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Abstract

Motivation: RNA sequencing (RNA-Seq) is a widely used approach to obtain transcript sequences

in non-model organisms, notably for performing comparative analyses. However, current bioinfor-

matic pipelines do not take full advantage of pre-existing reference data in related species for

improving RNA-Seq assembly, annotation and gene family reconstruction.

Results: We built an automated pipeline named CAARS to combine novel data from RNA-Seq

experiments with existing multi-species gene family alignments. RNA-Seq reads are assembled

into transcripts by both de novo and assisted assemblies. Then, CAARS incorporates transcripts

into gene families, builds gene alignments and trees and uses phylogenetic information to classify

the genes as orthologs and paralogs of existing genes. We used CAARS to assemble and annotate

RNA-Seq data in rodents and fishes using distantly related genomes as reference, a difficult case

for this kind of analysis. We showed CAARS assemblies are more complete and accurate than

those assembled by a standard pipeline consisting of de novo assembly coupled with annotation

by sequence similarity on a guide species. In addition to annotated transcripts, CAARS provides

gene family alignments and trees, annotated with orthology relationships, directly usable for

downstream comparative analyses.

Availability and implementation: CAARS is implemented in Python and Ocaml and is freely avail-

able at https://github.com/carinerey/caars.

Contact: carine.rey@ens-lyon.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large scale RNA sequencing (RNA-Seq) is often used in non-model

species as a pragmatic alternative to genome sequencing, in particu-

lar for comparative analyses (Ozsolak and Milos, 2011; Todd et al.,

2016; Wang et al., 2009). However, the assembly of short reads

from transcriptome assays into full length transcript sequences poses

difficult issues related to repeated regions, variable expression levels,

alternative splicing, sequencing errors and composition biases

(Garber et al., 2011). Further, the clustering of those sequences into

gene families, their alignment and the step of gene tree

reconstruction all represent challenges that studies of comparative

genomics face without agreed-upon standards.

Different strategies can be used for transcript assembly, depend-

ing on the existence of genomic data for closely related species

(Conesa et al., 2016; Ockendon et al., 2016). If no sister species

with a sequenced genome is available, reads are assembled de novo

based on overlapping sequences [e.g. Trinity, Grabherr et al.

(2011)]. Otherwise, genome-guided assembly may be used [e.g.

Tophat, Trapnell et al. (2009) and Cufflinks, Trapnell et al. (2010)].

In that case, reads are aligned to this guide genome, creating clusters
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of reads that are used for local transcript assembly. This strategy is

obviously restricted to very closely related species, for which trans-

species read mapping is feasible. On more distantly related species,

no approach has been proposed for RNA-Seq assembly, but devel-

opments have been made for genome assembly. In particular, the

Target Restricted Assembly Method (TRAM) by Johnson et al.

(2013), automated in aTRAM (Allen et al., 2015), reconstructs a

gene sequence by an iterative process where reads are collected by

sequence similarity to a reference genome using BLAST (Camacho

et al., 2009) and then assembled. A different implementation was

proposed in Kollector (Kucuk et al., 2017) based on a k-mers

approach. These methods show encouraging results, but have not

been designed to be used on RNA-Seq data and for thousands of

genes at a time.

After assembly, transcripts should ideally be annotated with a

gene name. Commonly, transcriptome annotation is based on se-

quence similarity between the transcripts and the transcriptome of al-

ready annotated species. This step is most often treated by Reciprocal

Best Hits (RBHs) (Rivera et al., 1998), typically using BLAST

(Camacho et al., 2009), which cannot handle species–specific duplica-

tions (Altenhoff and Dessimoz, 2009; Tekaia, 2016). This is an issue

because many genes are duplicated. For instance, in the Ensembl data-

base (Herrero et al., 2016; Yates et al., 2016) 10% of all Human

genes have no one-to-one orthology relationships with mouse genes.

In principle, relying on gene phylogenies instead of RBH for anno-

tation allows handling complex homology relationships (Chen et al.,

2007; Kristensen et al., 2011; Kuzniar et al., 2008; Tekaia, 2016). We

suggest to take such an approach: genes from annotated transcrip-

tomes are clustered into homologous gene families either de novo

(Kristensen et al., 2011) or using existing families [EnsemblCompara

(Herrero et al., 2016), TreeFam (Finn et al., 2014), Hogenom (Penel

et al., 2009), PhylomeDB (Huerta-Cepas et al., 2014)]. Then, recon-

structed transcripts are integrated into these gene families based on se-

quence similarity. Alignments and trees are reconstructed for these

enlarged gene families. Quality of the trees can be improved by using

reconstruction methods that use the information provided by the spe-

cies tree (Boussau et al., 2013; Ullah et al., 2015). Finally, gene trees

are reconciled with a species tree to annotate speciations, duplications

and losses (Kristensen et al., 2011). Based on this scenario of gene fam-

ily evolution, orthology and paralogy relationships are derived, and

gene names are propagated from annotated sequences to novel tran-

scripts (Kristensen et al., 2011). In this approach, accurate annotations

are an outcome of accurate gene trees.

Here, we present an automated tool, named CAARS, to assemble

and annotate the whole transcriptome of non-model organisms from

RNA-Seq data, using sequences from one or several species that can

be closely or distantly related to guide transcript assembly and anno-

tation. CAARS relies on reference gene alignments and outputs

homologous gene sets with high quality phylogenetic trees and

orthology relationships that can directly be used for downstream

comparative analyses. CAARS improves upon a well-established

pipeline in terms of transcriptome completeness, transcript accuracy

and annotation accuracy. Thanks to its high quality output gene

trees, CAARS also improves upon Ensembl Compara in terms of the

number of orthologs it can recover.

2 Materials and methods

2.1 Outline of CAARS and implementation
The general structure of CAARS is illustrated in Figure 1. As input

CAARS requires data from three types of species: the species whose

transcriptomes need to be assembled, which we call target species,

the species with transcriptomes serving as guide for assembly and

annotation, which we call guide species and the species with already

assembled transcriptomes because they improve the resolution of

Fig. 1. CAARS overview. Representation of the major steps of CAARS. Steps 1–

4 group pre-requisite computations. (1) If no draft transcriptome is given in in-

put, RNA-Seq data are de novo assembled into a draft transcriptome and coding

sequences are parsed to remove 5’ and 3’ UTR. (2) Transcriptomes from guide

species are extracted from input MSAs to form guide transcriptomes. (3)

Transcripts from the draft transcriptome are associated to the corresponding

gene families by BH against guide transcriptomes. Steps 5–10 group computa-

tions made for each family. (4) RNA-Seq reads are clustered and formated into a

database. (5) Transcripts are assembled again with an assisted and iterative

method (Apytram). At the first iteration, genes from the guide species and target

transcripts from the draft transcriptome corresponding to this family are used as

bait sequences to fish reads in the reads database. Mate reads are used to en-

large this batch of reads. Reads are then de novo assembled, and a new iteration

can begin with the reconstructed sequences as baits. (6) Coding sequences from

both assemblies are added to the existing gene family alignments. (7) A primary

gene tree is obtained for the family. (8) Redundancy is removed by selecting the

longest sequence or by merging sequences from the same species when appro-

priate. Then, sequences (from target species) with a low-scoring alignment to

their sister sequences (from guide or helper species) can be discarded (not

shown). A gene tree is re-computed to take into account potential changes.

(9) The species tree and the gene family tree are used jointly to infer a reconciled

gene tree placing gene losses and duplications along the gene family tree
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the gene trees in the pipeline, which we call helper species. More

particularly, CAARS requires Multiple Sequence Alignments

(MSAs) corresponding to gene families containing sequences from

guide and helper species, a rooted species tree with all the species

and RNA-Seq data for the target species. Finally, we require to spe-

cify a set of guide species for each target species (Fig. 1 top): since

target species may belong to various taxonomic groups, it may be

useful to adapt guide species to each target species.

CAARS is organized in two major parts. The first one sets up

several pre-requisites for the second, which is the execution in paral-

lel of a series of steps for each gene family.

First, CAARS performs a de novo assembly using the commonly

used program Trinity (Grabherr et al., 2011). The de novo

assembled transcripts are dispatched to gene families using BLAST.

In addition, RNA-Seq reads are formatted as BLAST databases, one

per target species.

Second, independently for each gene family, CAARS performs

another assembly assisted by sequences from the guide species and

by de novo assembled transcripts. This latter assembly is performed

by our in-house software Apytram (Supplementary Fig. S1)

(Rey et al., 2017), a multi-species implementation of the TRAM al-

gorithm (Johnson et al., 2013). Importantly Apytram is able to deal

with several RNA-Seq samples simultaneously, which improves on

the initial implementation (Allen et al., 2015).

Coding regions of transcripts from both de novo and assisted

assemblies are extracted using Transdecoder (v3.0.1) (http://transde

coder.github.io) and then integrated into the MSAs. At this step, gene

families typically include redundant transcripts, which can be alterna-

tive transcripts of the same gene at the same locus, or identical tran-

scripts that have been assembled independently by the two methods.

To remove this redundancy, the default option is to select the

longest sequence (raw or aligned length), following Yang and Smith

(2014). Alternatively, it is possible to merge transcripts from the

same species that branch at the same position in the tree, by maxi-

mizing the information content in the alignments (Supplementary

Fig. S3). Partial sequences may be filtered out based on their align-

ment to their sister sequence in the tree (see Section 3 or the detailed

implementation on the CAARS website).

Then, accurate gene trees are inferred using a phylogenetic pipeline

that uses the information coming from both the alignments and the

species tree (Boussau et al., 2013) and identifies events of gene duplica-

tion and loss in a reconciliation step. Orthology and paralogy relation-

ships are naturally deduced from the reconciled gene trees. Because

CAARS grounds assembly and annotation on several guide species at

the same time, and not on a single one, it is robust to species-specific

gene duplications or losses in the guide transcriptomes.

The method and implementation are detailed in the

Supplementary Material provided on the CAARS website. CAARS

is written in the Python programing language for all intermediate

steps and in the OCaml language for the main program orchestrat-

ing all computational steps. This program relies on bistro (Veber,

2017), an OCaml library that manages dependencies between steps,

distributed computation and recovery upon error [also known as

resume-on-failure ability (Leipzig, 2016)]. For ease of deployment,

users do not need to install all external dependencies and may in-

stead use the dedicated docker image available on DockerHub called

carinerey/caars.

2.2 Assessing CAARS performance
We selected the Human as a guide species for assembling mouse and

stickleback transcriptomes. We used their annotated transcriptomes

as reference against which to compare the performance of CAARS

and of a standard pipeline commonly used for de novo transcrip-

tome assembly and annotation. In the following, to avoid ambigu-

ities, we will use ‘guide’ to name the transcriptomes used to help the

assemblies and ‘reference’ to name the transcriptomes used to

benchmark the assemblies. In the standard pipeline, used e.g. in

Marra et al. (2014); Konczal et al. (2014); Pereira et al. (2016);

Thompson and Ortı́ (2016) and Ishikawa et al. (2016), the assembly

is performed de novo by Trinity (Grabherr et al., 2011) and the an-

notation by RBH using BLAST (Camacho et al., 2009).

2.2.1 Dataset, common inputs

We used paired-end RNA-Seq libraries from adult mouse kidneys

(2�51 bp, about 12.5–15.3 million reads per library, SRR636916,

SRR636917, SRR636918) and from adult stickleback kidneys

(2�100 bp, about 16.5 million reads per library, SRR528539,

SRR528540).

2.2.2 CAARS additional inputs and assembly

In addition to the reads for the target species and an annotated tran-

scriptome for the guide species, CAARS also requires MSAs corre-

sponding to gene families containing sequences from guide and

helper species. We downloaded the Ensembl Compara dataset from

the Ensembl database [release 91, Herrero et al. (2016); Yates et al.

(2016)]. This dataset contains MSAs for 22 340 gene families with

sequences from 97 chordates, including 71 mammals. From this set

of species, we extracted a subset of 17 species of which 13 represen-

tative mammals, 1 bird, 1 reptile and 2 fishes. We obtained their

phylogeny from the Ensembl Github repository (Herrero et al.,

2016; Yates et al., 2016) (Supplementary Fig. S2). We did not want

to favor CAARS during the tests, and we voluntarily removed the

rodents belonging to the mouse sub-order and the fishes belonging

to the stickleback order.

To be usable in CAARS, MSAs must contain at least one se-

quence from the guide species (Human), and at least 3 species in

total (for the reconciliation step). A total of 8622 MSAs satisfy both

criteria.

We launched CAARS on a Linux server (16 threads, 64 G RAM)

with a running installation of Docker and an imported CAARS

image from DockerHub (carinerey/caars). CAARS tutorial contains

the material (dataset and scripts) to replicate the analysis presented

here as a demo and can be found on the wiki page of the Github re-

pository. A smaller data set is also provided for a quick test.

2.2.3 Additional inputs for the standard pipeline and assembly

On the same hardware, for each target species, we first assembled

RNA-Seq reads into transcripts with Trinity (Grabherr et al., 2011)

using default parameters. Then, we used Cap3 (Huang and Madan,

1999) (default parameters) to assemble overlapping Trinity contigs.

We removed redundancy using CD-HIT-EST (Fu et al., 2012),

which clusters nucleotide sequences that meet a sequence identity

threshold (99%) and finds one representative sequence per cluster

(-c 0.99 -n 11 -d 0). We then used Transdecoder (v3.0.1, –retain_

long_orfs 150) to extract the coding region of each transcript.

Finally, we retained only transcripts associated by RBH with a guide

species transcript using BLAST (Camacho et al., 2009) with an e-

value of 1e� 6 and using blastn as task option. In order to assess

the impact of the evolutionary distance between the guide and the

target species, we run this final step using two different guide species

for each target species.
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2.2.4 Reference transcriptome

To assess the accuracy of the assemblies and annotations made by

CAARS or the standard pipeline, we compared them for each target

species with their corresponding known transcriptome. We

extracted mouse and stickleback sequences from the Ensembl

Compara dataset (v91), as reference transcriptomes (Herrero et al.,

2016; Yates et al., 2016). They are composed of 22 388 coding

DNA sequences (CDSs) for the mouse and 20 072 for the stickleback

distributed in 10 350 gene families. We removed strictly identical

sequences using CD-HIT-EST (Fu et al., 2012), keeping respectively

22 060 and 20 020 sequences.

Of note, the mouse and the stickleback sequences are distributed in

more families (10 350) than were used as input for CAARS (8622) be-

cause CAARS needs Human homologous sequences as bait sequences.

So, because they have no homolog in Human, in this intentionally diffi-

cult test, CAARS cannot find 1822 mouse and 1766 stickleback sequen-

ces. In a real-life situation, users can use more closely related genomes

when available, or can use multiple genomes as bait sequences. This

would drastically reduce the number of genes without homologs.

2.2.5 Sensitivity measure

We compared the completeness of each CAARS and standard

assemblies with respect to the corresponding reference transcrip-

tome. For each gene of the reference transcriptome and each assem-

bly, we retrieved the RBH sequence when available, using BLAST

with a stringent e-value threshold (1e�10) and otherwise default

parameters (Camacho et al., 2009). In the case where no RBH was

found, we considered that this gene was missing from the assembly.

Completeness statistics are provided in the Table 1.

2.2.6 Identification of partial and alternative transcripts

Assembled transcripts may be incomplete compared to the reference

transcriptome, because they represent shorter alternative transcripts,

or because the coverage for this transcript in the kidney expression

data is low. To identify these partial and alternative transcripts, we

aligned each transcript of each assembly to the reference transcrip-

tome [BLAST (Camacho et al., 2009) with evalue¼1e�10, and

otherwise default parameters], and retrieved the Best Hit sequence

(BH). By using BH instead of RBH, we allow that several sequences

in a given assembly match a single transcript of the reference

transcriptome. This ensures all sequences of an assembly with a pos-

sible hit have an associated reference sequence.

2.3 Overlap between reconstructed and reference

transcript sequences
We analyzed the sequences of transcripts present in both the refer-

ence transcriptome and a reconstructed assembly to estimate

whether reconstructed transcripts are longer, shorter or generally

different from the reference transcripts. To this end we computed

two indices, for a given reference sequence R of length lenR and a

given query sequence Q of length lenQ. We used Mafft (Katoh et al.,

2002) with default parameters to align the R and Q sequences and

we computed the number of aligned positions, lenali, between R and

Q (without gaps) in the alignment.

The two indices are then calculated using these formula:

Preference ¼ lenali

lenR
� 100 and Pquery ¼ lenali

lenQ
� 100:

2.4 Quantification of expression levels
For each target species, we quantified the levels of gene expression

for the three transcriptomes (the reference transcriptome and the

CAARS and standard assemblies) using Kallisto (Bray et al., 2016)

and the RNA-Seq libraries mentioned earlier.

2.5 Evaluation of sets of orthologs
Orthologs predicted by CAARS were extracted for different sets of

species, including or not including target species. We compared the

set of orthologs obtained without target species to the ‘high confi-

dence’ orthologs available on the Ensembl Compara database.

3 Results

We used CAARS to assemble and annotate transcriptomes of target

species using a guide species too divergent for a genome-guided as-

sembly, and we compared it with a standard pipeline combining de

novo assembly and annotation by RBH. We selected two target spe-

cies, the mouse and the stickleback, for which gene sequences and

annotations are well-established. Kidney RNA-Seq libraries of these

two species were used for assemblies, and their genomes were used

later to evaluate the accuracy of CAARS. We used the Human as

Table 1. Statistics of the CAARS assembly compared to a standard assembly

Target

species

Assembly method Options Guide or

reference

species

Divergence

(in Mya)

# of seqs in

the assembly

Precision: # of seqs

associated with a seq

in the target species

Sensitivity: % of seqs of

the target species associated

with a seq in the assemblya (%)

Mouse CAARS by/By default Human 90b 12 421 11 500 (92.6%) 88.1

Filter at 25% Human 90b 11 093 10 779 (97.2%) 82.6

Standard pipeline Filter based

on RBH

Human 90b 10 808 10 749 (99.5%) 82.4

Guinea pig 70c 10 572 10 496 (99.3%) 80.5

Squirrel 70c 10 594 10 511 (99.2%) 80.6

Stickleback CAARS by/By default Human 400b 10 878 9570 (88.0%) 66.7

Filter at 25% Human 400b 9789 8931 (91.2%) 62.2

Standard pipeline Filter based

on RBH

Human 400b 8758 8189 (93.5%) 57.1

Zebrafish 225d 11 273 10 483 (93.0%) 73.1

aThis is calculated as the ratio of the number of target reference sequences with an associated sequence in the assembly over the number of target reference

sequences expressed more than 1 count per base in the library (for the Mouse, 13 046 seqs, and for the Stickleback, 14 349 seqs).
bHedges et al. (2015).
cFabre et al. (2012).
dBetancur-R et al. (2015).

2202 C.Rey et al.



guide species because it is well-annotated and also because it is quite

divergent from the mouse and the stickleback [divergence around

90 million years ago—Mya—and 400Mya (Hedges et al., 2015)],

far too distant for trans-species mapping (Conesa et al., 2016;

Ockendon et al., 2016; Torres-Oliva et al., 2016). Overall we con-

servatively chose unfavorable test settings to assess the performance

of CAARS. To this end, first we chose a single distant guide species

to assemble target transcriptomes. Second, we also chose a Teleost

fish as one of our target species because it contains many duplicate

genes due to whole genome duplications, which makes the recon-

struction difficult.

3.1 CAARS has a better sensitivity than a standard

assembly pipeline
CAARS took 4 days to reconstruct 12 421 mouse CDSs and 10 878

stickleback CDSs included in 7049 families (Table 1). These figures

are in accordance with the fact that about 10 000�13 000 genes

are expressed in Human kidney [10 000 using a threshold>5

FPKM (Fagerberg et al., 2014; Uhlen et al., 2015).)]. This demon-

strates that CAARS may be used with a distant guide species in a

reasonable amount of time.

Independently, we ran a standard de novo assembly on the same

data and the same hardware, which took about 4 h. After filtering

transcripts using RBH, there is a large influence of the divergence

between the guide and the target species on the accuracy of the

standard pipeline (Table 1). For example, for the stickleback assem-

bly, we obtained 8758 sequences using the Human as guide species,

against 11 273 if we used zebrafish, a less divergent guide species.

The genes only recovered with the zebrafish as a guide species prob-

ably mostly correspond to fish-specific gene families. To interpret

the differences between the pipelines in terms of their power to de-

tect transcripts rather than in terms of whether they can detect fish-

specific gene families or not, we discuss in the following the assem-

bly with the Human as guide for both the mouse and the stickleback

and for both methods.

To examine the completeness of both assemblies, we associated

by RBH the target species reference transcripts to the reconstructed

sequences. Out of all 22 060 mouse reference sequences, 10 672

sequences were found by both assemblies, 828 sequences only by

CAARS, 77 only by the standard assembly (Fig. 2A). Therefore, in

this case, CAARS retrieves 7% more transcripts than a pipeline clas-

sically used for de novo assemblies.

For the stickleback, on a total of 20 020 sequences, 7687 sequen-

ces were found by both assemblies, 1883 sequences only by CAARS,

502 only by the standard assembly (Fig. 2B), meaning CAARS

allows a gain of 17% of transcripts.

The sequence of genes not expressed in the kidney cannot be

reconstructed from our RNA-Seq data. Conversely, the sequence of

highly expressed genes should be easier to obtain. We wished to es-

tablish more systematically the link between the level of gene expres-

sion and the accuracy of sequence assembly. For the mouse, we

measured gene expression levels in kidney using the reference tran-

scriptome. As expected, very weakly expressed genes (�1 count per

base) are rarely retrieved by CAARS, or by the standard assembly.

If we focus only on genes expressed more than two counts per

base pair (meaning with an average sequencing coverage �2�),

CAARS detects more genes than the standard assembly. In the mouse,

93% of the reference sequences have an associated sequence in the

CAARS assembly and 89% in the standard assembly (Fig. 2A). In the

stickleback, the improvement of CAARS over the standard assembly

is more pronounced: 66% compared to 59% (Fig. 2B).

As CAARS annotates transcripts using a phylogeny, it is

expected to be more effective than the standard pipeline, which used

a RBH annotation, to retrieve genes in the target species that have

been duplicated since the divergence with the guide species (one-to-

many or many-to-many orthologs in Ensembl Compara). Such

orthologs correspond to 8% of the expressed genes (>1 count/pb) in

the mouse and 30% in the stickleback. Expectedly, they are more

often retrieved by CAARS than the standard pipeline, whether for

the mouse, where 63.0% of them are retrieved compared to 57.5%

in the standard pipeline, or for the stickleback (58.9 versus 46.6%).
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Fig. 2. Comparison between the CAARS and standard assemblies for the mouse and the sickleback. (A, B) Number of reference CDSs associated by a RBH with a

transcript from CAARS assembly only, the standard assembly only, both assemblies or none. Expression was quantified on the reference transcriptome in Count

per base; 0 means no detected expression. (C, D) Proportion of the reference transcript (Preference) aligned with its CAARS assembly counterpart (y axis) or its
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3.2 CAARS assembly provides more complete

transcripts
The completeness of an assembly cannot be assessed solely on the basis

of the number of recovered transcripts. We measured the coverage of

each reference transcript, and compared the results between the two

assemblies for each target species. Gene coverage was estimated on pairs

of sequences with a transcript from the reference transcriptome and the

corresponding reconstructed transcript. We computed the percentage of

the reference transcript that aligns with the reconstructed transcript

(Preference) for 11 577 Ensembl CDS with a matched sequence in at least

one of the assemblies (Fig. 2C). Both for the mouse and the stickleback,

CAARS better recovers the reference transcripts. In the experiment on

mouse libraries, the percentage of reconstruction of reference transcripts

is identical for 8937 sequences, better in the CAARS assembly for 2509

sequences (with an average increase of 24.8%) and better in the standard

assembly for 131 sequences (smaller improvement, 10.4%) (Fig. 2C).

For the stickleback, 3813 sequences (out of 10 072) are better in the

CAARS assembly (26.5% average increase) against 566 for the standard

pipeline (12.7% average increase) (Fig. 2D).

CAARS transcripts are longer than those from the standard as-

sembly but they are also more often complete. Total of 8134 CAARS

mouse transcripts are complete or sub-complete (Preference > 95),

which is better than the 7246 sub-complete transcripts obtained with

the standard pipeline and respectively 6465 compared to 4853 for the

stickleback transcripts (Table 2).

A potential issue for assembled transcripts is the merging of two

transcripts into a chimeric sequence. Such chimeric sequences will

be longer than the reference CDSs and characterized by a low Pquery

value. For the mouse and the stickleback, distributions are similar

for CAARS and the standard pipeline, with no excess of low values

(Supplementary Figs S5 and S6), meaning that the potential numbers

of chimeric sequences found in the CAARS assembly and in the

standard pipeline are small.

We estimated the quality of the assembly using another criterion,

gene expression levels. The levels of expression obtained from both

RNA-Seq assemblies are well correlated to reference expression lev-

els (R2 ¼ 0:98) (Supplementary Fig. S4A and B).

3.3 An optional filter can discard redundant and low

quality sequences
CAARS assemblies have a better sensitivity than the standard pipe-

line but, with default parameters, the precision, the number of

sequences associated by RBH with a reference transcript, is lower.

Among sequences without RBH, most (914, ie. 92%) have a unidir-

ectional blast hit in the reference transcriptome. Besides, they have a

low Preference (Supplementary Fig. S5A left) and a high Pquery

(Supplementary Fig. S5B left), meaning they are partial assemblies

or assemblies of small redundant transcripts.

Partial CDSs can introduce noise in subsequent analyses and

users may wish to flag them. We reasoned that transcript length

should not vary too much among related species. Hence, transcripts

assembled by CAARS with a length similar to the length of their sis-

ter species in the tree are expected to be complete. We verified that,

indeed, the percentage of reconstruction of the neighborhood se-

quence in the gene tree is a good proxy for the percentage of recon-

struction of the reference sequence (Supplementary Figs S5B and

S6B). An alternative would have been to filter them out based on

their expression level but we have found that it is not correlated to

the assembly quality (Supplementary Fig. S7A). A threshold can be

applied on this criterion to discard partial CDSs or select high qual-

ity CDSs (Supplementary Fig. S7C).

For instance, with a threshold at 25%, CAARS puts aside 1328

(10.7%) sequences for the mouse and 1089 (10.0%) for the stickle-

back. This filter allows increasing the precision from 92.6 to 97.2%

for the mouse and from 88.0 to 91.2% for the stickleback (Table 1).

The filter increases the proportion of complete sequences in the

assembly from 65.5 to 73.3% for the mouse and from 59.4 to

66.0% for the stickleback, which is better than the standard pipeline

(Table 2). The sensitivity decreases a little but stays above the stand-

ard pipeline, so some sequences with a RBH have been discarded

but these sequences are partial (low Preference and high Pquery)

(Supplementary Fig. S5C). The stringency of this filter can be set by

the user when using CAARS.

3.4 CAARS produces sets of orthologs defined by

phylogeny
CAARS returns MSA and reconciled gene trees ready to use for com-

parative analyses. From these reconciled gene trees, the user may use

CAARS to infer orthology relationships between all sequences. This

information is stored in a table which can be easily mined to retrieve

all one-to-one orthologs for a given subset of species (Fig. 3). These

subsets can include, or not, the target species. For example, we find

4850 sets of one-to-one orthologs with one gene per mammalian

species of our dataset (Fig. 3). This is substantially more than the

number found by the equivalent request in Ensembl Compara (4505

sets of genes with high confidence one-to-one orthology relation-

ship), a gain attributable to our reconciliation step, which improves

gene trees (Boussau et al., 2013). We also extracted sets of orthologs

for subset of species that include a target species, and obtained rea-

sonable numbers (8705 for Human/mouse comparisons, 6435 for

comparisons across rodents, 5 666 for comparisons across fishes

Fig. 3). We cannot compare these numbers to numbers from the

Compara database, because the mouse or stickleback gene comple-

ments are partial, being reconstructed from libraries of specific

organs.

4 Discussion

CAARS is a pipeline that can be used to assemble transcriptomic

data sets for comparative analyses. To assess its first steps, we com-

pared CAARS with a standard pipeline for comparative assembly

and annotation of RNA-Seq data. We found that CAARS is more

sensitive since it finds more transcripts that are more complete. This

better sensitivity is accompanied by a high precision (in particular

with the optional filter), as a large majority of the sequences can be

associated by RBH with a sequence of its reference transcriptome.

Table 2. Comparison of the alignment statistics on reference genes

of the CAARS assembly and a standard assembly using the

Human as guide species

Assembly method # of sub-complete CDSsa

Mouse Stickleback

CAARS (by default) 8134 (65.5%) 6465 (59.4%)

CAARS (with filter at 25%) 8131 (73.3%) 6457 (66.0%)

Standard pipeline 7246 (67.0%) 4853 (55.4%)

aA CDS is counted as sub-complete if its Preference is superior to 95, ie. it

covers at least 95% of its reference CDS. The proportion of sub-complete

transcripts is obtained by dividing the number of sub-complete transcripts by

the total number of transcripts predicted by the method.
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Expression levels are at least as well estimated by CAARS as with

the standard pipeline.

The improvement over the standard pipeline can be attributed to

two novel features: (i) CAARS implements a trans-species assembly,

based on one or several guide sequences, which can be distantly

related. This is demonstrated here with mouse and stickleback

RNA-Seq data assembled using a very distant Human guide species;

(ii) CAARS annotates the transcripts by integrating them in phyloge-

nies built with a set of helper sequences. This is demonstrated here

with families from the Ensembl Compara database.

In addition to the steps of transcript detection and assembly,

CAARS generates gene alignments, trees and sets of orthologs that

can be directly used in subsequent comparative analyses. Notably, we

found that it could recover more sets of orthologs than the Ensembl

Compara pipeline and was better at recovering one-to-many or

many-to-many orthologs than the standard pipeline, probably be-

cause it relies on gene trees reconstructed with a reconciliation ap-

proach. Besides, CAARS is easy to use, robust and modular.

4.1 CAARS uses one or several possibly divergent

species to generate assemblies
In our test we used Human transcripts as a guide to assemble mouse

and stickleback RNA-Seq data. Guide transcriptomes with good

annotations are important as they reduce the likelihood that a gene

has been mis-annotated or missed altogether.

In the case of the stickleback, the sensitivity of the CAARS as-

sembly is better than that of the standard pipeline using the Human

as guide species. It is not as good as the sensitivity of the standard

pipeline using the zebrafish, but that is expected since the zebrafish

is much more closely related to the stickleback than the Human is.

In the case of the mouse, very few transcripts are recovered by

the standard pipeline only. For the stickleback, the number of tran-

scripts found only by the standard pipeline is larger (see figures in

red, Fig. 2B). This difference is due to a more stringent threshold in-

side CAARS (not shown). CAARS nonetheless clearly outperforms

the standard pipeline in sensitivity in both cases (Fig. 2B).

It is not always easy to find well-annotated and closely related

species that can serve as guide species. In many cases, well annotated

genomes will be distant and closely related genomes of weaker qual-

ity. To improve the performance of guide-based assembly in those

situations, CAARS can use several guide species at the same time.

This reduces the likelihood that a gene is missed because of a missing

bait, since it would have to be absent from all guide species. In a real

study, where we want to optimize the result and not challenge

CAARS we would add the zebrafish and the spotted gar as guide

species to assemble the stickleback transcriptome and the squirrel

and the guinea pig to assemble the mouse transcriptome.

In addition, several target species can be assembled at the same

time. This can benefit the assembly of target species because during

the step of assisted assembly (by Apytram), all the target species

sharing the same guide species will participate and help each other

in fishing the reads. This also allows breaking the distance between

guide and target species.

4.2 CAARS integrates assembled transcripts into

families and builds gene phylogenies
CAARS belongs to a small group of pipelines [e.g. Agalma, Dunn

et al. (2013)] that explicitly aim at assembling data sets for phyloge-

nomic analyses providing homologous and orthologous sequences,

MSAs and gene trees from RNA-Seq data. However making use of

one or several distant guide species at the same time, using phyl-

ogeny for annotation and providing sets of one-to-one orthologs are

to our knowledge new features.

Other automatized methods that can assemble RNA-Seq data

using closely related helper species [Agalma, Dunn et al. (2013),

BRANCH, Bao et al. (2013) or FRAMA, Bens et al. (2016)] are

based on direct sequence similarities (mapping or alignment on

guide genome). However studies showed the negative correlation be-

tween annotation quality and divergence with guide species used for

trans-species assembly/annotation (Ockendon et al., 2016; Torres-

Oliva et al., 2016; Ungaro et al., 2017; Vijay et al., 2013). For in-

stance, Vijay et al. (2013) recommends not to map directly on the

guide genome when there is more than 15% of sequence divergence

between the target and the guide species, which corresponds to the

median nucleotide divergence in one-to-one orthologs between

mouse and Human (Church et al., 2009).

The phylogenetic framework used by CAARS allows identifying

redundant transcripts that have been assembled more than once,

and collapsing them or selecting the longest (the default). Gene trees

are also used by CAARS to identify incomplete transcripts by com-

parison with neighboring sequences and filter them out

(Supplementary Fig. S5). It remains to be seen how CAARS would

behave on datasets containing lots of recent duplicates; in particular,

the option to merge monophyletic transcripts from the same species

may create chimeric transcripts and should be used knowingly.

A limitation of CAARS remains the usage in input of MSAs.

However, nowadays, there are several public database containing

such MSAs [Orthomam (Ranwez et al., 2007), Hogenom (Penel

et al., 2009), PhylomeDB (Huerta-Cepas et al., 2014), TreeFam

(Finn et al., 2014), EnsemblCompara (Herrero et al., 2016)].

4.3 CAARS is robust and easy to install and use
CAARS is a complex pipeline combining existing software and

newly developed programs, and is built to be able to analyze

Fig. 3. CAARS outputs ready to use sets of one-to-one orthologs, inferred

from reconciled phylogenies. Each column corresponds to the number of

sets of one-to-one orthologs containing at least the species indicated by

circles. Empty circles correspond to target species (reconstructed with RNA-

Seq data), filled circles to guide or helper species (genome available)
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thousands of gene families at once. In particular, CAARS includes

Apytram (Rey et al., 2017), a multi-species and more accurate re-

implementation of TRAM (Johnson et al., 2013), which initially

introduced the idea of a trans-species assembler at the level of a sin-

gle gene. For robustness and traceability, and to enable recovery

upon error or iterative use, it uses the bistro library (Veber, 2017).

For an easy installation, we packaged CAARS into a Docker

image, so that there is no need to install any dependency once

Docker has been installed on the system, which can be a Mac,

Windows or Linux system. Further, by using Docker we ensure that

the intended versions of all tools of the pipeline will be used, irre-

spective of what is installed on the host machine system. The results

produced by CAARS are thus fully reproducible. Finally, the use of

Docker ensures only minimal penalties on computational efficiency.

However, users can also opt to install the full pipeline without using

Docker.

Here we demonstrated the use of CAARS at the whole transcrip-

tome level but the program can be used at a much smaller scale, for

a single gene family, or even for a single gene. CAARS may also be

used for integrating transcripts obtained from a pre-existing assem-

bly into gene families. This is easily feasible by switching off the step

of assisted reconstruction in the input option file (explained in the

tutorial on CAARS’s website).

Although CAARS is slower than the standard pipeline, it pro-

vides not only the assembly and annotation, but also gene family

alignments, reconciled genes trees and sets of orthologous genes. In

many cases, such data may be used directly for subsequent analyses.

5 Conclusion

We have introduced CAARS, a new pipeline for the comparative as-

sembly and annotation of transcripts in non-model species. Because

it operates within a phylogenetic framework, it can use both closely

related and distantly related species. In addition to annotated tran-

scripts, it also provides gene family alignments and trees built using

state-of-the-art methods, which can be directly used for downstream

analyses. On data coming from the Ensembl database, it compared

favorably to a pipeline combining Trinity and BLAST, and provided

more complete sets of orthologs than Ensembl. CAARS could there-

fore be used in a variety of situations where transcript assembly

needs to be of high quality, for instance for comparing gene expres-

sion or gene sequences across species.
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