model the PTS as a cam mechanism, our measurements capture the size of the rise relative to the base circle 
of the driver, a ratio termed the PTS index (Fig. S1b). PTS indices > 1 indicate strongly developed cam mecha-
nisms (Materials and Methods). We compute PTS indices for a large and comprehensive sample of euarchontans 
(Materials and Methods) and test for significant differences between clades as well as significant differences from 
a PTS index = 1 (a null hypothesis indicating the rise is equivalent to the driver’s base circle). Finally, we eval-
uate the evolution of the PTS through time using Bayesian ancestral state reconstruction and multiple-regime 
Ornstein-Uhlenbeck models (Materials and Methods).

Results
Among extant primates, the highest PTS indices are exhibited by indriids and Lepilemur (Fig. 3a; Table S1; Fig. 
S6). Four extant primate families (Indriidae, Lemuridae, Galagidae, and Tarsiidae), as well as a non-natural group 
of the remaining lemuriform taxa (Cheirogaleidae, Lepilemur, and Daubentonia) have mean PTS indices signifi-
cantly greater than 1 (Table S8). Of these taxa, indriids, galagids, and tarsiers habitually grasp vertically oriented 
supports with strongly dorsiflexed feet14–16, and vertical support use is a component of the positional behavior 
for many lemuriforms17. As a group, strepsirrhines (excluding Lorisidae) have significantly greater PTS indices 
than anthropoids, lorisids, and other euarchontans (dermopterans and scandentians) (Fig. 3a; Table S7; Fig. S5).

The high PTS indices of extant vertical clinging taxa are exceeded by those of several fossil groups. Members of 
both adapiforms and omomyiforms, two Eocene groups likely to represent crown primates, including the earliest 
represented members (Donrussellia and Teilhardina respectively) (Fig. 3b; Table S2) have greater PTS indices than 
those observed in extant taxa. The best supported model for Bayesian ancestral state reconstruction (Fig. 4, Table 
S13) utilizes a delta parameter <1 (mean δ = 0.544) and estimates that the ancestral crown primate possessed a 
well-developed PTS (1.19), in stark contrast to all other euarchontan groups, including plesiadapiforms (0.68).

Evolutionary models generated with stepwise-fitting of Ornstein-Uhlenbeck adaptive regimes accord well 
with the evolutionary pattern implied by ancestral state reconstruction. For extant taxa (Fig. 3a; Table S21), 
the base of the euarchontan tree is characterized by a low adaptive optimum for the PTS index (0.74) which is 

Figure 1.  Presence and absence of the posterior trochlear shelf (PTS) in euarchontans. PTS indicated by 
shading. Ellipses represent flexor fibularis tendon; tendons in red are expected to experience cam effect, while 
tendons in blue are not. Non-crown primates include (a) Ptilocercus lowii (USNM 488072), (b) Galeopterus 
variegatus (USNM 317118), and (c) †Plesiadapis rex (UM 94816; reversed for consistency). Extant and likely 
crown primates include (d) †Teilhardina belgica (IRSNB M1235), (e) †Donrussellia provincialis (MNHN RI 428), 
and (f) Lepilemur mustelinus (AMNH 170556). Institution abbreviations and expanded comparative plates are 
provided in Supplementary Material. Scale bars equal 3 mm.
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maintained in living dermopterans and scandentians. A shift to a higher optimum (1.59) occurs at the node repre-
senting the common ancestor of crown primates. Including fossils generates a best-fit model (Fig. S13; Table S17; 
Table S20) with a high optimum (1.11) at a more basal node (Primatomorpha = crown primates and dermop-
terans). While the crown primate node maintains the same high optimum as Primatomorpha, the dermopteran 
lineage immediately shifts to a lower optimum (0.61).

Several euarchontans exhibit mean PTS indices significantly <1 and thus experience no cam effect in dorsi-
flexed foot postures (Fig. 3; Table S8). These taxa fall into two functional groups: claw-clinging taxa (dermopter-
ans, scandentians, callitrichines) and taxa that grasp substrates over large ankle excursion angles (lorisids, atelids 
and Pongo pygmaeus) (Fig. 3a; Fig. S6). Ornstein-Uhlenbeck modeling recovers regime shifts to lower optima for 
members of both groups (Fig. 3a; Fig. S13). Though members of the first group often use vertical supports18–20, 
claws fundamentally change how the animal engages with the substrate21, so maintaining vertical postures does 
not require a strong pedal grasp between opposing digits. Fossil taxa with claws also have low PTS indices, as 
vertical clinging plesiadapiforms22 have PTS indices <1 (Fig. 3b; Table S2). In lorisids, atelids, and Pongo, low PTS 
indices mean the muscle tendon passes closer to the talocrural joint axis, so muscle path length does not change 
substantially as foot position changes. Eliminating the PTS cam would have the benefit of reducing variability 
in the muscular effort experienced as a result of these taxa using a wide range of foot postures while grasping. 
Among examined fossil taxa, adapines, caenopithecines, and sloth and koala lemurs, which have been compared 
to slow-climbing or suspensory taxa23–25, exhibit PTS indices <1 (Fig. 3b).

In most extant anthropoid families, the talus does not exhibit a pronounced cam mechanism, and PTS indices are 
not significantly different from 1 (Fig. 3a; Table S8). Compared to strepsirrhines, anthropoids utilize more horizontal 
supports26 with less hallucal grasping27, so anthropoids may not experience the same selective pressures as strepsir-
rhines to maintain a hypertrophied PTS. Only two anthropoid groups have PTS indices notably different from 1. 
First, as discussed above, atelids and callitrichines have mean PTS indices significantly <1 (Fig. 3a; Table S8). Second, 
cercopithecoids, particularly the Asian colobines in our sample, exhibit high PTS values (Fig. 3a). Though data is 
limited, vertical support use appears to be an important component of positional behavior for some colobines28. Most 
fossil anthropoids have PTS indices slightly greater than 1, consistent with the gradual PTS reduction suggested by 
Ornstein-Uhlenbeck modeling (Fig. 3a) and ancestral state reconstructions (Fig. 4). Reduced PTS indices may reflect 
allometric constraints, as larger taxa tend to have lower PTS indices (Supplementary Tables S5–S6) and there have 
been independent increases in body mass within several primate lineages25,29.
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Figure 2.  The posterior trochlear shelf (PTS) as a cam mechanism. Line drawings of cam mechanism of the PTS 
in a plantarflexed (a) and dorsiflexed (b) foot. Cam mechanism modeled in plantarflexed (c) and dorsiflexed 
(d) foot of Mirza zaza (DLC 315 m), dorsal view. Insets show plantarflexed and dorsiflexed foot in medioplantar 
view. Blue lines indicate paths of the tendons of flexor fibularis, with black and red marks indicating theoretical 
contact points between PTS and tendon during plantarflexion and dorsiflexion respectively. Insertion patterns 
follow Langdon12. Arrow indicated by F shows direction of force generated by flexor fibularis.
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Figure 3.  Bar charts of PTS indices, clade-level ANOVA results, and adaptive regime shifts in extant (a) 
and extinct (b) euarchontans. Whiskers indicate standard deviation. Individual sample sizes indicated in 
parentheses. Pairwise ANOVAs (F = 27.65, df = 4,68) were computed between groups shaded in light gray 
using species means and are reported in full in Table S7. Asterisks denote p-values ***p < 0.001, **p < 0.01, 
*p < 0.05. SURFACE regimes are mapped onto extant phylogeny. Nodes with regime shifts are numbered and 
detailed in Table S21. Branch colors indicate regime shifts (red: &#x019F; > 1.0, blue &#x019F; < 1.0); color 
intensity indicates rank order of &#x019F; values (darker colors indicate more extreme optima). Boxplots of 
PTS indices for all species are shown in Fig. S6.

https://doi.org/10.1038/s41598-019-48651-x


5Scientific Reports |         (2019) 9:12341  | https://doi.org/10.1038/s41598-019-48651-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
Our finding that the highest PTS indices are observed in euarchontan species that habitually grasp vertical sup-
ports provides evidence for the hypothesis that the PTS can function as a cam mechanism when hypertrophied. 
The effect of the cam mechanism would be most pronounced in highly dorsiflexed foot postures typical of those 
observed in primates while grasping vertical supports17,30,31. However, the interpretation of PTS hypertrophy as a 
feature related to pedal grasping efficiency is complicated by the strong correlation between vertical support use 
and leaping behaviors in extant primates14, which makes it difficult to disentangle features that improve leaping 
performance from those that improve pedal grasping efficiency. Indeed, despite the ambiguity of the functional 
significance of PTS hypertrophy, several authors have linked PTS development with leaping1,2. Feasibly, the PTS 
cam mechanism could function as a power amplifier by storing elastic energy in the flexor fibularis muscle during 
ankle dorsiflexion, similar to the power amplifying properties of the vastus aponeurosis during knee flexion in 
galagos32.

Two sets of observations provide indirect arguments against the possibility that the PTS cam mechanism 
functions as a power amplifier during leaping. First, while the flexor fibularis could potentially plantarflex the foot 
at the ankle, primate electromyography studies33,34 show the muscle is most active during grasping. PTS hyper-
trophy likely impacts the primary action of the flexor fibularis muscle more than any auxiliary actions. Second, 
given tarsiers’ proficiency for leaping and grasping vertical supports14–16, it is counterintuitive that tarsiers do not 
exhibit a level of PTS hypertrophy comparable to other taxa with similar positional behaviors, such as indriids 
and galagids. Presumably a feature that functions as a power amplifier during leaping would also be advantageous 
for tarsiers. However, the modest PTS hypertrophy seen in tarsiers is more readily explained by differences in 
musculature associated with pedal grasping than differences in leaping, as tarsiers exhibit a relatively smaller 
flexor fibularis muscle35 and more developed intrinsic musculature within their foot than other strepsirrhines36. 
While it remains possible that the PTS cam mechanism functions as a power amplifier, the relatively modest PTS 
in tarsiers and the activation pattern of the flexor fibularis make the possibility less likely than the relationship 
with improved pedal grasping efficiency proposed here.

Provided PTS hypertrophy increases pedal grasping efficiency, it is important to recognize that the exact mode 
by which efficiency increases cannot be deduced from the feature’s distribution. Based on research of pedal grasp-
ing in other vertebrates, there are three possible alternatives for how the PTS could increase grasping efficiency.
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Figure 4.  Ancestral state reconstruction (delta model with random walk) of PTS index for select nodes of the 
euarchontan tree. Branches are colored by clade to improve readability, internal nodes of interest (open circles) 
are labeled. Mean estimates and confidence intervals for each node are presented in Table S13. Additional 
discussion of PTS evolution within hominins is presented in Supplementary Material.
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	(1)	 Translation of the tendon induces additional digital flexion (Fig. 2). This mode would be analogous to the 
automatic digital flexor mechanism (ADFM) proposed to exist in some birds37–40. The ADFM purportedly 
enhances pedal grasping through passive flexion of the digits as the hindlimb flexes and the tendons of 
the extrinsic digital flexors (flexor hallucis longus and flexor digitorum longus) are drawn taut around the 
intertarsal joint. While dorsiflexion of the intertarsal joint in bird cadavers does induce digital flexion40, this 
mechanism has not been observed in experimental work with pigeons and crows41 or starlings42. The addi-
tional distance created during dorsiflexion may not exceed the passive excursion length of the muscle41,42, 
so that the muscles simply stretch, rather than induce digital flexion in birds. For primates, it is possible 
that the flexor fibularis could stretch to accommodate the additional travel distance caused by the PTS cam. 
However, when clinging to vertical supports, primates use deep crouching postures30 with more acute ankle 
joint angles (~56° for six strepsirrhine species31) than those observed at the intertarsal joint in starlings dur-
ing perching42 (~120°). Furthermore, species with higher PTS indices such as Propithecus verreauxi (mean 
PTS index = 1.22) exhibit more acute ankle angles than species with lower PTS indices such as Nycticebus 
coucang (mean PTS index = 0.71) while vertical clinging (~39° and ~89° respectively)31. It remains possible 
that increased dorsiflexion in primates, combined with the PTS cam mechanism, causes tendon travel to 
exceed the distance achievable through passive excursion of the flexor fibularis, leading to digital flexion.

	(2)	 Proximal translation of the tendon permits reduced muscular activity. For extant primates and their close 
fossil relatives, the benefit of the PTS may be analogous to the tendon-locking mechanisms (TLM) that 
have convergently evolved along the tendons of pedal digital flexors in birds43, bats44,45, dermopterans45, 
and some climbing rodents46. TLMs are ratchet-like arrangements between the digital flexor tendons and 
flexor sheathes that can maintain a degree of digital flexion without constant muscular effort43. While 
all examined primates lack TLMs45, PTS hypertrophy may confer a similar benefit while grasping. This 
alternative could explain results from primate electromyography studies33,34 which do not detect increased 
flexor fibularis activity on vertical supports relative to horizontal substrates.

	(3)	 The PTS cam mechanism shifts the flexor fibularis to a more efficient position on its length-tension curve. 
This alternative is best supported by experimental work showing that above-branch perching does not 
involve digital flexion in several bird species41,42, thus questioning the existence of the ADFM. Rather, these 
authors suggest that the additional distance created during dorsiflexion of the foot could increase grasp-
ing efficiency by shifting muscles to a more efficient position of their length-tension curves. For primates, 
the PTS cam mechanism could increase grasping efficiency in a similar manner, leading to the prediction 
that differences in PTS hypertrophy correlate with differences in flexor fibularis length-tension curves 
across primates. This alternative could explain the widespread convergence of low PTS indices (reflecting 
deep flexor fibularis grooves) across primates (e.g., lorisids, atelids, Pongo, adapines, caenopithecines, and 
several subfossil lemurs) (Fig. 3). If these taxa habitually use hallucal grasps over a large range of ankle 
joint angles, flexor fibularis may already be in an optimal part of the length-tension curve, and it would be 
beneficial to minimize change to the tendon path length throughout joint excursion by keeping the tendon 
as close to the joint axis as possible.

Although the specific biomechanical mechanism by which PTS hypertrophy increases pedal grasping effi-
ciency remains an open question, each alternative generates specific and testable predictions, so they can be 
investigated experimentally. It also is important to note additional characteristics of primate tali could increase 
or decrease the PTS cam effect. For example, we use a static model of the talocrural joint axis that reflects the 
curvature of the lateral tibial facet of the talus, rather than a dynamic model reflecting interactions between the 
distal tibia and talar trochlea. Dynamic modeling could potentially change expression of the cam mechanism. 
Additionally, dorsiflexion of the primate foot involves a degree of medial rotation of the talus8,9, so that a lateral 
position for the flexor fibularis groove47,48 or “twisting” of the PTS35 could enhance the cam effect. These addi-
tional factors could be incorporated into future studies.

While the specific mode is not resolved by this study, the evolution of the PTS and its implications for the 
adaptive origins of crown primates are less ambiguous. Both ancestral state reconstruction (Fig. 4) and SURFACE 
analyses (Fig. 3) reveal rapid development of the PTS during crown primate origins. The delta model favored by 
ancestral state reconstruction suggests that PTS hypertrophy occurred rapidly at the base of crown primates and 
then stabilized, as expected with an adaptive radiation49. These results suggest that the lineage leading to the ances-
tral crown primate experienced strong selective pressure to maintain pedal grasps in dorsiflexed foot postures. 
Since these foot postures are most pronounced during vertical support use17,30,31, the high PTS indices observed 
among Eocene primates and reconstructed for the ancestral crown primate strongly suggest that vertical support 
use was important selective component of positional behavior in the lineage leading to the ancestral crown primate.

Overall, our results align well with scenarios of crown primate origins that emphasize vertical supports14,50 or 
lemuriform-like positional behaviors51 that rely on strong hallucal grasps. Vertical support use in the ancestral 
crown primate is supported by other quantitative analyses of euarchontan tali48,52,53 and potentially the extremely 
elongated manual digits of early crown primates54. The prevalence of vertical postures among other euarchon-
tans19–21 strongly suggests these postures were an inherited component of the ancestral crown primate’s positional 
behavior. Thus, PTS hypertrophy would not reflect a change in positional behavior in the lineage leading to the 
ancestral crown primate but would serve as a novel mechanism for maintaining a reliance on vertical supports.

Methods
Sample.  The sample includes 388 individuals representing 126 extant and extinct euarchontan species 
(Supplementary Data S1 and S2). Institutional abbreviations are included in the Supplementary Material. 
All measurements were taken on 3D digital surface models generated with a variety of scanning modalities. 
Documentation for each specimen can be found on Morphosource.org55, an online repository for 3D data.
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Measurement protocol.  To model the posterior trochlear shelf as a cam, we calculated a ratio of two lin-
ear measurements (Fig. S1b). These measurements capture (1) the radius of the cam’s base circle, representing 
the distance between the axis of the talocrural joint and the articular surface of the lateral tibial facet, and (2) 
the distance between the camshaft and the follower, representing the maximum distance between the axis of 
the talocrural joint and the flexor fibularis (=flexor hallucis longus) tendon. All measurements were taken in 
Geomagic Studio56.

To calculate the radius of the cam’s base circle, we first highlighted the lateral tibial articular facet (LTF) using 
the selection tool in Geomagic Studio (Fig. S1b). Extension of the LTF onto the talar neck was excluded from 
the selection to ensure the base circle followed the curvature of the trochlea. Next, the talocrural joint was mod-
eled using the best-fit cylinder function in Geomagic (Features- > Cylinder- > Best-fit- > do not contact feature), 
with the axis of the best-fit cylinder representing the axis of the talocrural joint. The radius of the cylinder was 
recorded (“Radius” in Supplementary Data S1 and S2).

To calculate the distance between the axis of the cam and the follower, we placed a landmark in the groove 
for the flexor fibularis (FFG). In nearly all examined specimens, FFG was saddle-shaped: concave mediolaterally 
and convex dorsoplantarly. In these cases, a landmark was placed at the saddle point of the FFG after rotating the 
talus so that the main axis of the FFG was orthogonal to the viewing plane, as in Yapuncich et al.48. The FFG of one 
Avahi specimen (USNM 83652) was convex mediolaterally, so the landmark was placed at the point of maximal 
curvature in both directions. We then measured the distance between this landmark and the best-fit cylinder 
(“Groove to Cylinder” in Supplementary Data S1 and S2). Negative distances were possible if the landmark was 
within the best-fit cylinder. Radius and Groove to Cylinder were summed as a measure of the distance between 
the joint axis and the FFG (“Axis to Groove” in Supplementary Data S1 and S2).

Our metric for quantifying the size of the cam was generated from the measurements Axis to Groove and 
Radius: PTS Index = Axis to Groove/Radius. This index is dimensionless, with values > 1 representing strong 
development of the PTS, values < 1 representing no development of the PTS, and values = 1 indicating that the 
saddle point of the FFG lies on curvature ascribed by the lateral tibial facet. For certain analyses (see below), the 
PTS index was natural-log transformed after computation. Measurement protocol and calculation of the PTS 
index are illustrated in Supplementary Fig. S1b. Based on qualitative descriptions of the PTS in fossil primates23,57, 
we are confident that the PTS index captures the relevant morphology.

Statistical analyses.  We performed phylogenetic generalized least squares (PGLS) regressions, ordinary 
least squares (OLS) regressions, ANOVAs, one sample t-tests, and principal component analyses (PCA). All sta-
tistical analyses were conducted using species means (Supplementary Data S2) and protocols have been described 
in previous publications48,53,58. PGLS regressions were performed in R with the caper package59. OLS regressions, 
ANOVAs, one sample t-tests, and PCAs were performed in PAST 3.0760. Values for all analyzed variables are 
available for individuals in Supplementary Data S1 and for species means in Supplementary Data S2. Summary 
statistics for PTS indices and component measurements are available in Tables S1–S2.

Phylogenetic tree construction.  For PGLS regressions of extant taxa, the phylogenetic tree (Tree S1) was 
downloaded from the 10 K Trees61 and edited in Mesquite62 to include non-primate euarchontans. Branch lengths 
for dermopterans and scandentians came from Janečka et al.63 and Roberts et al.64 respectively. For regressions 
with fossil taxa, we used two different tree topologies: Tree S2, a supertree based largely on Gunnell et al.65, which 
recovers polyphyly among Adapiformes, and Tree S3, a modified tree from Yapuncich et al.48 (with the addition 
of Donrussellia provincialis), which positions all adapiforms as basal strepsirrhines and omomyiforms as basal 
tarsiiforms. The process for generating these trees and nexus files of the trees themselves are available in the 
Supplementary Material.

Ancestral state reconstruction.  Ancestral reconstructions of PTS indices were carried out using 
BayesTraits v366. We used the stepping-stone sampler to estimate log marginal likelihoods under both random 
walk and directional models, and, using comparisons of log Bayes Factors, tested whether addition of phyloge-
netic scaling parameters (delta, kappa, lambda) to either model provided positive evidence (i.e., log Bayes Factors 
of >2) for a more likely model of evolution. For each combination of random walk model + scaling parameter 
and directional model + scaling parameter, we ran two simultaneous stepping-stone analyses, with 1000 stones; 
each stone was run for 10,000 generations. Similar estimated marginal likelihoods from each independent run 
(mean difference of 0.06 between the estimated marginal likelihoods of paired runs) suggested that the number of 
generations was sufficient to allow for meaningful Bayes Factor comparisons. Ancestral reconstructions employed 
the model files from MCMC runs of the data with random walk model + delta parameter and random walk 
model + kappa combinations (i.e., the model + scaling parameter combinations that yielded the highest mar-
ginal likelihoods estimated by the stepping-stone sampler) for 20,050,000 generations (first 50,000 generations 
discarded as burn-in). Ancestral reconstructions were also run for 20,050,000 generations, with two independent 
runs, from which means for each ancestral reconstruction were calculated. Means and 95% highest posterior 
densities for ancestral reconstructions were calculated in Tracer v1.6.067.

SURFACE analyses.  We used the surface package68 in R69 to detail the pattern of diversification for the 
PTS index within the euarchontans. Given continuous phenotypic data, the SURFACE function fits an 
Ornstein-Uhlenbeck (OU) evolutionary model to a given phylogeny70. Starting from an initial model with a 
single adaptive optimum (ϴ), SURFACE uses stepwise model selection to map additional adaptive optima to 
the phylogeny. These additional optima are interpreted as new adaptive regimes, reflecting shifts in the selective 
pressures faced by members of a particular lineage. Once a maximally complex model is estimated, SURFACE 
then evaluates whether model fit improves when different regimes are combined and share an adaptive optimum. 
Lineages that share an adaptive optimum are considered convergent.
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Simulation studies comparing the accuracy of SURFACE and ℓ1ou71, another phylogenetic method for detect-
ing evolutionary shifts, have demonstrated that SURFACE is prone to overfitting a tree with regime shifts71. This 
is largely due to SURFACE’s use of the Akaike information criterion to evaluate model goodness-of-fit72. However, 
SURFACE is preferred in analyses that included fossils, as it can run with non-ultrametric trees. To reduce the 
likelihood of recovering false positives, we conducted our analyses using modified versions of the phylogenies 
used for PGLS regressions and ancestral state reconstruction. In the first version, we consolidated all species to the 
genus level (except for Tarsius) to remove short branches. Genus-mean PTS indices were calculated as averages 
weighted by species representation. The second version was created after the initial SURFACE analyses identified 
several fossils with taxon-specific adaptive optima (e.g., Purgatorius, Donrussellia, and Australopithecus). In the 
second version, we removed all genera with taxon-specific adaptive regimes. For the third version, we resolved the 
polytomy at the base of euarchontans between scandentians, the paromomyid plesiadapiform Ignacius, and other 
plesiadapiforms by removing all plesiadapiforms (so that scandentians are the most basal members of our phy-
logenetic sample). Although relationships between the three extant euarchontan orders are not fully resolved73,74, 
a sister-taxon relationship between primates and dermopterans is supported by molecular analyses63,75.

As with other phylogenetic analyses, we evaluated two different tree topologies, one based on the topology 
recovered by Gunnell et al.65 (modified from Tree S2), and a more “traditional” topology that positions notharc-
tids as basal strepsirrhines (modified from Tree S3) for all versions. Regime shifts and adaptive optima of the 
SURFACE analyses are presented in Tables S17–S21 and further detail is presented in the Supplementary Material.

Data Availability
The authors declare that all data supporting the findings of this study are available within the paper and its supple-
mentary information files. Digital surface models measured for this study are available at http://morphosource.org.
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