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ABSTRACT

Background and aims: Although the Internet has provided convenience and efficiency in many areas of
everyday life, problems stemming from Internet use have also been identified, such as Internet gaming disorder
(IGD). Internet addiction, which includes IGD, can be viewed as a behavioral addiction or impulse control
disorder. This study investigated the altered functional and effective connectivity of the core brain networks in
individuals with IGD compared to healthy controls (HCs). Methods: Forty-five adults with IGD and 45 HCs
were included in this study. To examine the brain networks related to personality traits that influence prob-
lematic online gaming, the left and right central executive network (CEN) and the salience network (SN) were
included in the analysis. Also, to examine changes in major brain network topographies, we analyzed the default
mode network (DMN). Results: IGD participants showed lower functional connectivity between the dorsal
lateral prefrontal cortex (DLPFC) and other regions in the CEN than HC participants during resting state. Also,
IGD participants revealed reduced functional connectivity between the dorsal anterior cingulate cortex and
other regions in the SN and lower functional connectivity in the medial prefrontal cortex of the anterior DMN.
Notably, in IGD individuals but not HC individuals, there was a positive correlation between IGD severity and
effective connectivity and a positive correlation between reward sensitivity and effective connectivity within the
ventral striatum of the SN. Conclusions: Problematic online gaming was associated with neurofunctional al-
terations, impairing the capacity of core brain networks.
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INTRODUCTION

Since the late 1990s, the rapid development of the Internet has provided convenience and
efficiency in many areas of everyday life. However, problems with Internet use have also
raised, including the risk of developing Internet gaming disorder (IGD). Internet addiction or
pathological Internet use has been defined as compulsive, excessive Internet use, character-
ized by withdrawal symptoms, increased tolerance, and disability of daily living (Beard &
Wolf, 2001; Kwon, Chung, & Lee, 2011). According to a previous study that defined the
criteria for IGD, tolerance refers to feeling the need to play games longer than intended in
order to experience excitement (Petry et al., 2014). In previous studies, the main behavior
criterion for problematic online gaming has been loss of control over Internet use, which
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presents as a persistence in online gaming despite the
awareness that it is directly harmful to one’s psychosocial
performance (Ko et al., 2009; Lee, 2005; Na, Park, & Kim,
2007). For example, problematic Internet use was associated
with the risk of comorbidities, such as ADHD (Lemenager
et al., 2018), or suicidal ideation (Guo et al., 2018). IGD was
also associated with individuals’ negative characteristics such
as negative time perspective (Lukavsk�a, 2018), high levels of
social problems, low emotional intelligence, and dysfunc-
tional family relationships (Torres-Rodr�ıguez, Griffiths,
Carbonell, & Oberst, 2018). IGD has been included in Sec-
tion 3 of the research appendix of the Diagnostic and Sta-
tistical Manual of Mental Disorders, 5th edition (DSM-5)
(American Psychiatric Association, 2013), suggesting that
Internet gaming disorder is a form of behavioral addiction
(Petry et al., 2014) and the further study confirmed the
validity of the DSM standard (M€uller, Beutel, Dreier, &
W€olfling et al., 2019). Additionally, the World Health Or-
ganization has included gaming disorder in the ‘Disorders
Due to Substance Use or Addictive Behaviors’ section of the
11th edition of the International Classification of Diseases
(ICD-11) (Kircaburun, Griffiths, & Billieux, 2019; World
Health Organization, 2018).

The consensus on IGD needs to develop through a re-
evaluation of already existing data on IGD and studies in
various fields (Griffiths et al., 2016). The gaming disorder
(GD) classification was included in ICD-11 based on clinical
evidence that has accumulated (King et al., 2019), and thus it
could expect to facilitate treatment and prevention for those
who need it (Rumpf et al., 2018). Similarly, IGD should also
be considered in the field of mental disorders because of
harm such as impaired control, functional impairment,
negative intrapersonal and interpersonal effects (King &
Delfabbro, 2018; King et al., 2018).

Excessive Internet gaming despite negative consequences
is considered to be linked to a loss of control, characterized
by impulsivity and reward sensitivity in gaming behavior.
Internet addiction, including IGD, can be viewed as a
behavioral addiction or impulse control disorder not
otherwise specified, similar to compulsive shopping or
compulsive gambling (Lyvers, Karantonis, Edwards, &
Thorberg, 2016). Impulsivity means a tendency to act in a
risky or situationally inappropriate manner despite negative
consequences (Dickman, 1990). In previous studies, it has
been reported that individuals with IGD showed impulsivity
characteristics similar to other addictive disorders (Choi
et al., 2014b; Ding et al., 2014; Kim et al., 2017; Wang et al.,
2016). For example, individuals with IGD have shown
higher levels of impulsivity compared with an alcohol
dependence (AD) group (Choi et al., 2014b), and the
severity of Internet addiction is related to impulsivity (Lee
et al., 2012). Reward sensitivity is also related to Internet
addiction (Lyvers et al., 2016), smartphone dependency
(Kim et al., 2016), and substance abuse (Simons, Dvorak, &
Lau-Barraco, 2009; Zisserson & Palfai, 2007). According to
Gray, brain activation systems (BASs), including reward
responsiveness, are theoretical biopsychological systems
related to personality traits involving sensitivity toward

stimuli that are associated with positive reinforcement and
regulation of motivational behavior (Carver, 2004; Franken,
Muris, & Georgieva, 2006; Gray & McNaughton, 2000). In
previous studies related to reward responsiveness, it has
reported that individuals with IGD showed short-sighted
characteristic of paying that pays attention to immediate,
resulting in losing money in the long term (Chang, Kim, &
Kim, 2013), These dysfunctional behaviors are similar to
substance dependence (Pawlikowski & Brand, 2011).
Therefore, it can be assumed that impulsivity and reward
sensitivity affect cognitive control failure in Internet game.

In terms of functional brain networks, three brain con-
nectivity networks—the central executive, salience, and
default mode networks—have been identified as central to the
understanding of higher cognitive function (Menon, 2011). In
brain networks, the connectivity refers to a pattern of
anatomical or functional links between distinct brain areas,
which controls how the brain processes information. These
functional links are estimated via statistical dependencies and
causal interactions, which are referred to as functional and
effective connectivity, respectively. That is, whereas functional
connectivity captures signal synchrony without any explicit
reference to directional effects, effective connectivity describes
the directional effects of one brain area over another. The
central executive network (CEN) is a fronto-parietal network
that is crucial to working memory and cognitive control of
thought, emotion, and behavior, and includes the dorsolateral
prefrontal cortex (DLPFC), ventrolateral prefrontal cortex
(VLPFC), and posterior parietal cortex (PPC) (Cole et al.,
2013; Cole, Repovs, & Anticevic, 2014; Menon, 2011). The
salience network (SN) is involved in the detection of
personally salient internal and external stimuli to direct
behavior (Toga, 2015), with the goal of maintaining homeo-
stasis. This network consists of the dorsal anterior cingulate
cortex, the fronto-insular cortex (FIC), and the limbic area,
including the ventral striatum (VS) (Cai, Chen, Szegletes,
Supekar, & Menon, 2015; Seeley et al., 2007). Finally, the
default mode network (DMN) plays an important role in self-
related processes, emotion regulation, social cognition, auto-
biographical memory, and future-oriented thinking, and
consists of the medial prefrontal cortex (MPFC), lateral pa-
rietal lobes (IPL), and the posterior cingulate cortex (PCC)
(Di & Biswal, 2014; Menon, 2011; Sharaev, Zavyalova, Ush-
akov, Kartashov, & Velichkovsky, 2016).

IGD is different from substance dependency in that no
chemical intoxication or substance intake is involved (Grant,
Potenza, Weinstein, & Gorelick, 2010). However, excessive
Internet gaming use may lead to dependence similar to that
observed in substance dependency (Han et al., 2018). The
previous studies have reported controversial results in brain
networks related to cognitive function. For example, the
IGD group showed increased functional connectivity within
the cognitive network compared with both Internet
gambling disorder and healthy controls (Bae et al., 2017).
However, in the other study, it has been suggested that
decreased functional connectivity in CEN might reflect
impaired executive control across substance and behavioral
addictions (Dong, Lin, & Potenza, 2015). It is known that
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both AD and IGD subjects show cognitive deficits in exec-
utive function, including problems with self-control and
adaptive responses (Chang et al., 2013; Han et al., 2015). In
addition, in a recent brain connectivity study, IGD in-
dividuals showed similar neurobiological underpinnings to
individuals with substance use disorders (Ding et al., 2013),
and a previous study on functional connectivity reported
that impaired cognitive control in IGD individuals might be
related to abnormal central executive and salience networks
(Yuan et al., 2016). In particular, individuals with IGD
showed similar DLPFC functional connectivity to the AD
group, which indicates that IGD and AD may have similar
deficits in executive function (Han et al., 2015). On the other
hand, IGD individuals demonstrated decreased functional
connectivity of the DLPFC with the striatal area, compared
to AD individuals (Han et al., 2015), and had different
neurophysiological patterns of brain connectivity in resting-
state EEG activity (Park et al., 2017; Son et al., 2015).
Therefore, it is important to investigate brain connectivity in
the various network in order to identify distinguishable
features of IGD.

Recent studies have been provided novel evidence for the
role of a core network including the CEN, SN, and DMN in
IGD (Wang et al., 2017; Zhang et al., 2017). In the previous
study, Internet addiction including IGD was associated with
imbalanced interactions among the CEN, SN, and DMN
(Wang et al., 2017). Another study to assess alterations in
the inter-network interactions of brain networks in IGD
suggested that deficient modulation of the CEN versus the
DMN by the SN might provide a better framework for un-
derstanding the neural basis of IGD (Zhang et al., 2017). The
previous studies on interaction among brain networks have
tended to focus on deficient modulation among brain net-
works, rather than the personality traits such as impulsivity
and reward sensitivity that influence brain connectivity. We
hypothesized impulse and compensatory responses affect
the cognitive control failures in Internet gaming, and
investigated the functional and effective changes in brain
connectivity associated with these personality traits in IGD.
The investigation of neuroimaging features related to per-
sonal traits may be helpful in understanding the character-
istic of IGD and in developing treatment plans for IGD
patients.

In summary, we investigated alterations in functional
and effective connectivity on the CEN, SN, and DMN in
IGD, based on the regions of interest (ROIs) of these core
networks in relation to behavioral addiction. In addition, we
investigated the relationships between brain connectivity
and personality factors, such as impulsivity and reward
sensitivity, and between behavioral aspects of IGD, such as
the time spent Internet gaming per week and the severity of
IGD. In terms of personality traits, we hypothesized that the
severity of IGD might influence the correlation between
impulsivity and brain connectivity of the CEN due to a loss
of control in excessive gaming, and that reward sensitivity in
IGD would show a positive correlation with the connectivity
of the VS in the SN, based on excessive gaming.

MATERIALS AND METHODS

Participants

This study was conducted on adult men and women aged
19–35, who were recruited online. A total of 5,500 adults
participated in the online survey on Internet gaming use and
838 people among online game users agreed to participate in
the fMRI study. Of these, 182 people responded to the MRI
safety screening questionnaire, and we recruited 97 adults
who had passed the MRI safety screening questionnaire for
the study. The participants were classified into two groups
based on a clinician-administered interview and the IGD
diagnostic criteria in the DSM-5, with a cut-off threshold of
a score of 5 (Petry et al., 2014). In total, forty-eight adults
with IGD (32 male and 16 female) and 49 healthy controls
(HCs) (34 male and 15 female) were recruited for the fMRI
study. All participants underwent the Mini-International
Neuropsychiatric Interview by the clinician to screen out
participants with a current psychiatric diagnosis, and intel-
ligence testing was estimated using a (Burgess, Flint, &
Adshead, 1992). We used the Korean version of the Alcohol
Use Disorders Identification Test (AUDIT-K) (Kim et al.,
1999) to screen for excessive drinking and alcohol use dis-
orders and used the Fagerstrom Tolerance Questionnaire
(FTQ) and Fagerstrom Test for Nicotine Dependence
(FTND) (Ahn et al., 2002) to screen for nicotine depen-
dence. Exclusion criteria included past or current major
medical disorders (e.g., diabetes mellitus), neurological dis-
orders (e.g., seizure disorders, head injuries), or psychiatric
disorders (e.g., major depressive disorder, anxiety disorders).
Three participants were excluded because of depressive
disorder (two participants with IGD and one HC), and the
data from four participants were excluded because of severe
head motion during analysis (one participant with IGD and
three HCs). Therefore, forty-five adults with IGD (31 male
and 14 female, 27.76 ± 5.31 years) and 45 HCs (31 male and
14 female, 25.29 ± 4.07 years) were used in this study
(Table 1). All participants were right-handed as assessed by
the Edinburgh handedness inventory (Oldfield, 1971).

Questionnaires

Severity of IGD. The severity of IGD was assessed by a
clinician, based on the nine items described in the DSM-5:
preoccupation, tolerance, withdrawal, persistence, escape,
problems, deception, displacement, and conflict (Few et al.,
2013). A reliability test for the scale yielded a Cronbach’s
alpha of 0.95 (Lemmens, Valkenburg, & Gentile, 2015).

Impulsivity. Dysfunctional impulsivity was measured using
the 12 items on the respective subscale of Dickman’s
Impulsivity Inventory (DII) (Dickman, 1990). This tool
evaluates dysfunctional and functional self-reported impul-
sivity, and it consists of 23 true or false items. We used the
dysfunctional impulsivity scale (DFDII) in the Korean
version of the DII to investigate the tendency to act with less
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forethought (Smillie & Jackson, 2006), which is associated
with problematic online gaming (Cronbach’s alpha 0.85).

Reward sensitivity. We used the Korean version of the brain
inhibition system (BIS) and brain activation system (BAS)
(Kim & Kim, 2001) translating the BIS/BAS inventory of
Carver & White (Carver & White, 1994). It was reported
that the reliability of the BIS/BAS inventory of Korean
version was fairly high and factorial structures of the scale
were consistent with those of Carver & White (Kim & Kim,
2001). We focused on BAS-RR for investigating the corre-
lation between brain connectivity and reward sensitivity in
IGD. The BIS scale consists of seven items (Cronbach’s
alpha 0.78), while the BAS scale includes three subscales: five
items of Reward Responsiveness (BAS-RR) (Cronbach’s
alpha 0.85), four items of Drive (BAS-D) (Cronbach’s alpha
0.87), and four items of Fun Seeking (BAS-FS) (Cronbach’s
alpha 0.78). Participants completed the BIS/BAS question-
naire using a 4-point Likert-type response scale (1: strongly
disagree, 4: strongly agree). The BIS and BAS are general
motivation systems that underlie behavior and affect (Ste-
ketee, Foa, & Grayson, 1982). The BIS is a conflict detection
and monitoring system that supports exploratory behavior
to resolve approach-avoidance conflict (Bunford, Roberts,
Kennedy, & Klumpp, 2017; Corr, 2002), and the subscales of
BAS are associated with strong and quick goal pursuit,
receptivity to reward, and the desire for new and potentially
rewarding experiences (Carver & Scheier, 1994).

Image acquisition

Functional and structural MRI data were acquired using a
3T MRI system (Siemens MAGNETOM Verio, Erlangen,
Germany) equipped with a 16-channel head coil. Partici-
pants’ heads were cushioned with attached earmuffs. The
functional images were obtained using a T2*-weighted

gradient echo-planar imaging sequence: repetition time
(TR) 5 2,000ms, echo time (TE) 5 30 ms, flip angle 5 908,
voxel size 5 3.59 mm 3 3.59 mm 3 3.60 mm, image matrix
5 64 3 64, field of view 5 230 mm, slice number 5 31, and
scan duration 5 6 min 40 sec. During scanning, the subjects
were instructed to fixate their eyes on the crosshair and to
remain as motionless as possible, while at rest. Structural
images with a resolution of 1 mm 3 1 mm 3 1 mm were
acquired using a 3D T1-weighted gradient echo sequence
(176 slices, TR 5 2,300 ms, TE 5 2.22 ms, image matrix 5
256 3 256).

fMRI preprocessing

All analyses of resting state fMRI (rsfMRI) data were per-
formed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Pre-
processing consisted of spatial realignment to correct for
head movement, normalization into the same coordinate
frame as the template brain in the Montreal Neurological
Institute space, and spatial smoothing with a Gaussian
kernel of 8 mm full width at half maximum. A nonlinear
deformation field for spatial normalization was derived from
the segmentation of the structural MRI volume coregistered
to the mean of the realigned rsfMRI volumes. For the time
series of rsfMRI data, a general linear model (GLM) was
constructed to adjust for the effect of head movement and
non-neuronal fluctuations. The range of head movement
was within the voxel size (2 mm) of the functional MRI data.
Also, there were no significant differences in maximum
excursion movement values in x and z of planes of trans-
lation between IGD (x 5 0.04 ± 0.40 mm; y 5 0.22 ± 0.21
mm; z 5 0.05 ± 0.88 mm) and HC (x 5 0.06 ± 0.30 mm;
y 5 0.10 ± 0.17 mm; z 5 0.11 ± 0.50 mm) [t (88) 5 0.17,
P 5 0.87; t (88) 5 3.19, P 5 0.002; t (88) 5 0.46, P 5 0.64].
There were no significant differences in maximum excursion
movement values in each of planes of rotation between IGD

Table 1. Regions of interest

Regions

MNI coordinates

Network Ref.x y z

L. DLPFC �45 19 30 Central Executive Network Cole et al., (2013)
R. DLPFC 45 19 30
L. VLPFC 41 43 4
R. VLPFC �40 40 2
L. PPC 41 �55 45
R. PPC �41 �56 41
R. dACC 10 34 24 Salience Network Cai et al., (2015),

Seeley et al., (2007)L. FI �32 24 �10
R. FL 38 36 �10
L. VS �18 6 4
R. VS 18 6 4
R. MPFC 3 54 �2 Default Mode Network Sharaev et al., (2016),

Di & Biswal, (2014)PCC 0 �52 26
L. IPL �50 �63 32
R. IPL 48 �69 35

Abbreviations: DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; PPC, posterior parietal cortex; dACC, dorsal
anterior cingulate cortex; FI, orbital frontoinsula; VS, ventral striatum; MPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; IPL,
inferior parietal lobule.
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(pitch5 0.19 ± 1.168; roll 5 0.03 ± 0.538, and yaw 5 0.04 ±
0.488) and HC (pitch 5 0.07 ± 0.438; roll 5 0.01 ± 0.288,
and yaw 5 �0.02 ± 0.188) [t (88) 5 0.69, P 5 0.49; t (88) 5
0.28, P5 0.78; t (88)5 0.78, P5 0.44]. The GLM contained
nuisance regressors comprising six head movement param-
eters estimated during the preprocessing step, the mean
cerebrospinal fluid signal, and the mean white matter signal,
in addition to a discrete cosine transform basis set for high-
pass filtering at 1/128 Hz.

ROIs selection

To examine the alteration of brain networks influencing
problematic online gaming, the ROIs of the CEN, SN, and
DMN were included in the analysis (Table 1). For the CEN,
we created six seed ROIs centered in the bilateral DLPFC,
VLPFC, and PPC, using MNI coordinate locations from a
previous study that suggested a central role for fronto-pa-
rietal networks in cognitive control and adaptive imple-
mentation (Cole et al., 2013). For the SN network, five ROIs
each were seeded in the dACC, bilateral FIC, and VS, based
on previous studies which that focused on homeostatic
regulation and reward processing (Cai et al., 2015; Seeley
et al., 2007). Finally, four seed ROIs each were chosen in the
MPFC, bilateral IPL, and PCC, as these regions are part of
the DMN network that mediates internal modes of cognitive
activity (Di & Biswal, 2014; Sharaev et al., 2016). Each ROI
was defined as a 6 mm-radius sphere centered at the
respective coordinates, and the representative signal of the
ROI was extracted as the principal eigenvariate using a
singular value decomposition of signals across all voxels
within the ROI.

Functional connectivity and effective connectivity

The representative signal of the ROI was extracted as the
principal eigenvariate for each core network, and the func-
tional connectivity strengths were used in parametric in-
ferences at the group level. The correlation coefficients were
converted to z-scores via Fisher’s z-transformation, and
functional connectivity strengths, were used in parametric
inferences at the group level. In the inferences, statistical
significance was identified as a P-value of 0.05 or less, with a
false discovery rate (FDR) estimation to correct for multiple
comparisons.

Whereas functional connectivity refers to the de-
pendency between distant brain regions, as an observable
phenomenon, effective connectivity is based on a parametric
model that aims to account for the observed dependency
(Friston, 2011). The goal of dynamic causal modeling
(DCM) is to identify effective connectivity among neuronal
states that explains observed fMRI data. Stochastic DCM
employs an extended model accounting for stochastic
neuronal fluctuations, but it requires excessive computa-
tional complexity. Thus, for computational efficiency, we
used spectral DCM (spDCM) that employs a deterministic
model under a stationarity assumption. The spDCM has
been developed as a way of modeling effective connectivity
that predicts or generates observed functional connectivity

(Friston, Kahan, Biswal, & Razi, 2014). In spDCM, effective
connectivity is estimated for the spectral density of neuronal
fluctuations, rather than the time-varying neuronal fluctu-
ations themselves. Here, we had the opportunity to address
effective connectivity between brain regions by employing
spDCM as implemented in SPM12. For each core network,
we were interested in the effective connectivity between
specific pairs of ROIs that showed group differences in
functional connectivity. We proposed 36 effective connec-
tivity models in CEN, and 25 effective connectivity models
in SN and 16 effective connectivity models in DMN; they
were distinguished depending on whether individual
extrinsic connections were on or off. To estimate network
interactions at the neuronal level, we used the fully con-
nected model that is, the network having all possible
extrinsic connections, and the model was selected to be the
best for the CEN, SN, and DMN. The effective connectivity
model was inverted using spDCM to estimate model pa-
rameters. Effective connectivity strengths were entered into
parametric inferences at the group level, and statistical sig-
nificance was identified as a P-value of 0.05 or less with FDR
multiple comparisons correction. Additionally, we con-
ducted three separate Pearson correlations of brain networks
with behavioral aspects of IGD and personality factors in
each group. The brain networks included the prefrontal
cortex of the CEN and the DMN, within VS of SN strength.
For behavioral aspects, the time spent Internet gaming per
week and the severity of IGD were considered, and for
personality traits of IGD, impulsivity and reward sensitivity
were considered.

Ethics

Each participant provided written informed consent in
accordance with the Declaration of Helsinki, and the
study protocol was approved by the institutional review
board of Seoul St. Mary’s Hospital. All experiments were
performed in accordance with relevant guidelines and
regulations.

RESULTS

Demographics

Table 2 summarizes the demographic and clinical charac-
teristics of the two groups. The groups did not differ in
duration of education, K-WAIS, or duration of online
gaming use. However, the time spent on online gaming per
week [t (88)5 7.30, P < 0.001], the cost for gaming [t (88)5
4.35, P < 0.001], and the IGD scores [t (88) 5 21.53, P <
0.001] were significantly different. According to impulsivity,
IGD individuals had a higher score than HCs on the DFDII
[t (88) 5 5.07, P < 0.001]. The IGD individuals also showed
higher scores on the BIS [t (88) 5 3.25, P < 0.005] and BAS
[t (88) 5 3.36, P < 0.001], and particularly higher scores on
the BAS-RR [t (88) 5 2.60, P < 0.05], and BAS-FS [t (88) 5
4.37, P < 0.001]. An Analysis of Covariance (ANCOVA) was
used to control for differences in age between the groups for
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the personality traits and behavioral aspects of IGD (P <
0.05). The IGD individuals showed higher scores than HCs
on the DFDII [F (2, 87) 5 22.40, P < 0.001], BIS [F (2, 87) 5
10.92, P < 0.005], BAS-RR [F (2, 87) 5 5.42, P < 0.05], and
BAS-FS [F (2, 87) 5 8.07, P < 0.01]. IGD individuals also
had higher scores than HCs on the IGD score [F (2, 87) 5
427.11, P < 0.001], time spent online gaming per week [F (2,
87) 5 48.69, P < 0.001], and cost for gaming [F (2, 87) 5
19.19, P < 0.001].

Functional and effective connectivity

To explore potential factors underlying the effective connec-
tivity results, we examined functional connectivity between
the nodes that showed differential functional connectivity
between IGD and HC individuals. The results from the
functional connectivity analyses between groups are presented
in Fig. 1. An Analysis of Covariance (ANCOVA) was used to
control for differences in age between groups in the brain
networks (P < 0.05). In the CEN, statistical analysis of group
differences in strength of functional connectivity revealed that
right DLPFC connectivity with bilateral VLPFC [L: F (2, 87)
5 9.39, P < 0.005; R: F (2, 87) 5 5.23, P < 0.05], and left
DLPFC [F (2, 87) 5 7.65, P < 0.01] was significantly less in
IGD individuals compared to HC individuals, as was left
DLPFC connectivity with bilateral VLPFC [L: F (2, 87) 5
5.69, P < 0.05; R: F (2, 87) 5 4.20, P < 0.05]. Additionally, the

group differences of functional connectivity showed that right
PPC connectivity with bilateral DLPFC [L: F (2, 87) 5 5.95, P
< 0.05; R: F (2, 87) 5 6.94, P < 0.05] and bilateral VLPFC [L:
F (2, 87) 5 6.14, P < 0.05; R: F (2, 87) 5 4.55, P < 0.05] was
significantly less in IGD individuals compared to HCs, as was
left PPC connectivity with right DLPFC [F (2, 87)5 5.70, P <
0.05], bilateral VLPFC [L: F (2, 87) 5 4.02, P < 0.05; R: F (2,
87) 5 4.37, P < 0.05], and right PPC [F (2, 87) 5 4.01, P <
0.05] (Fig. 1A). In the SN, we found that dACC connectivity
with bilateral FIC [L: F (2, 87) 5 11.90, P < 0.005; R: F (2, 87)
5 8.38, P < 0.01] and bilateral VS [L: F (2, 87) 5 9.45, P <
0.005; R: F (2, 87) 5 7.51, P < 0.01], was less in IGD in-
dividuals than in HCs, and that left FIC connectivity with
bilateral VS [L: F (2, 87) 5 8.75, P < 0.005; R: F (2, 87) 5
10.30, P < 0.005], and right FIC connectivity with bilateral VS
[L: F (2, 87) 5 7.64, P < 0.01; R: F (2, 87) 5 7.42, P < 0.01]
were weaker in IGD individuals than in HCs (Fig. 1B). In the
DMN, we found that the MPFC connectivity with bilateral
IPL [L: F (2, 87) 5 4.76, P < 0.05; R: F (2, 87) 5 6.37, P <
0.05] and PCC [F (2, 87) 5 6.10, P < 0.05] was less in IGD
individuals than in HCs, and that PCC connectivity with the
right IPL [F (2, 87) 5 9.27, P < 0.01] was less in IGD in-
dividuals than in HCs. No ROIs showed greater functional
connectivity in IGD individuals than in HCs (Fig. 1C).

The probabilities for all models for each network analysis
(within-CEN, within-SN, and within-DMN) are shown in
Fig. 2. Each of the three core networks was specified for each

Table 2. Demographic characteristics of the IGD and NC

IGD (n 5 45) HC (n 5 45)

t scoremean SD mean SD

Age 27.76 5.31 25.29 4.07 2.47*
K-WAIS 108.58 12.03 113.29 12.01 �1.86
Education duration (years) 14.36 3.50 15.27 1.95 �1.53
Gender
Male 69% (n 5 31) 69% (n 5 31) x2 5 0.000
Female 31% (n 5 14) 31% (n 5 14)

Duration of Internet gaming (year) 13.4 6.58 12.4 4.16 0.86
Time for Internet gaming per week

(hours)
23.82 12.02 9.66 4.96 7.30***

IGD score 5.53 1.34 0.6 0.75 21.53***
SAPS 41 9.67 27.07 5.62 8.35***
DFDII 5.07***
BIS scale 19.98 3.07 18.02 2.62 3.25**
BAS scale 36.04 6.31 32.18 4.44 3.36*
Reward responsiveness 14.36 2.83 13.02 1.96 2.60*
Drive 10.62 2.31 9.80 2.07 1.78
Fun seeking 11.07 2.02 9.36 1.68 4.37***

Economic status
Upper 16% 13% x2 5 4.63
Upper-middle 36% 20%
Middle 38% 54%
Lower-middle 10% 13%
Lower 0% 0%

Abbreviations: IGD, Internet Gaming Disorder group; HC, Healthy control group; IGDs, Internet Gaming Disorder scale; SAPS,
Smartphone Addiction Proneness Scale; DFDII, dysfunctional impulsivity Inventory; BIS, Behavioral inhibition system; BAS, Behavioral
activation system.
*P < 0.05, **P < 0.005, ***P < 0.001.
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participant, all with fully connected intrinsic models and no
input entering the system in either IGD or HC individuals.
However, no links showed significantly different effective
connectivity between IGD and HC individuals in the CEN,
SN, or DMN after FDR correction.

Relationship between the brain connectivity and
behavioral aspects of IGD

We investigated the correlations between behavioral aspects
of IGD and brain networks including the prefrontal cortex
of the CEN, the DMN, and the VS of the SN, and compared
the two groups using z scores. There were no significant
correlations between functional connectivity in the pre-
frontal cortex of the CEN, DMN, or the VS of the SN and
behavioral aspects of IGD. In the CEN, there were signifi-
cant correlations between the time spent Internet gaming
per week and effective connectivity from the right VLPFC to
the left VLPFC (r 5 0.44, P < 0.05), and effective connec-
tivity from the left VLPFC to the right VLPFC (r 5 0.42, P <
0.05) in the HC group; no significant results were identified
in the IGD group. Also, the correlations of effective con-
nectivity from the right VLPFC to the left VLPFC (z 5 2.09,
P < 0.05), and from the left VLPFC to the right VLPFC (z 5
2.01, P < 0.05) were significantly different across groups. In
the SN, there were no significant correlations with the IGD
or HC groups. In the DMN, there were significant correla-
tions between the time spent Internet gaming per week and
the effective connectivity from the MPFC to the left IPL (r5
0.38, P < 0.05) for the HC group; no significant results were
identified in the IGD group. Also, the correlation between

the effective connectivity from the MPFC to the left IPL
with severity of IGD was a significant difference across
groups (z 5 2.62, P < 0.01).

We found a correlation between IGD score and effec-
tive connectivity. Neither the IGD group nor the HC group
showed any significant correlations between severity of
IGD and the brain network in the prefrontal cortex of the
CEN and DMN. In the SN, there were significant corre-
lations between the severity of IGD and the effective
connectivity from the right VS to the left VS (r 5 0.42, P <
0.05), and effective connectivity from the left VS to the
right VS (r 5 0.44, P < 0.05) in the IGD group; no sig-
nificant results were identified in the HC group (Fig. 3A).

The Relationship between the brain connectivity and
personality factors

We investigated the correlations between behavioral aspects
of IGD and brain networks including the prefrontal cortex
of the CEN and DMN, within VS of SN, and compared the
two groups using z scores. There were no significant cor-
relations between functional connectivity in the prefrontal
cortex of the CEN, the DMN, or the VS of the SN and
personality traits. In addition, there were no significant
correlations between impulsivity and brain connectivity
within the CEN, SN, and DMN in either the IGD or HC
groups after FDR correction. However, we found a moder-
ating effect of IGD on impulsivity and brain connectivity
within the CEN, SN, and DMN in both the IGD and HC
groups after FDR correction. The moderating effect for the
IGD score indicated that individuals with high IGD scores

Figure 1. Group differences of functional connectivity. IGD individuals showed weaker functional connectivity in the CEN (A), SN (B), and
DMN (C) compared to HCs
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showed a positive relationship between impulsivity and
effective connectivity from the left VLPFC to the right
DLPFC [ΔR2 5 0.094, ΔF1,88 5 6.70, P 5 0.01, b 5 0.001, t
(88) 5 2.65, P < 0.05] and between impulsivity and
effective connectivity from the right DLPFC to the left
VLPFC [ΔR2 5 0.07, ΔF1,88 5 4.82, P 5 0.031, b 5 0.001, t
(88) 5 2.20, P < 0.05] under resting state.

In addition, there were significant correlations between
reward sensitivity and effective connectivity in the SN;
however, there were no significant correlations within the
CEN and the DMN. In the SN of IGD individuals, there
were significant correlations between the effective connec-
tivity from the left VS to the right VS and reward sensitivity
(r5 0.34, P < 0.05), and from the right VS to the left VS and
reward sensitivity (r 5 0.35, P < 0.05). No further significant
results were identified in HC individuals (Fig. 3B). In
particular, the correlation between effective connectivity
from the right VS to the left VS and reward sensitivity was a
significant difference across groups (z 5 2.13, P < 0.05).

DISCUSSION

Although the prevalence of IGD varies across countries and
regions (range: 0.7%–15.6%) due to differences in sample
characteristics and in the screening tool used, problematic
online gaming has a high prevalence overall, and interest in
Internet addiction is increasing worldwide (Yen et al., 2012).
This study aimed to investigate the altered functional and
effective connectivity of the core brain network in IGD in-
dividuals as compared to HCs. Furthermore, another
important objective was to identify interactions between

brain connectivity and behavioral aspects such as time spent
Internet gaming per week or severity of IGD, and between
brain connectivity and personality factors such as impul-
sivity and reward sensitivity in relation to addictive behavior
in online gaming.

In this study, IGD participants showed lower functional
connectivity during resting state between the VLPFC and
DLPFC, and between the PPC and DLPFC in the CEN than
did HC participants. These results are likely to reflect
symptom-related neurofunctional alterations that compro-
mise functional connectivity capacity. In previous studies
related to IGD, decreased functional connectivity within the
CEN was associated with impaired cognitive control (Yuan
et al., 2016, 2017). Therefore, the present findings are
consistent with other research, and suggests that decreased
functional connectivity in the CEN may represent an
important feature in indexing impaired executive control
across substance and behavioral addictions (Dong et al.,
2015). Regarding behavioral aspects, while HCs showed a
positive correlation between effective connectivity in bilat-
eral VLPFCs and time spent Internet gaming, there was no
significant correlation in IGD individuals. It could be sug-
gested that effective connectivity of the bilateral VLPFC in
HCs influenced control over excessive Internet gaming. In a
previous study, it was proposed that the CEN implements
feedback control to regulate symptoms, and that an un-
damaged control system plays a protective role against a
variety of mental illnesses (Cole et al., 2014).

We expected that high impulsivity in IGD individuals
would result in more effort required to control the CEN
during resting state. A previous study reported the role of
impulsiveness in several psychiatric disorders associated
with prefrontal dysfunctions and cognitive deficits, and the

Figure 2. Effective connectivity in the CEN, SN, and DMN. Each of the three core networks was specified for each participant, all with fully
connected intrinsic models and no input entering the system
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prefrontal cortex is recognized to play a major role in con-
trolling impulses (Etkin & Wager, 2007). It is also thought
that impulsivity plays an important role in the early stage of
substance use disorder (SUD), and is a predisposing risk
factor for SUDs (Choi et al., 2014a; Robbins, Curran, & de
Wit, 2012). Loss of control in Internet gaming is an
important criterion of IGD (Petry et al., 2014), and high
impulsivity could make individuals succumb to the
rewarding effects of gaming (Yen et al., 2017). Although we
did not detect a significant correlation between impulsivity
and brain connectivity in the CEN in this study, we did
identify that the severity of IGD influenced a positive cor-
relation between impulsivity and effective connectivity be-
tween the DLPFC and VLPFC. This suggests that the
efficiency of this brain region in processing inhibitory con-
trol is related to the severity of IGD. In other words, more
impulsive individuals with high IGD severity may need to
recruit greater resources within the PFC to maintain a
resting state. These results seem to be consistent with pre-
vious research, which has reported a positive correlation
between right VLPFC abnormalities and measures of
impulsivity related to cognitive dysfunction in schizophrenia
(Chai et al., 2011; Kaladjian, Jeanningros, Azorin, Anton, &
Mazzola-Pomietto, 2011), and suggested that VLPFC

hyperactivity may reflect extension and compensatory
recruitment of cortical activity due to inefficient DLPFC
functioning (Minzenberg, Laird, Thelen, Carter, & Glahn,
2009; Tan, Choo, Fones, & Chee, 2005).

The present study found that IGD individuals had
reduced functional connectivity between the dACC and
other regions in the SN as compared to HCs. Given that the
dACC plays an important role in response selection, guiding
overt behavior, and modulating autonomic reactivity
(Menon & Uddin, 2010), the decreased connectivity in the
dACC in IGD individuals suggests that IGD individuals
have a deficit in cognitive monitoring of external environ-
ment in order to maintain a suitable response. Interestingly,
we identified that higher IGD severity increased effective
connectivity between bilateral VSs. VS has been particularly
associated with the anticipation or prediction of reward
(Haruno et al., 2004; O’Doherty et al., 2004), and recently, it
has been proposed that this striatum is involved in coding
stimulus saliency. In a previous study, the volume of VS was
correlated with Internet addiction scores (Yuan et al., 2017),
and another previous study reported that the amplitude of
low-frequency fluctuation (ALFF) in bilateral VS was
correlated with Internet addiction scores (K€uhn & Gallinat,
2015). In addition, IGD individuals showed positive

Figure 3. Effective connectivity in VS correlated with severity of IGD and reward sensitivity. Correlations between effective connectivity in
VS and severity of IGD (A). IGD individuals showed positive correlations between effective connectivity from the left VS to the right VS and
reward sensitivity (Aa), and between effective connectivity from the right VS to the left VS and reward sensitivity (Ab). Correlations between
effective connectivity in the SN and reward sensitivity (B). IGD individuals showed positive correlations between effective connectivity from
the left VS to the right VS and the reward sensitivity (Ba), and between effective connectivity from the right VS to the left VS and reward

sensitivity (Bb)
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correlations between reward sensitivity and effective con-
nectivity within the bilateral VS. The personality trait of
reward sensitivity is hypothesized to reflect the functioning
of the brain’s BAS (Lyvers et al., 2016), and high levels of
BAS are associated with addictive behaviors (Yen et al.,
2012). Recently, the BAS has been linked not only to
Internet addiction (Dong, Hu, & Lin, 2013), but also to
excessive smartphone use (Chun et al., 2017). In IGD in-
dividuals, the higher the reward sensitivity scores, the more
effective the connectivity between bilateral VSs. These re-
sults suggest that the personality trait of reward sensitivity in
IGD is associated with VS abnormalities. Therefore, it is
possible that higher reward sensitivity in IGD evokes alter-
ations in brain connectivity associated with reward pro-
cessing and thus influences excessive Internet gaming.

Additionally, we identified that IGD individuals showed
lower functional connectivity in the DMN than HCs did.
These results are consistent with previous studies of alterations
in the DMN of adolescents with IGD. Previous studies using
seed-based correlations and ICA methods also reported
decreased functional connectivity in the DMN (W. W. Li et al.,
2015; Wang et al., 2017), a result consistent with findings in
substance addiction research (Ma et al., 2011). These findings
suggest that alteration of DMN may underlie the disturbance
of self-referential processing and awareness for both substance
and behavioral addictions (Volkow, Wang, Fowler, & Tomasi,
2012). In the previous study using cognitive tasks, it was re-
ported that individuals with IGD showed altered modulation
in the DMN and deficits in executive control function (Wang
et al., 2016). Therefore, alterations in the DMN of IGD in-
dividuals might be related to the fact that individuals with IGD
continue to play online games despite negative consequence.
Also, we identified a positive correlation between effective
connectivity from the MPFC to the IPC and time spent
Internet gaming in HCs, while there were no significant cor-
relations in IGD individuals. It is possible that effective con-
nectivity from the MPFC to the IPC in HCs influenced control
over excessive Internet gaming.

Finally, several important limitations need to be consid-
ered. First, although we controlled for major psychiatric dis-
orders through clinical interviews, game-usage patterns, such
as game genre, were not considered. In the previous study, the
game genre has been reported to influence clinical charac-
teristics that can predict IGD development. Second, although
gender differences in IGD have been reported in previous
studies (Dong et al., 2018; Sun et al., 2019), we did not
consider gender differences. . In subsequent studies, it will be
necessary to identify differences according to the gendered
relationship between personality traits and brain network in
IGD individuals, using the same gender distribution. Third,
contrary to findings of functional connectivity, the results of
effective connectivity did not show any significant differences
between groups, which is not consistent with previous
research. In a previous study using stochastic DCM, in-
dividuals with Internet addiction showed aberrant effective
connectivity within the frontal-basal ganglia pathway engaged
by response inhibition (B. Li et al., 2014). In another previous
study using Granger causality analysis, altered effective

connectivity within the SN in adolescents with IGD compared
to HCs was detected (Yuan et al., 2016). In the current study,
there were no significant differences between groups in the
direction strength of the effective connectivity within each
network, after FDR correction for multiple comparisons. An
additional study focused on specific ROIs associated with IGD
and pathways of intrinsic connectivity may address this issue.

CONCLUSION

Although this study has limitations, it enhances our un-
derstanding of brain connectivity related to personality traits
of IGD. IGD individuals showed less functional connectivity
in the CEN, SN, and DMN than HCs did. These results
might be associated with cognitive deficits stemming from
problematic online gaming, and might reflect neurofunc-
tional alterations that impair the capacity of core brain
networks. Additionally, we found that the severity of IGD
and reward sensitivity were positively correlated with
effective connectivity of the SN in IGD individuals. These
results may provide clues that develop our understanding of
the functionality of brain connectivity in relation to impul-
sivity and reward sensitivity in behavioral addiction.
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