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Background and Objective: As a common cancer type in women, cervical cancer
remains one of the leading causes of cancer-associated mortalities word wide. Recent
evidence has demonstrated the regulatory role of a large number of long non-coding
RNAs (lncRNAs) in cervical cancer. Here, we aimed to identify new biomarkers that
related with the recurrence through comprehensive bioinformatics analysis.

Methods: Firstly, we collected online lncRNA expression data of cervical cancer patients
which were divided into training, validation, and test set. Then we developed a nine-
lncRNA signature from training set by conducting LASSO Cox regression model along
with 10-fold cross validation. The prognostic value of this risk score was validated in
all the three sets using Kaplan–Meier analysis, C-index, time-dependent ROC curves
and dynamic AUC. Biological function of these lncRNAs in cervical cancer cells were
evaluated by performing gene ontology biological process enrichment and Kyoto
Encyclopedia of Genes and Genomes signaling pathways analysis.

Results: According to the results, a higher predict accuracy was observed in the nine-
lncRNA signature than that of FIGO stage in all the three sets. Stratified analysis also
demonstrated that the nine-lncRNA signature can predict the recurrence of cervical
cancer within FIGO stage. The potential mechanisms underlying the nine-lncRNAs from
the signature were also identified according to the gene enrichment analysis.

Conclusion: In the present article, we provided a reliable prognostic tool to facilitate the
individual management of patients with cervical cancer after treatment.
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INTRODUCTION

As the second most common cause of female cancer-associated mortalities worldwide, cervical
cancer ranks the fourth most frequently diagnosed cancer (Jemal et al., 2011; Torre et al.,
2015). Previous studies demonstrated that cervical cancer was closely associated with human
papillomavirus (HPV) infection (Walboomers et al., 1999; Castellsagué et al., 2006). Evidence
suggested that HPV mediated the genomic instability and somatic mutations which play important
roles in the pathogenesis of cervical cancer (Cancer Genome Atlas Research Network et al., 2017).
Despite great advancement achieved in the standard treatment such as surgery, radiotherapy, and
chemotherapy, the prognosis for patients with cervical cancer remains poor (Fuller et al., 2007).
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Hence, identification of the new suitable prognosis biomarkers
are critical for cervical cancer. Recent studies have showed that
genomic factors could be the indicators for the prognosis of
cervical cancer (Mao et al., 2018a).

Previous studies based on the gene expression data have
identified a series of gene signature which was used as
recurrence predictive model. Huang et al. (2012) has identified a
7-gene signature which associated with the relapse and survival
in patients with early stage cervical carcinoma. Lee et al.
(2013) selected 12-genes and constructed a prognostic score
model for recurrence prediction. However, limited number of
studies investigated whether the long non-coding RNA (lncRNA)
signature can predict the recurrence and disease free survival
time of cervical cancer.

As the RNA transcripts longer than 200 nucleotides, lncRNAs
lack the ability of generating protein (Gupta et al., 2010).
However, they can still contribute to the modulation of
tumor progression associated biological processes via chromatin
remodeling, transcription and post-transcriptional processing
(Tano and Akimitsu, 2012; Wang et al., 2014). In addition,
recent studies have showed the association between lncRNAs and
survivals of human cancers, such as prostate cancer, breast cancer
and gastric cancer (Hu et al., 2014; Zhu et al., 2016; Li et al., 2018).

The Gene Expression Omnibus is an international public
repository that archives and freely distributes microarray, next-
generation sequencing, and other forms of high-throughput
functional genomic data sets (Kodahl et al., 2014; Clough and
Barrett, 2016). The Cancer Genome Atlas (TCGA) is a large-
scale cancer genome project which provides researchers with
multi-dimensional maps of the key genomic changes and clinic-
pathological information in 33 types of cancer (Collins and
TCGA Project Team, 2007). Hence, we downloaded the LncRNA
data from the GEO and performed lncRNA profiling on cervical
cancer patients. Finally, a prognostic, nine-lncRNA signature for
cervical cancer was constructed from the training set of GEO
and its predictive accuracy was further validated two independent
validation sets.

MATERIALS AND METHODS

Data Source
As we have previously depicted, we firstly downloaded the
“MINiML formatted family file(s)” of GSE44001 datasets from
GEO which has the microarray data of 300 patients with
cervical cancer and then processed these data sets using R to
generate the lncRNA expression matrix. The clinical information
(recurrence status, disease free survival time, and FIGO stage)
of 300 patients was also extracted and patients were randomly
assigned to a training set (n = 150) and an internal validation
set (n = 150). RNA sequencing (RNA-seq) and corresponding
clinical data (recurrence status and disease free survival time)
were downloaded from the publicly available TCGA database.
After excluded those without complete clinical and survival
information, a number of 49 patients with cervical cancer were
enrolled into the external test set. Each lncRNA expression level

was determined by the value of Reads Per Kilobase of exon model
per Million mapped reads (RPKM) (Mao et al., 2018b, 2019b).

Microarray Data Analysis and lncRNA
Signature Construction
Data preprocessing was performed according to our previous
published study (Mao et al., 2018b,c, 2019a). After quantile
normalization and log2-scale transformation, we delineated the
box plot (Supplementary Figure S1). Then we performed cox
regression analysis with Least Absolute Shrinkage and Selection
Operator (LASSO), which is a parameter selection method that
manage high-dimensional regression variables with no prior
feature selection step by shrinking all regression coefficients
and forcing many variables to be exactly zero (Tibshirani, 1997;
Mao et al., 2019b). To achieve variable selection and shrinkage,
we put the normalized lncRNA expression data into LASSO
Cox regression. During this process, the penalty regularization
parameter λ was chosen via the cross-validation routine with an
n-fold = 10 by using R package “glmnet” (Friedman et al., 2010).
The value of lambda.min, the lambda value giving minimum
mean cross-validated error was calculated using R. By applying
the lambda.min, a nine-lncRNA signature was identified based
on the expression of lncRNAs weighted by the coefficients from
LASSO penalized regression. Then the score of each sample was
calculated according to expression levels of the RNAs (Expi) and
LASSO coefficients (Li).

Risk score =
n∑

i=1

Expi × Li

The resulting score allowed the division of patients into two
classes, namely the high-risk group and low risk group based on
the median risk score value.

Prognostic Signature Validation
Firstly, Kaplan–Meier and Chi-square analysis was performed
using Graphpad prism. C-index was calculated using R with
Package “survival” (Therneau and Grambsch, 2000). After that,
a time-dependent ROC (receiver operating characteristic) curves
along with the dynamic area under the time specific ROC
curves (dynamic -AUC) was obtained by using R with Package
“risksetROC” (Heagerty et al., 2000; Heagerty and Zheng, 2005).

Functional Annotation of lncRNA
Target Genes
Identifying target genes of lncRNAs is an important step in
studying the function of lncRNA in cervical cancer. In this
study, we first predict the target genes of lncRNAs in the
signature by using the starBase v2.0 (Yang et al., 2011; Li et al.,
2014). Then these genes were put into gene ontology (GO)
biological process enrichment, Kyoto Encyclopedia of Genes and
Genomes (KEGG), and REACTOM1 signaling pathways analysis.
The enrichment analysis results, including enrichment score, the
count of genes enriched in the terms and false discovery rate were

1https://reactome.org/
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shown as pictures which plotted using R with Package “ggplot2”
(Wickham, 2015). The potential relationship among these target
genes was analyzed using Search Tool for the Retrieval of
Interacting Genes (STRING) which is an online tool designed
to evaluate the protein–protein interaction (PPI) information
(Damian et al., 2015). The PPI network were then plotted.

Moreover, we identified the related genes of the nine-
lncRNAs in the signature by calculating pearson correlation
coefficient between lncRNAs and mRNAs using TCGA datasets
as previously depicted (Mao et al., 2018b,c, 2019a). Genes with
pearson correlation coefficient >0.60 or <−0.40 was considered
as associated with genes in the signature and was enrolled into

FIGURE 1 | Identification of prognosis related lncRNAs using LASSO regression model. (A) Flowchart of the whole analysis process. (B) LASSO coefficient profiles
of the lncRNAs associated with the disease free survival of cervical cancer. (C) Plots of the cross-validation error rates. Each dot represents a lambda value along
with error bars to give a confidence interval for the cross-validated error rate. The top of the plot gives the size of each model. The vertical dotted line indicates the
value with the minimum error and the largest lambda value where the deviance is within one SE of the minimum.
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the analysis. After that, these genes were also put into functional
enrichment and pathway analysis which was then visualized using
Cytoscape software with ClueGO and CluePedia (Shannon et al.,
2003; Bindea et al., 2009).

RESULTS

Prognosis Related lncRNA Identification
and Signature Generation
A flowchart which depicted the whole process of our analysis
was firstly plotted in Figure 1A. Samples in GEO datasets
were firstly quantile normalized and the distributions for
the dataset of lncRNA profiles in each patient was shown
as box plot using the R software package (Supplementary
Figure S1). 300 patients from the GSE44001 cohort were
randomly divided into a training cohort (n = 150) and
internal validation cohort (n = 150). LASSO Cox regression
model along with 10-fold cross validation was performed to
analyze the expression data in the training cohort (Figure 1B).
According to the results, a set of nine-lncRNAs along with their
coefficients were identified and included into a risk score formula.
Hence, we developed a nine-lncRNA signature based on their
expression level and coefficients. Risk score = (3.31562585 ∗
ATXN8OS) + (0.13987057 ∗ C5orf60) + (−0.43216636 ∗
DIO3OS) + (−0.92247218 ∗ EMX2OS) + (1.13309789 ∗

INE1) + (−4.48055889 ∗ KCNQ1DN) + (−0.08067727 ∗
KCNQ1OT1)+ (−0.09737496 ∗ LOH12CR2)+ (−0.66622831 ∗
RFPL1S) (Figure 1C).

The risk score for each patient in the training set was
calculated and plotted in Figure 2A. Besides, the corresponding
heatmap of lncRNA expression level in the signature was also
presented. Figure 2C showed the distribution of disease free
survival time and recurrence status of each patient which
ranked according to the score in Figure 2A. According to
Figures 2B,C, three lncRNAs in the signature had positive
coefficients including ATXN8OS, C5orf60, and INE1 which
revealed that higher expression level of these lncRNAs was
associated with shorter disease free survival while the other
six lncRNAs including DIO3OS, EMX2OS, KCNQ1DN,
KCNQ1OT1, LOH12CR2, and RFPL1S had negative coefficients
which indicated that their expression level was negatively
related with the possibility of cervical cancer recurrence.
Moreover, Chi-square analysis showed that the recurrence
rate in high risk group was significant higher than low risk
group (Figure 2D).

Validation of the lncRNA Signature’s
Survival Predict Accuracy
The robustness of the lncRNA signature was tested by evaluating
their ability to classify the high-risk group and low risk
group in all the three datasets. The gene signature based risk

FIGURE 2 | Risk score distribution, gene expression profile and recurrence data of the GEO training set. (A) The distribution of each patients’ risk score from the
GEO training set. (B) Heat map of the lncRNAs in prognostic signature. (C) The outcome of recurrence status and time of patients in GEO training set.
(D) Recurrence rate in low- and high-risk score groups. The black dotted line represents the optimum cutoff dividing patients into low-risk and high-risk groups.
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score for each patient was firstly calculated. Then patients
were divided into high- or low-risk group according to the
median value. Kaplan–Meier curves were plotted, along with
log rank p-test, to compare the disease free survival of the
two groups. According to the results, significant differences
in Kaplan–Meier survival analysis were observed in high-
and low- risk group separated by the lncRNA signature in
GEO training (Figure 3A) and validation set (Figure 3B).
Similar outcomes were also found in external validation set
(TCGA test set) (Figure 3C).

Besides, stratified analysis was further performed to
evaluate the predictive efficiency of the lncRNA signature
within FIGO stages. Figures 3E–G showed that the lncRNA
signature can predict the tumor recurrence in patients of
different FIGO stage, except for those in IA2 stage as
a results of the limited number (Figure 3D). We also
evaluate the predict accuracy of the lncRNA signature
by using C-index which showed that the C-index value
of lncRNA signature was higher than FIGO and a new

variable combing both has the highest value than either
alone (Figure 3H).

Further Evaluation of the Nine-lncRNA
Signature Predictive Efficiency Using
Time-Dependent ROC Curves and
Dynamic AUC
Next, we tried to determine the sensitivity and specificity of
the predictive model and the changes of predictive accuracy
over time. Hence, we introduced time-dependent ROC (receiver
operating characteristic) curves and dynamic AUC to assess
the predictive accuracy of lncRNA signature, FIGO stage and
a new variable combined both. Firstly, we plotted the time-
dependent ROC curves and calculated the corresponding AUC
on the 12th month of follow up. As shown in Figure 4, predict
accuracy of the new variable which combined both the signature
and FIGO was better than either alone on the 12th month of
follow up in all three sets. In addition, the lncRNA signature

FIGURE 3 | Evaluation of the predict efficiency of nine-lncRNA signature using Kaplan-Meier analysis along with log rank p and C-index. Kaplan-Meier curves were
used to visualize and compare the disease free survival of low-risk group versus high-risk group in GEO training set (A), GEO internal validation set (B), TCGA test
set (C). Stratified analysis was further performed to evaluate the predictive efficiency of the lncRNA signature within different FIGO stages, including IA2 stage (D),
IB1 stage (E), IB2 (F), and IIA stage (G). The C-index value of three variables in all three data sets was also plotted (H).
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FIGURE 4 | Prognostic value evaluation of three variables using time specific ROC curves and dynamic AUC lines. The time-dependent ROC curves on the 12th
month of follow up and the dynamic AUC lines were plotted for patients in GEO training set (A), GEO validation set (B), and TCGA test set (C). The dynamic AUC
lines of two signatures in GEO (D) and TCGA (E) dataset.

has a better predictive accuracy than FIGO stage in all the
three subsets (Figure 4).

Subsequently, the dynamic area under curves (dynamic -
AUC) at continuous time was calculated and depicted as the line
chart. Results showed that the lncRNA signature combined with
FIGO stage has a higher dynamic AUC level than either alone.
The lncRNA alone also showed high accuracy with the dynamic
AUC estimates exceeding 0.75 which was much better than FIGO
stage alone. Similarly, the nine-lncRNA signature showed better
predict accuracy than FIGO stage in the GEO validation set and
TCGA test set as shown in Figures 4B,C. Hence, the lncRNA
signature could predict the recurrence of cervical cancer patients
with high efficiency.

Furthermore, we compared the recurrence predict
performance of the nine-lncRNA signature with a 12-mRNA
signature which was established in a previously published article
(Lee et al., 2013). Results showed that similar predict accuracy
was observed between the two signatures in GEO datasets
(Figure 4D). However, the nine-lncRNA signature showed
a better predict ability than the 12-gene signature in TCGA
dataset (Figure 4E).

Functional Annotation of lnRNA
Associated Genes
In order to further describe the function of lncRNAs in the
signature, we performed the function annotation and enrichment
analysis. Studies on lncRNA have demonstrated that lncRNAs
usually act as competing endogenous RNAs (ceRNAs) which
modulate the gene expression and maintain the functional
balance of various gene networks (Kartha and Subramanian,

2014). Hence, we first identified the target genes of the lncRNAs
in the signature and then put these genes into GO, KEGG,
and REACTOM analysis. Results showed that target genes
participate in biological processes, such as RNA stability and RNA
splicing, and pathways such as RNA transport and spliceosome
(Figures 5A,B). The PPI network of the target genes were
shown in Figure 5C.

Moreover, genes, which was considered as related with
the lncRNAs in the signature, were put into GO biological
process and KEGG signaling pathways analysis. As shown in
Supplementary Figure S2, lncRNA-related genes participate in
biological processes such as cell proliferation and cell cycle. These
data indicated the potential regulatory mechanism of lncRNAs
in the signature.

DISCUSSION

Cervical cancer is a common gynecological malignancy with
high mortality and its incidence of the younger trend in recent
years. Due to the advancements in systemic chemotherapy and
radiotherapy, the incidence of cervical cancer and mortality
have dropped significantly. However, its recurrence rate and
mortality in developing countries still remains high (Saslow et al.,
2012). Considering the poor prognosis of cervical cancer, novel
biomarkers, especially genetic biomarkers characterizing the
inner molecular complexity, began to be used as predictors for the
disease free survival and overall survival. With the development
of high-throughput technology, more and more attention have
been paid to the gene expression profiling which can be used
to identify the biomarker that related to the heterogeneities and
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FIGURE 5 | Functional enrichment analysis depicted the biological pathways and processes associated with lncRNAs in the signature. The results of GO biological
process enrichment (A). KEGG and REACTOM signaling pathways analysis (B). PPI network of the target genes (C).

molecular of cervical cancer ( Zhan et al., 2016; Dai et al., 2017).
Previous studies have analyzed open-access datasets and establish
an integrated model which could predict glioblastoma prognosis
with high accuracy (Zhang et al., 2016). By applying the
public breast cancer dataset, a series of recurrent copy number
aberrations in complex patterns was also discovered via non-
negative sparse singular value decomposition (Xi and Li, 2016).
Here we downloaded and mined the open-access lnRNAs
expression datasets of cervical cancer from GEO and performed
a series analysis.

The microarray data we downloaded from GEO belongs
to high-throughput biological data. In order to solve the
common problem “curse-of-dimensionality” (small sample size
combined with a very large number of genes) in high-
throughput biological data, LASSO Cox regression model
along with 10-fold cross validation was applied to analyze
the expression data in the training cohort. As we have
previously depicted, LASSO regression is good at handling
high dimensional regression variables with no prior feature
selection step by shrinking all regression coefficients toward
zero, and thus forcing many regression variables to be exactly
zero (Tibshirani, 1997; Mao et al., 2019a,b). It has been
demonstrated that LASSO Cox regression model can achieves

high stability and accurate predictions in dealing with the
“curse-of-dimensionality” data (Algamal and Lee, 2015). By
performing LASSO Cox regression model along with 10-
fold cross validation, we identified a series of lncRNAs with
the most powerful prognostic ability. At the same time,
the regression coefficients were presented by LASSO Cox
regression, based on which a nine-lncRNA signature for
the prediction of disease free survival of cervical cancer
was constructed.

In evaluating the predict accuracy of the nine-lncRNA
signature, we first plotted the Kaplan–Meier curves and
calculated the C-index of the signature. According to the results,
significant difference was observed between the survive time
along with status of the two groups separated by the same criteria
in all three sets. Besides, further study showed that the nine-
lncRNA signature has predict efficiency within different FIGO
stage. Similarly, the C-index of lncRNA signature was higher
than FIGO and a new variable combing both has the highest
value than either alone. Moreover, we calculated the AUC for
time specific ROC curves at continuous time point and dynamic
AUC line was plotted to depict the temporal changes in accuracy.
Results showed that the nine-lncRNA signature has a higher
accuracy than FIGO stage alone. The new variable combined
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both nine-lncRNA signature and FIGO stage has better predict
capacity for recurrence than either alone.

To gain more insights into the modulatory roles of the
lncRNAs in the signature, we performed functional enrichment
and annotation analysis for nine-lncRNAs in the signature.
Results showed that lncRNAs in the signature might regulate
biological processes, such as RNA splicing, cell proliferation
and cell cycle, and pathways such as RNA transport and cell
adhesion molecules. These data indicated the potential regulatory
mechanism of lncRNAs in the signature.

Moreover, we also explored the regulatory mechanism of
nine-lncRNAs in the signature by searching the published
article. Among the nine-lncRNAs, lncRNA ATXN8OS participate
in spinocerebellar ataxia by affecting the localization and
activity of splicing factors and mutations in the ATXN8OS
are associated with the amyotrophic lateral sclerosis (Moseley
et al., 2006; Hirano et al., 2018). Dysregulation of lncRNA
DIO3OS was closely related with inflammatory bowel disease
(Wang et al., 2018). The downregulation of lncRNA EMX2OS
might independently predict shorter recurrence-free survival of
classical papillary thyroid cancer (Gu et al., 2018). LncRNA
EMX2OS was also identified as associated with myalgic
encephalomyelitis/chronic fatigue syndrome (Yang et al., 2018).
LncRNA INE1 was considered as the potential hotspot for
neurogenetic disorders (Thiselton et al., 2002). In Wilms’ tumors,
reduced expression of lncRNA KCNQ1DN existing far from
the H19/IGF2 region and may play regulatory role in tumor
progression (Xin et al., 2000). LncRNA KCNQ1OT1 facilitates
the progression of non-small-cell lung carcinoma via modulating
miRNA-27b-3p/HSP90AA1 axis (Dong et al., 2018). On the other
side, lncRNA KCNQ1OT1 controls maternal p57 expression
in muscle cells by promoting H3K27me3 accumulation to
an intragenic MyoD-binding region (Andresini et al., 2019).
Studies on RFPL1S suggests that RFPL1S may function as
a post-transcriptional regulation of the sense RFPL genes
(Seroussi et al., 1999).

CONCLUSION

In summary, we conducted comprehensive comparative
analysis of lncRNA expression pattern and constructed

a nine-lncRNA signature that can be applied to predict
disease free survival in cervical cancer. Gene annotation
and functional enrichment analysis further revealed the
underlying mechanisms whereby lncRNAs in the signature
exerts their biological roles in tumor progression. Although
further study are still needed to confirm the established
signature, our study here still provide valuable indication
for both the basic research and clinical treatment of
cervical cancer.
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