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1. Introduction
Our increasing demand for natural like biomaterial has resulted in a growing interest in the development of artificial 
catalysts [1]. These special macromolecules can be used repeatedly to facilitate well-optimized catalytic function [2]. 
Therefore, enzyme mimicry studies attracted remarkable interest for designing synthetic catalysts with improved stability 
and function by exploiting the modifiable features of the synthetic materials [3]. However, we are still far from attaining the 
catalytic success of the native enzymes due to their well-optimized mechanism. Hence, there is a significant requirement 
for the development of a new type of catalysts for understanding the elaborate nature of these catalytic proteins. 

So far, various macromolecules were employed as artificial catalysts [4]. Natural-like biomaterials are always considered 
as an advantageous toolbox for a wide variety of applications [5]. Most common examples of enzyme mimics were designed 
by using organic macromolecules, antibodies, polymers, and nanoparticles [6–9]. Peptide nanomaterials hold an important 
place among these artificial scaffolds due to their structural similarity with the native proteins [10], well-optimized 
synthetic protocols, and modifiable structure [11]. They can be converted into multifunctional nanomaterials-nanofibers 
or micelles- simply by the attachment of a hydrophobic tail [12]. In this way, a bioactive group carrying nanoparticles 
assemble into nanofibers, and nanostructure formation leads to improved bioactivity via nanosurface phenomena [13]. 
Hydrophobic tails are usually selected from known fatty acids, which are also practical for membrane transportation as 
well. Bioactive nanogroups on peptide nanofibers can be tailored by considering the desired function. Small active units 
can also be inserted into these nanofibers, which means that these molecules can be applied simultaneously for multiple 
functions. In addition to the biological function, fiber formation can be induced with various triggers such as pH, counter 
ion, counter sequence, and light [14]. These features make them action site-specific as well. Depending on the pH or active 
biomolecule content of the targeted tissue, peptide-based agents can be manipulated for specific action.

The catalytic triad is a most common sequence found in various enzyme types (i.e. hydrolases and esterases) [15]-
ü and this set of coordinated amino acids, histidine/serine/aspartic acid (DHS), is frequently used in catalytic sites of 
artificial mimics [16]. These models were used to recapitulate the function of the catalytic triad containing enzymes [17]. 

Abstract: Artificial catalyst studies were always stayed at the kinetics investigation level, in this work bioactivity of designed catalyst 
were shown by the induction of biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications. 
The development of artificial enzymes is a continuous quest for the development of tailored catalysts with improved activity and stability. 
Understanding the catalytic mechanism is a replaceable step for catalytic studies and artificial enzyme mimics provide an alternative 
way for catalysis and a better understanding of catalytic pathways at the same time. Here we designed an artificial catalyst model 
by decorating peptide nanofibers with a covalently conjugated catalytic triad sequence. Owing to the self-assembling nature of the 
peptide amphiphiles, multiple action units can be presented on the surface for enhanced catalytic performance. The designed catalyst 
has shown an enzyme-like kinetics profile with a significant substrate affinity. The cooperative action in between catalytic triad amino 
acids has shown improved catalytic activity in comparison to only the histidine-containing control group. Histidine is an irreplaceable 
contributor to catalytic action and this is an additional reason for control group selection. This new method based on the self-assembly 
of covalently conjugated action units offers a new platform for enzyme investigations and their further applications. Artificial catalyst 
studies always stayed at the kinetics investigation level, in this work bioactivity of the designed catalyst was shown by the induction of 
biomineralization of the cells, indicating the possible use of enzyme mimics for biological applications.

Key words: Artificial enzyme, peptide, catalytic activity, biomineralization

Received: 20.04.2021              Accepted/Published Online: 12.06.2021              Final Version: 27.08.2021

Research Article

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0000-0003-1532-3681


GÜLSEREN / Turk J Chem

1271

The proposed structure in our new design will form the basis for nanofiber-based catalytic activity as well as the function. 
To achieve this goal DHS sequence was linked to the hydrophobic tail for nanofiber formation and the presentation of 
covalently linked active groups on nanofiber surfaces were investigated in terms of catalytic activity. The catalytic and 
biologic function of the designed peptide amphiphile was tested with the new design and the molecular activity of the 
model sequence was explained by the molecular calculations as well. In this context, following the kinetic demonstration 
of its biocatalytic activity, the designed artificial mimic was investigated with molecular modelling calculations to illustrate 
the contribution of each active site. At present, artificial catalysis studies are only at the catalytic activity phase and the 
biological activities of these artificial catalysts were not tested in model cell applications. Our goal in this work is to develop 
a biomimetic enzyme structure that can be applied to living cells, mimicking not only the chemical function but also the 
biological functions of the enzyme. Thus, a developed artificial model can be applied as a potential alternative to natural 
enzymes for therapeutic applications.

2. Materials and methods
9-Fluorenylmethoxycarbonyl (Fmoc) protected amino acids, lauric acid, [4-[a-(20,40-dimethoxyphenyl) Fmoc-amino 
methyl] phenoxy] acetomidonorleucyl-MBHA resin (Rink amide MBHA resin), 2-(1H-Benzotriazol-1-yl)-1,1,3,3 
tetramethyluronium hexafluoro- phosphate (HBTU), diisopropylethylamine (DIEA), and p-nitrophenyl acetate (PNPA) 
were purchased from Merck and ABCR. Plate reader plates (96-well) were purchased from BD. All other chemicals and 
materials used in this study were analytical grade and obtained from Invitrogen, Fisher, Merck, Alfa Aesar, and Sigma 
Aldrich.
2.1. Synthesis and characterization of peptide amphiphiles (PA)
Functionalized peptide molecules were synthesized manually by standard solid-phase Fmoc peptide synthesis chemistry. The 
catalytic triad mimetic peptide and lauryl-VVAGDHS peptide was constructed on MBHA Rink Amide resin at 0.25 mmol 
scale. Amino acid couplings were done with 2 equivalents of Fmoc-protected amino acid (or lauric acid), 1.95 equivalent 
of HBTU, and 3 equivalent of DIEA for 2 h. Fmoc removal was performed with 20% piperidine/dimethylformamide 
(DMF) solution for 20 min. Cleavage of the peptides from the resin was carried out with a mixture of TFA: TIS: H2O in 
the ratio of 95:2.5:2.5 for 3 h. Excess TFA was removed by rotary evaporation. The remaining viscous peptide solution was 
triturated with ice-cold ether and the resulting white product was freeze-dried. Peptides were characterized by Agilent 6530 
quadrupole time of flight (QTOF) mass spectrometry with electrospray ionization (ESI) source equipped with reverse-
phase analytical high performance liquid chromatography (HPLC) with Zorbax Extend-C18 2.1 50 mm column for basic 
conditions and Zorbax SB-C8 4.6  100 mm column for acidic conditions. An optimized gradient of 0.1% formic acid/
water and 0.1% formic acid/acetonitrile for acidic conditions and 0.1% ammonium hydroxide/water and 0.1% ammonium 
hydroxide/acetonitrile for basic conditions were used as mobile phase for analytical HPLC, respectively. The peptide was 
synthesized with 97% purity level. 
2.2. Self-assembled nanofiber formation and enzyme kinetics 
Nanofibers were formed by the elevation of the pH to 7.4. To perform kinetic experiments 2.5 x 10–5 M peptide was dissolved 
in 10 mM HEPES at pH 7.4 and incubated for fiber formation. The stock solution of the pNPA (p-nitrophenylacetate) were 
prepared in DMSO and diluted to 10 different concentrations between 1 x 10–4 M to 5 x 10–3 M and mixed with enzyme 
mimetic peptides, respectively. Biotech Epoch 2 plate readers were utilized for activity measurements. Immediately 
following mixing, the enzymatic reaction rate is obtained by spectral measurement of PNP (paranitrophenyl- which is 
the resulting product after enzymatic reaction) at 410 nm. Reaction rates were calculated for each concentration with 
an extinction coefficient of 10.166 M–1cm–1 and fitted into the Michaelis-Menten equation (v0 = kcat[E]0[S]0/(KM + [S0])). 
Graphpad 5 was used for graphical fitting and calculations. 
2.3. Microscopy imaging
Transmission electron microscopy (TEM) was employed to visualize nanofibers and the resulting network structure. TEM 
samples were prepared on the cleaned cover glass surface by elevating the pH of the peptide solution. TEM images were 
acquired with FEI Tecnai G2 F30 TEM at 300 kV. Samples for TEM were prepared by mixing on a 200-mesh carbon TEM 
grid for 3 min followed by 2 wt % uranyl-acetate staining for 1 min and drying immediately under nitrogen gas. 
2.4. Circular dichroism                                                                                                                                            
To investigate the secondary structure of peptide nanofibers, circular dichroism (CD) spectra of 3 x 10–5 M peptide 
amphiphile, were measured at room temperature from 300 nm to 190 nm with 0.1 nm data interval and 500 nm/min 
scanning speed. The results were converted to and represented as the mean residue ellipticity.
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2.5. Theoretical calculations  
The DHS sequence were theoretically studied by a semi-empirical molecular orbital method (called parameterized 
model-3 (PM3) [18] with the restricted Hartree−Fock (RHF) [19] formulation. After geometrical minimization, single 
point energy (SPE) calculation using density functional theory (DFT) [19] with B3LYP (Becke, three-parameter, [20] 
Lee−Yang−Parr [21,22]) exchange-correlation potential was performed at the basis set 6- 31G+(d) [23]. These calculations 
yielded the frontier molecular orbitals (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO)) and electrostatic potentials. The electrostatic potential maps of the active sequence were calculated to 
determine their chemical activity and electrostatic interactions with other molecules. The program packages Gaussian 09 
[24] and GaussView5 [25] were used for theoretical calculations and input and visualization, respectively.
2.6. Bioactivity study
Biomineralization and calcium phosphate tests with SaOS-2 cells were carried out on 1 mM DHS-PA 24 well-plates. 
Peptide was gelated by using DMEM medium (pH 7.4). DHS-PA nanofibers were formed on culture plate surfaces as 
described above and coated surfaces were first incubated at 37 °C. Coatings were then allowed to dry in a laminar hood 
overnight. For bioactivity test, SaOS-2 cells were seeded on 24-well plates at a density of 4 × 104 cells/cm2 in DMEM with 
10% FBS. Calcium deposition on the surfaces was measured on day 7 using Alizarin Red as quantitative colorimetric 
staining[26]. Briefly, cells were fixed with ice-cold ethanol for 1 h and stained with 40 mM Alizarin-Red S for 15 min. After 
washing 4−5 times with double-distilled water to remove nonspecific Alizarin-Red binding, cells were imaged with Zeiss 
optical microscope. 

3. Results and discussion 
The solid phase peptide synthesis technique was used to prepare enzyme mimetic DHS-PA (C12-VVAGDHS-Am) and the 
purity of the obtained product were characterized by LC-MS chromatography (Figure 1). Mass spectrometry of results 

Figure 1. Chemical and the structural characterization of the peptide amphiphile molecule a) Circular dichroism graph, b) TEM image 
of the nanofibers c) LC graph of peptide solution. HPLC chromatogram of peptide. Absorbance at 220 nm vs. retention time graph. d) 
FTIR analysis of peptide DHS nanofibers e) Mass spectrometry of peptide after subtracting mass spectra of water sample at that time 
interval. [M + H]+ (calculated) = 866.49 [M + H]+ (observed) = 866.5652, [2M + H]+ (calculated) = 1731.98 [2M+H]+ (observed) = 
1731.0221, [M/2 + H]+ (calculated) = 433.745 [M/2 + H]+ (observed) = 433.2676 .
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were obtained and calculated as follows; [M + H]+ (calculated) = 866.49 [M + H]+ (observed) = 866.5652, [2M + H]+ 
(calculated) = 1731.98 [M + H]+ (observed) = 1731.0221, [M/2 + H]+ (calculated) = 433.745 [M/2 + H]+ (observed) 
= 433.2676 . The nanofiber formation of DHS-PA was evaluated by conducting spectral and microscopic analysis. The 
secondary structure formation of peptide amphiphiles was evaluated by circular dichroism analysis, beta-sheet specific 
peaks were obtained around 205 and 220 nm indicating the hydrogen bond formation among the peptide monomers 
(Figure 1). TEM imaging revealed the sheet-like nanofiber morphology of the designed peptides and the width of the sheet-
like nanostructures was about 100–200 nm. This morphology can be seen in short peptides and their spatial organization 
in the aqueous environment leads the lateral organization rather than cylindrical fibrous structure [12]. The secondary 
structure formation was indicated via Fourier transform infrared (FTIR) spectroscopy as another identification technique, 
the spectra obtained from freeze dried peptide nanofibers showed an amide peak at around 1630 cm−1 accompanied by a 
broad band at 1680 cm–1, indicating sheet-like secondary structure formation of nanostructures [27].

Enzyme kinetic evaluation of the peptide amphiphile based artificial enzyme was studied with Michaelis−Menten 
kinetics. The catalytic action is generated by coordinative activity among the amino acids. In the native catalytic triad, the 
acidic side chain of aspartic acid polarizes the imidazole side chain of the histidine base to activate the hydroxyl group of 
the serine as a nucleophile [28]. This combinatory action reduces the pKa of the nucleophilic radical group of the serine 
which then facilitates the cleavage. 

The saturation profile of the enzyme mimic was illustrated by spectroscopic measurement of catalysis of pNPA versus 
time. Ten different concentrations were evaluated during this measurement and it has been shown that after administration 
of substrate, catalysis reaches the saturation profile indicating enzyme-like kinetics behaviour of the designed enzyme 
mimic. The catalytic turnover constant (kcat) of the substrate was calculated as 3.01 x 10−3 s−1 and the binding constant 
(KM) have found 0.38 mM (Figure 2). The efficiency of cooperative activity among the active amino acids was investigated 
by a control group (C12VVAGHH). The control group was decorated with two histidine moieties to test whether the 
catalytic action is coming from cooperative interaction of DHS rather than general base characteristics of histidine. To 
create a similar environment, two histidine moieties were administered for cooperativity. The catalytic efficiency was 

Figure 2. Michaelis−Menten graph and the kinetics table of enzyme kinetics studies of 
enzyme mimics.
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found ~4 times better than the control group, DHS-PA provided better catalytic turnover and substrate coordination 
microenvironment for the model substrate. It has shown that cooperative action is responsible for an enzyme-like kinetic 
profile but the existence of three action units is critical to generate a better catalytic profile. 

Compared to literature, a moderate catalytic activity can be generated by the peptide-based enzyme mimic decorated 
by covalently conjugated amino acids (Table). Previous studies have shown that hydrophobic backbone support is another 
critical parameter for catalytic efficiency, insertion of the hydrophobic amino acids in between action units resulted in 
significant improvement in catalytic efficiency [34]. In this study, minimal domain of action was investigated to understand 
its potential in the absence of external support. In comparison with reported enzyme mimics, this new design has shown 
similar rates at neutral pHs (Table). Interestingly, the calculated binding constant of the enzyme mimic has found very 
low, which can be interpreted as that covalently linked action units enable optimum environment for substrate binding. 

The enzyme-like activity of the covalently conjugated DHS and control group were tried to be understood by theoretical 
calculation. The initial energy minimization calculation of DHS modules was done by a semi empirical molecular orbital 
method PM3 with the Restricted Hartree−Fock formulation. This semi empirical calculation was followed by geometry 
optimization calculation using density functional theory with B3LYP exchange-correlation potential was performed at the 
basis set 6-31G+(d). 

The most probable structural organization of were obtained after geometry optimization calculations, these results 
indicated that the Nδ side of the imidazole group was tilted towards Asp and Nε were located closer to Ser (Figure 3). 
The optimized geometry of the peptide sequence has shown that interacting groups of catalytic triad are located closer for 
optimal activity. The orientation and placement of action units in the defined space of an active pocket is a hallmark of 
enzymes and of catalytic triad activation. Similarly, histidine modified control unit were calculated to make a comparison 
in between designed active site and only histidine unit. 

The synergistic catalysis is activated by the interaction of the different biomolecular groups. This simultaneous action 
leads a dramatic decrease in the HOMO-LUMO gap that causes significant acceleration of the catalysis reaction [29,30]. 
This approach was evaluated for various types of artificial catalysis studies [31,32]. The theoretical calculations yielded 
the frontier molecular orbitals, and these results were used for investigation of the catalytic activity-molecular structure 
relation. The ∆E value of the HOMO-LUMO gap was calculated as 6.25 eV. For the control group ∆E value was calculated 
as 15.51 eV. The closer HOMO−LUMO regions contribute to the reactivity of the molecule because of the decrease in 
the energy required for the reaction. The obtained decrease in the HOMO-LUMO gap was interpreted as the reason for 
the enzyme-like catalytic activity of the enzyme mimics. These results indicated that, the imidazole moieties are mainly 
responsible for the polarization of the serine and therefore nucleophilic activity of the set of coordinated amino acids. 
According to electrostatic potential (ESP) map, the electron density was located around mostly Asp residue, the blue color 
nearby the His indicated positive charge around this unit. This result can be interpreted as activation of the His to abstract 
proton from Ser for nucleophilic action (Figure 3). According to ESP mappings of control group, the imidazole units did 
not displayed that level of positivity, the lower activity can be explained with the absence of charge-relay network among 
the action units (Figure 4).

The biological activity of the enzyme mimic was evaluated with phosphatase-like activity. Most of the serine proteases 
employ a catalytic triad to facilitate catalytic action. In this part of the study, the designed enzyme mimic was used to 
cleave phosphodiester bonds for the generation of inorganic phosphates. The resulting inorganic phosphates are deposited 
on the cell surface for CaP biomineral formations. This process is the key regulator of osteogenesis. The cells treated with 
DHS peptide have resulted in calcium phosphate mineral deposition like native phosphatase. Besides catalytic activity, 
the enzyme mimicking peptide catalysts have shown bioactivity by inducing biomineralization and supporting viability 
(Figure 5). The mineral deposition was evidenced by alizarin red staining, calcium deposited SaOS-2 cells were observed 
as red staining. 

Table. Reported peptide-based enzyme mimics.    

Peptide enzyme mimic kcat / KM (M–1 s–1) Reaction pH References

DHS-PA 7.92 7.4 This study
Q11HR-NH2 0.15 7.0 [33]

Ac-IHIHIYI-NH2 355.00 8.0 [34]

Ac-IHIHQYI-NH2 15.76 7.3 [35], [36]

HKH-LLLAAA(K)-C16 19.76 7.3 [37]
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Figure 3. Optimized molecular geometry of the a) active peptide group b) control group peptide sequence. Surface electron 
density plot of the active site of c) DHS and d) noncovalent DHS at the DFT\B3LYP\6-31G+ level of calculation.  

Figure 4. Proposed mechanism of action of DHS-PAs.
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4. Conclusion 
An artificial catalyst model was developed by the decoration of peptide amphiphiles with covalently conjugated action 
units of the catalytic triad. The enzyme-like kinetic profile of the peptide mimetic design was illustrated via the calculation 
of Michaelis–Menten graphs and remarkable rates were observed in catalytic turnover and binding constants. It was 
shown that the success of the catalytic activity is strongly dependent on the peptide sequence and the cooperative activity 
among these amino acids. Hence, the obtained catalytic efficiency can be improved by simple sequence alterations or by 
administration of supporting units. Kinetics study was followed by theoretical calculations, optimized molecular structure 
for the catalytic action, and remarkable reduction in the HOMO-LUMO gap was shown with the computational method. 
The bioactivity of the enzyme-like was also illustrated by testing its phosphatase-like activity and this peptide resulted in 
biomineral deposition on the cells. This versatile approach will provide a promising platform for understanding elaborate 
catalytic mechanisms of the enzymes and for developing better artificial substitutes in the future.

Figure 5. Bioactivity of peptide-based enzyme mimic. Alizarin red staining results of the a) DHS treated peptide amphiphile, b) the 
nontreated control group.

References

1. Zhou Z, Roelfes G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nature Catalysis 
2020; 3 (3): 289-294. doi: 10.1038/s41929-019-0420-6

2. Lin S, Wu J, Yao J, Cao W, Muhammad F, Wei H. Chapter 7 - Nanozymes for Biomedical Sensing Applications: From In Vitro to Living 
Systems. In : Sarmento B, das Neves J, editors. Biomedical Applications of Functionalized Nanomaterials: Elsevier 2018; pp. 171-209.

3. Kuah E, Toh S, Yee J, Ma Q, Gao Z. Enzyme mimics: advances and applications. Chemistry 2016; 22 (25): 8404-8430. doi: 10.1002/
chem.201504394

4. Shoda S-i, Uyama H, Kadokawa J-i, Kimura S, Kobayashi S. Enzymes as green catalysts for precision macromolecular synthesis. Chemical 
Reviews 2016; 116 (4): 2307-2413. doi: 10.1021/acs.chemrev.5b00472

5. Gulseren G, Yasa IC, Ustahuseyin O, Tekin ED, Tekinay AB et al. Alkaline phosphatase-mimicking peptide nanofibers for osteogenic 
differentiation. Biomacromolecules 2015; 16 (7): 2198-2208. doi: 10.1021/acs.biomac.5b00593

6. Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews 2002; 102 (1): 1-28. doi: 10.1021/cr980039a

7. Tramontano A, Schloeder D. Production of antibodies that mimic enzyme catalytic activity. Methods in Enzymology. 178: Academic Press 
1989. p. 531-550.

8. Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Advanced Materials 2014; 26 (25): 4200-4217. doi: 10.1002/adma.201400238

9. Breslow R, Dong SD. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chemical Reviews 1998; 98 (5): 1997-2012. 
doi: 10.1021/cr970011j

10. Bolon DN, Mayo SL. Enzyme-like proteins by computational design. Proceedings of the National Academy of Sciences 2001; 98 (25): 
14274. doi: 10.1073/pnas.251555398



GÜLSEREN / Turk J Chem

1277

11. Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chemistry 
2014; 6 (4): 303-309. doi: 10.1038/nchem.1894.

12. Gulseren G, Khalily MA, Tekinay AB, Guler MO. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. 
Journal of Materials Chemistry B 2016; 4 (26): 4605-4611. doi: 10.1039/C6TB00795C

13. Manto MJ, Xie P, Wang C. Catalytic dephosphorylation using ceria nanocrystals. ACS Catalysis 2017; 7 (3): 1931-1938. doi: 10.1021/
acscatal.6b03472

14. Dasgupta A, Das D. Designer peptide amphiphiles: self-assembly to applications. Langmuir 2019; 35 (33): 10704-10724. doi: 10.1021/acs.
langmuir.9b01837

15. Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends in Biochemical Sciences 1998; 23 (9): 347-352. doi: 10.1016/s0968-
0004(98)01254-7

16. Buller AR, Townsend CA. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. 
Proceedings of the National Academy of Sciences 2013; 110 (8): E653. doi: 10.1073/pnas.1221050110

17. Nothling MD, Ganesan A, Condic-Jurkic K, Pressly E, Davalos A et al. Simple Design of an enzyme-inspired supported catalyst based on 
a catalytic triad. Chemistry 2017; 2 (5): 732-745. doi: 10.1016/j.chempr.2017.04.004

18. Stewart JJP. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry 1989; 10 (2): 209-220. 
doi: 10.1002/jcc.540100208

19. Roothaan CCJ. New developments in molecular orbital theory. Reviews of Modern Physics 1951; 23 (2): 69-89. doi: 10.1103/
RevModPhys.23.69

20. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993; 98 (7): 5648-5652. 
doi: 10.1063/1.464913

21. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical 
Review B Condens Matter 1988; 37 (2): 785-789. doi: 10.1103/physrevb.37.785

22. Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. 
Chemical Physics Letters 1989; 157 (3): 200-206. doi: 10.1016/0009-2614(89)87234-3

23. Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. an extended gaussian-type basis for molecular-orbital 
studies of organic molecules. The Journal of Chemical Physics 1971; 54 (2): 724-728. doi: 10.1063/1.1674902

24. Frisch MJT, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; 
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, 
K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; 
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, 
A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; 
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, 
K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; 
Cioslowski, J.; Fox, D. J. (Gaussian, Inc., Wallingford CT).

25. GaussView V, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee Mission, KS,.

26. Gulseren G, Yasa IC, Ustahuseyin O, Tekin ED, Tekinay AB et al. Alkaline phosphatase-mimicking peptide nanofibers for osteogenic 
differentiation. Biomacromolecules 2015; 16 (7): 2198-2208. doi: 10.1021/acs.biomac.5b00593

27. Dai B, Li D, Xi W, Luo F, Zhang X et al. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proceedings 
of the National Academy of Sciences 2015; 112 (10): 2996-3001. doi: 10.1073/pnas.1416690112

28. Brockman HL. Lipases. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry (Second Edition). Waltham: Academic 
Press; 2013. p. 729-732.

29. Allen AE, Macmillan DWC. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chemical Science 2012; 
2012 (3): 633-658. doi: 10.1039/C2SC00907B

30. Patil NT, Shinde VS, Gajula B. A one-pot catalysis: the strategic classification with some recent examples. Organic & Biomolecular 
Chemistry 2012; 10 (2): 211-224. doi: 10.1039/C1OB06432K

31. Deng Y, Kumar S, Wang H. Synergistic–cooperative combination of enamine catalysis with transition metal catalysis. Chemical 
Communications 2014; 50 (33): 4272-4284. doi: 10.1039/C4CC00072B

32. Krautwald S, Schafroth MA, Sarlah D, Carreira EM. Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis. 
Journal of the American Chemical Society 2014; 136 (8): 3020-3023. doi: 10.1021/ja5003247.



GÜLSEREN / Turk J Chem

1278

33. Zhang C, Xue X, Luo Q, Li Y, Yang K et al. Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. 
ACS Nano 2014; 8 (11): 11715-11723. doi: 10.1021/nn5051344

34. Al-Garawi ZS, McIntosh BA, Neill-Hall D, Hatimy AA, Sweet SM et al. The amyloid architecture provides a scaffold for enzyme-like 
catalysts. Nanoscale 2017; 9 (30): 10773-10783. doi: 10.1039/C7NR02675G

35. Rufo CM, Moroz YS, Moroz OV, Stohr J, Smith TA et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chemistry 
2014; 6 (4): 303-309. doi: 10.1038/nchem.1894

36. Friedmann MP, Torbeev V, Zelenay V, Sobol A, Greenwald J et al. Towards prebiotic catalytic amyloids using high throughput screening. 
PloS one 2015; 10 (12): e0143948. doi: 10.1371/journal.pone.0143948

37. Guler MO, Stupp SI. A self-assembled nanofiber catalyst for ester hydrolysis. Journal of the American Chemical Society 2007; 129 (40): 
12082-12083. doi: 10.1021/ja075044n


