
FUNCTIONAL MRI

Making connections in the brain
Simultaneous measurements of neuronal activity and fMRI signals in the

rat brain have shed new light on the origins of resting-state fMRI

connectivity networks.
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F
unctional MRI (fMRI) is a non-invasive

technique that measures changes in the

amount of oxygenated blood supplied

to various regions of the brain, and this BOLD

signal (short for blood-oxygen-level dependent

signal) is used as a proxy for activity in these

regions of the brain. fMRI measurements

made when the brain is ’at rest’ – that is,

when the subject is not performing any spe-

cific task – have revealed the existence of

long-range networks connecting different

regions of the brain (Biswal et al., 1995;

Fox and Raichle, 2007; Smith et al., 2013;

Shen, 2015). Numerous studies have demon-

strated that changes in these resting-state

fMRI connectivity networks are involved in a

range of cognitive functions (Lu et al., 2012;

Raichle, 2015; Ash et al., 2016). However,

despite the enormous potential of resting-state

fMRI to explore many areas of neuroscience,

the neural basis of these connectivity networks

remains elusive.

Now, in eLife, Albrecht Stroh, Cornelius Faber

and co-workers at institutions in Mainz, Frankfurt

and Münster – including Miriam Schwalm,

Florian Schmid and Lydia Wachsmuth as joint

first authors – report new insights into the ori-

gins of resting-state fMRI connectivity

(Schwalm et al., 2017). In brief, Schwalm et al.

used resting-state fMRI to monitor whole-brain

activity in rodents, while simultaneously imaging

the activity of populations of neurons in the cor-

tex via fluorescence signals from calcium ions

(Ca2+). This made it possible to examine the

relationship between resting-state fMRI signals

and specific neurophysiological events.

Ca2+ measurements often reveal slow oscilla-

tions – rhythmic low-frequency waves generated

by the rise and fall of neuronal activity in the cor-

tex. Schwalm et al. showed that in rats anesthe-

tized with isoflurane, the Ca2+ signals in the

cortex displayed between about 8 and 20 large

spontaneous peaks per minute. These peaks

most likely reflect the synchronized firing of pop-

ulations of neurons, otherwise known as the ’up’

states of slow oscillations (Steriade et al.,

1993).

To analyze their data, Schwalm et al. devised

a new approach that involved classifying the

peaks in Ca2+ activity as binary events. Then,

using a statistical approach called the general

linear model (GLM) method, they compared

these binary Ca2+ events with the resting-state

fMRI signals that were acquired simultaneously.

This made it possible to identify resting-state

fMRI connectivity networks that reflect the spa-

tial extent of these Ca2+ events (Figure 1). This

analysis revealed a connectivity network span-

ning the cortex, including the somatosensory

and visual cortices, that correlated with the slow

Ca2+ events.

Since GLM-based methods are not commonly

used in resting-state fMRI connectivity analysis,
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Schwalm et al. then confirmed this finding using

more conventional approaches (such as indepen-

dent component analysis and seed-based techni-

ques). Moreover, they did not find any evidence

for a cortex-wide connectivity network in rats

that had been sedated with medetomidine (and

which do not exhibit slow oscillations). These

results indicate that resting-state fMRI connectiv-

ity phenomenon may be partially attributed to a

defined neurophysiological event, namely the

occurrence of slow oscillations.

The slow Ca2+ events seen in the cortex have

certain characteristics in common with the infra-

slow fluctuations in BOLD activity that signal the

presence of resting-state fMRI connectivity net-

works. Typically, resting-state connectivity exhib-

its synchronized patterns of fluctuations in BOLD

activity in both hemispheres (for example, in the

bilateral sensory cortices). It was reported

recently that Ca2+ events in the excitatory neu-

rons of layers 2/3 and 5 of the bilateral sensory

cortices coincide with the bilateral resting-state

fMRI connectivity network (Ma et al., 2016). Fur-

ther, another recent study revealed an additional

Ca2+ event propagating globally across the cor-

tex that coexists with the bilateral Ca2+ events

(Matsui et al., 2016), suggesting the presence

of an additional resting-state connectivity net-

work. Here, Schwalm et al. revealed a resting-

state fMRI connectivity correlate of such a global

cortical Ca2+ event.

Slow oscillations or other forms of low-fre-

quency neural activity have also been reported

to be a key contributor to resting-state thalamo-

cortical-thalamic networks (Crunelli and

Hughes, 2010; Leong et al., 2016; Xiao et al.,

2017) and hippocampal-cortical-hippocampal

networks (Staresina et al., 2015; Mitra et al.,

2016; Chan et al., 2017), and Schwalm et al.

found evidence for a resting-state fMRI connec-

tivity network that was similar to the first of

these. This suggests that these phenomena

extend well beyond the cortex, with large-scale

neural interactions at low frequency having an

important role.

Of course, many questions remain in our

quest to better understand and utilize resting-

state fMRI connectivity networks. For example,

Figure 1. Combining resting-state functional MRI measurements of blood oxygenation and calcium recordings

of spontaneous neural activity in the rat brain. The blue trace shows slow oscillations in a calcium recording of

spontaneous neural activity in the primary somatosensory cortex; the trace shown here is approximately 80

seconds long. Schwalm et al. converted such traces into binary signals (black) and then used this binary signal to

analyze the results of resting-state functional MRI measurements on the whole brain. This analysis revealed that

the slow oscillations generate a resting-state fMRI connectivity network (red and yellow) that extends cortex-wide

from the primary somatosensory cortex (S1) to the primary visual cortex (V1).
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how exactly do large-scale interactions within

and between neural systems at rest give rise to

distinct resting-state fMRI networks? How should

we analyze and examine these networks to dis-

sect their functional roles? The results of

Schwalm et al., together with recent animal stud-

ies, signal that we are now entering an exciting

phase in which the development of new strate-

gies will allow us to explore the neural basis of

resting-state fMRI connectivity networks even

further.
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