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Abstract

The photoplethysmogram (PPG) obtained from pulse oximetry measures local variations of blood volume in tissues,
reflecting the peripheral pulse modulated by heart activity, respiration and other physiological effects. We propose an
algorithm based on the correntropy spectral density (CSD) as a novel way to estimate respiratory rate (RR) and heart rate
(HR) from the PPG. Time-varying CSD, a technique particularly well-suited for modulated signal patterns, is applied to the
PPG. The respiratory and cardiac frequency peaks detected at extended respiratory (8 to 60 breaths/min) and cardiac (30 to
180 beats/min) frequency bands provide RR and HR estimations. The CSD-based algorithm was tested against the
Capnobase benchmark dataset, a dataset from 42 subjects containing PPG and capnometric signals and expert labeled
reference RR and HR. The RR and HR estimation accuracy was assessed using the unnormalized root mean square (RMS)
error. We investigated two window sizes (60 and 120 s) on the Capnobase calibration dataset to explore the time resolution
of the CSD-based algorithm. A longer window decreases the RR error, for 120-s windows, the median RMS error (quartiles)
obtained for RR was 0.95 (0.27, 6.20) breaths/min and for HR was 0.76 (0.34, 1.45) beats/min. Our experiments show that in
addition to a high degree of accuracy and robustness, the CSD facilitates simultaneous and efficient estimation of RR and
HR. Providing RR every minute, expands the functionality of pulse oximeters and provides additional diagnostic power to
this non-invasive monitoring tool.
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Introduction

The ability to track multiple vital signs from a simple, low cost,

and easy to use non-invasive sensor is desirable to facilitate

physiological tele-monitoring. There is a clear need for reliable

and simple methods for tracking cardio-respiratory activity over

time to monitor patients in the intensive care environment or

patients at home with long-term disease with associated instability

in respiratory or cardiovascular function. Therefore, the remote

and automated monitoring of heart rate (HR) and respiratory rate

(RR) is an important field of research [1].

An abnormal RR is often an early sign of critical illness. For

example, an essential criterion integrated in guidelines for the

diagnosis of pneumonia in children (age 1–5 years) is the

assessment of an elevated RR (.40 breaths/min) [2]. However,

clinical measurement of RR has been shown to have poor

reliability and repeatability [3]. A reliable estimate of RR assessed

in an automated way is therefore crucial in the application of

remote tele-monitoring, where persons with no specialized training

are conducting the assessment. This would enable early support

for timely recognition and management of physiological deterio-

ration of high-risk patient groups [4].

Pulse oximetry is widely used in health facilities to monitor

physiological vital signs. It is based on the principle of

photoplethysmography (PPG), an optical technique to measure

local variations of blood volume in tissues. Two light-emitting

diodes (LEDs) illuminate the tissue and a photo detector detects

the light reflected by the tissue. The intensity of the light detected

varies with each heart beat as the blood volume changes over time

[5]. Blood oxygen saturation (SpO2) is calculated by measuring

the difference in absorption of oxygenated and deoxygenated

hemoglobin at two distinct wavelengths, red (660 nm) and infrared

(940 nm). Oxygenated blood preferably absorbs infrared light and

transmits red light and deoxygenated blood has the inverted

absorption characteristics [4].

The PPG is a complex signal composed of different but related

components. The most recognized PPG waveform component is

the peripheral pulse synchronized to each heart beat (AC

component). This AC component is superimposed and modulated

by a quasi DC component that varies slowly due to respiration,

vasomotor activity and vasoconstrictor waves [4]. In addition, an

autonomic response to respiration causes a variation of HR

synchronized with RR, referred to as respiratory sinus arrhythmia.

The PPG signal is also influenced by other mechanisms that are

not completely understood. However, it is generally accepted that
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it has potential to provide clinically useful information about the

cardio-vascular and respiratory system [6] and its SpO2 pattern

characterization has successfully applied to detect sleep apnea [7].

Well-established methods have been described for the estima-

tion of SpO2 and HR from the PPG [8], [9]. In addition, several

methods based on characterization of the PPG cycles morphology

in the time domain, using time-frequency analysis [10], [11], [12],

[13], [14], [15], [16] digital filtering [5], [17] and smart fusion [6]

have been proposed to estimate RR. However, this estimation of

RR in pulse oximetry is not yet commercially established. The

simultaneous estimation of HR and RR from the PPG signal

would provide a low processing overhead that is desirable for

simple and low cost physiological monitor. This would reduce vital

sign monitoring hardware to one peripheral sensor and one signal-

processing step.

Correntropy-based spectral density (CSD) has been found to be

particularly well suited for the characterization of modulated

signals. This method provides an improved spectral resolution

compared to conventional techniques like power spectral density

(PSD)and shows promise in the detection of modulated patterns

[18]. Correntropy is a generalized correlation function that

provides information on higher-order statistics. It is able to detect

nonlinearities that conventional techniques (based on second-order

statistics), may be unable to detect. Another attractive property of

the correntropy function is its robustness against impulsive noise

[19], [20].

In this paper we propose a novel algorithm based on CSD to

estimate both RR and HR simultaneously from the PPG signal

obtained from pulse oximetry. The initial application will be to

develop an easy-to-use portable device that measures multiple vital

signs. This algorithm is ideally suited to be implemented on the

Phone OximeterH, a mobile device that integrates a commercially

available and federal drug administration (FDA) approved pulse

oximeter (Xpod) with a mobile phone. The Phone OximeterH enables

the analysis of vital signs and intuitive display of information to

health care providers [21]. In addition, Phone Oximeter’s SpO2

characterization has been successfully applied to detect sleep

apnea [7].

This paper is organized as follows; the Materials and Methods

section describes the dataset used for the development and testing

of the newly developed algorithm to estimate RR and HR based

on CSD, and explains the algorithm with brief description of CSD

and PSD methods. The accuracy of the CSD-based algorithm is

presented in the Results section, which is followed by the

Discussion, Limitations and Conclusion sections.

Materials and Methods

CSD-based Algorithm
Conventional spectral analysis assumes a stationary signal and is

therefore unable to identify HR and RR changes over time. An

approach to account for such changes is to implement a time-

varying spectral analysis. Firstly, a sliding time window of 60 s or

120 s with 50% overlap is used to segment PPG signal into

segments assumed to be stationary and suitable for spectral

analysis. Secondly, the CSD is applied to the signal segments.

Thirdly, the HR is estimated by detecting the maximum frequency

peak within the cardiac frequency band and filtered from the

signal, and lastly the RR is estimated by detecting the maximum

frequency peak within the respiratory frequency band (see

Figure 1).

Correntropy spectral density. The CSD is a generalization

of the conventional power spectral density. It is based on the

Fourier transform of the centered correntropy function [18],

Pv(v)~
XN{1

m~{(N{1)

Vc(m):e{jvm, ð1Þ

where Vc(m) is the centered correntropy function, in which the

mean of the transformed data is subtracted so as to reduce the

effect of output DC bias. It is estimated by Vc(m)~V (m){ �VV
where Vc(m) is the correntropy function and �VV the correntropy

mean, defined as:

V (m)~
1

N{mz1

XN

n~m

k(x(n){x(n{m)), ð2Þ

V~
1

N2

XN

m~1

XN

n~m

k(x(n){x(n{m)): ð3Þ

The sigmoidal, Gaussian, polynomial, and spline kernels are the

most commonly used symmetric positive definite kernels, applied

to machine learning, function approximation, density estimation,

and support vector machine classification [22], [23]. The Gaussian

kernel function, applied in the present study, is given by

k(x(n){x(n{m))~
1ffiffiffiffiffiffi
2p
p

s
e

{
(x(n){x(n{m))2

2s2

h i
, ð4Þ

where s is the kernel parameter, here set using Silverman’s rule of

density estimation [19].

Correntropy, introduced by Santamaria et al. [19], is a

similarity measure defined in terms of inner products of vectors

in a kernel parameter space. It provides information on both the

time structure and the statistical distribution. In addition, the use

of kernel methods makes the correntropy computationally efficient

since it can be computed directly from the data.

Autoregressive (AR) spectral analysis based on the Yule-Walker

method was applied to improve spectral resolution compared to

conventional techniques [18]. The autoregressive coefficients were

estimated from the correntropy function, using the YuleWalker

equations [24]. The selection of model order is a trade-off between

the frequency resolution and the spurious peaks. The optimal

model order between 5 and 15 was selected using the minimal

description length criteria defined by Rissanen [25].

HR and RR estimation. The CSD over time shows both

respiratory and cardiac frequency peaks reflecting the RR and HR

respectively (Figure 2). These peaks can be tracked in the region of

the respiratory and cardiac frequency bands. Reference HR and

RR ranges were extracted from a review of observational studies

that used HR data from 143,346 children and RR data from 3,881

children (from 6 months to 18 years old) [26]. Based on 99th and

1st centiles for children and young adults, the HR could range

from 30 to 180 beats/min (0.5 to 3 Hz, respectively) and RR from

8 to 60 breaths/min (0.14 to 1 Hz, respectively [26]. The range in

adults is much more restricted but would be included in this range.

An extreme range may occur in critical illness, such as an elevated

HR in the presence of an arrhythmia or an elevated RR (w 40

breaths/min in children with pneumonia [2]) as an early indicator

of critical illness. However, those pathological or abnormal RR

and HR values will also be included in this extended HR and RR

ranges extracted from the review. Therefore, the maximum value

Respiratory & Heart Rate from PPG with Correntropy
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peak frequencies in the cardiac frequency band (0.5 to 3 Hz) and

in the respiratory frequency band (0.14 to 1 Hz) were automat-

ically extracted, reflecting HR and RR, respectively.

For improved resolution around the respiratory frequency peak,

the HR was filtered using a zero-phase 5th order low pass filter

with a cutoff frequency of 0.1 Hz below the cardiac frequency. In

addition, frequency peaks close to the secondary harmonics

around HR were excluded when an elevated RR (w 45 breaths/

min) were detected. An example of the RR and HR extracted

from the time varying CSD (Figure 2) is illustrated in Figure 3.

Power spectral density. Following the same concept a PSD-

based algorithm was implemented. For a parametric PSD, the

signal x(n) was modeled through an AR model by

x(n)~{
Xp

k~1

a½k�x(n{k)ze(n), ð5Þ

where e(n) denotes zero-mean white noise with variance s2
e , a½k�

the AR coefficients and p the model order. Once the autore-

gressive coefficients and the variance s2
e have been estimated, the

PSD of an autoregressive process is computed by means of

Px(v)~
s2

e

1z
Pp

k~1 a½k�:e{j:vkT
�� ��2 , ð6Þ

being T the sampling period. As for the CSD, the optimal model

order between 5 and 15 was selected using the minimal description

length criteria defined by Rissanen [25].

Simulation Database
To show certain performance properties of the algorithm a

simulated PPG signal was first produced. Respiration has three

different effects on the PPG waveform. The first and more

predominant effect is a shift in the baseline during each breath.

The second is a change of the amplitude of the pulse beats with

each breath which implies that the PPG signal is subject to

amplitude modulation (AM) [15]. The third effect is a variation of

HR due to an autonomic response to respiration and usually

decreases with age. Based on the first 2 effects for sake of

simplicity, the PPG signal was simulated using AM and a baseline

shift as follows:

x(n)~ (1zm cos (vrn)) cos (vcn)½ �zb(n), ð7Þ

where fc~vc=2p is the cardiac frequency, fr~vr=2p is the

respiratory frequency, m [ ½0,1� is the modulation index and b(n) is

the baseline shift synchronized with fr. One hundred outliers with

values between mean + 5 standard deviation of x(n) were

randomly added to the signal to simulate noise.

Capnobase Database
Ethics statement. All subjects were studied according to a

protocol approved by the University of British Columbia and

Children’s and Women’s Health Centre of British Columbia

Research Ethics Board. Informed and written consent to be part of

the research database was obtained for all subjects. For subjects

under 16 years of age, parental/guardian written consent was

obtained. Written assent was obtained for all subjects over the age

of 11 years.

Database. Capnobase is an on-line database that contains

physiological signals collected during simultaneously elective

surgery and routine anesthesia for the purpose of development

of improved monitoring algorithms in adults and children [27].

The signals were recorded from 59 children (median age: 8.7,

range 0.8–16.5 years) and 35 adults (median age: 52.4, range

26.2–75.6 years) receiving general anesthesia at the British

Columbia Children’s Hospital and St. Paul’s Hospital, Vancouver

BC, respectively. The recordings included ECG with a sampling

frequency of 300 Hz, capnometry with a sampling frequency of 25

Hz, and PPG with a sample frequency of 100 Hz. All signals were

recorded with S/5 Collect software (Datex-Ohmeda, Finland)

using a sampling frequency of 300 Hz (PPG and capnometry with

lower sampling rates were automatically up-sampled).

Capnobase contains a benchmark dataset with forty-two 8-min

segments from 29 pediatric and 13 adults cases containing reliable

recordings of spontaneous or controlled breathing. The capno-

metric waveform was used as the reference gold standard

recording for RR. A research assistant manually labeled each

breath in the capnogram and pulse peak in the PPG and validated

the derived instantaneous reference RR and HR. The beginning

and end of all artifacts in the PPG waveforms were also manually

labeled and almost 50% of the cases contained artifacts due to

movements or similar noise. Capnobase also contains a calibration

dataset with one hundred twenty-four 2-min segments randomly

selected from the remaining 52 cases. This dataset is particularly

challenging because it includes other disturbances such as cardiac

oscillations etc., which influence the respiratory induced param-

eters and it also contains substantially more movement artifacts

than the benchmark dataset. Signals with significant apnea have

Figure 1. Overview of the CSD-based algorithm. Initially the PPG
signal is segmented into windows (60 s or 120 s) with 50% of overlap. In
the subsequent step the CSD is applied to calculate the spectrum of the
windowed signals. The HR is estimated by detecting the maximum
frequency peak within the cardiac frequency band. The signal is then
low pass filtered and the RR is estimated by detecting the maximum
frequency peak within the respiratory frequency band.
doi:10.1371/journal.pone.0086427.g001

Respiratory & Heart Rate from PPG with Correntropy
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been excluded from the analysis. Datasets can be downloaded

from the on-line database, CapnoBase.org [27]. CSD-based

algorithm was optimized using the calibration dataset and then

validated using the benchmark dataset. Both, the calibration and

benchmark datasets with reference RR and HR have been

previously used to test RR estimation from PPG [6].

Algorithm Evaluation
The accuracy of the CSD-based algorithm was evaluated and

compared to other methods, using the un-normalized root mean

square (RMS) error. The RMS error was calculated for each

subject, considering all estimations over time:

RMS error~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(xref
i �xest

i )2

s
, ð8Þ

where n is the number of observations and xref
i and xest

i are the

reference and the estimated values, respectively. The median of

the instantaneous reference RR and HR were compared to the

estimations for each time window.

Calibration. The spectral resolution increases with longer

time-windows with a concomitant reduction in real-time perfor-

mance (clinicians are required to wait longer for each estimation).

To investigate the trade-off in window size, the accuracy of the

algorithm was evaluated with the calibration dataset, using time

windows of 60 s and 120 s with an overlap of 50%. The statistical

significance of the error with the different windows was evaluated

using Wilcoxon signed-rank test to compare related samples.

The choice of the kernel parameter (s) is trade-off between the

power of the respiratory peak and the spurious peaks. The power

of the respiratory peak and spurious harmonics decreases as s
increases [18]. The CSD-based algorithm’s sensitivity to s was

evaluated using the calibration dataset. The s calculated according

to Silverman’s rule (sSilverman) was used as a reference.

Validation. The calibrated algorithm was then validated

using the Capnobase benchmark dataset. All subjects and all signal

segments with mechanical or spontaneous breathing, including

those with artifacts, were analyzed. The median error and 1st and

3rd quartiles were calculated to account for a non-normal RMS

distribution. A Bland-Altman plot was also performed to compare

the estimated HR and RR to the reference rates.

In addition, the performance of our algorithm was compared to

previously proposed methods based on PPG cycles morphology

[6], time-frequency analysis [15], [7] and digital filtering [17],

using the Capnobase benchmark dataset. These methods have

been implemented according to the description included on these

papers.

A Wilcoxon signed-rank test for related samples using

Bonferroni correction for multiple comparisons was also applied

to evaluate the statistical significance of our algorithm’s improve-

ment. The normality of all distributions was tested using One-

Sample Kolmogorov-Smirnov test.

Results

CSD Output
The median RR error obtained with the CSD-based algorithm

applied to the calibration dataset was 4.2 breaths/min when using

60-s windows and 1.9 breaths/min when using 120-s windows.

The RMS error significantly (pv 0.05) decreased with longer

windows. A kernel size of (10sSilverman) reduced the spurious

harmonics and provided more accurate RR estimates (see Figure 4)

[19]. Therefore, a 10sSilverman was applied to the Capnobase

Benchmark dataset.

CSD shows two clear frequency peaks at HR and RR locations,

for both simulated and in-vivo signals (Figure 5 and 6). As reported

in our previous work [18], the AM effect is reflected in CSD

through a frequency peak at its true position. In comparison, the

AM in PSD is manifested as secondary harmonics surrounding the

cardiac frequency peak. Further, CSD is more robust to impulsive

Figure 2. Time-varying CSD of 8-min PPG signal. Both respiratory and cardiac frequency peaks reflect RR and HR, respectively. Respiratory
frequency peak is around 0.3 Hz (18 breaths/min) and cardiac frequency peak around 1.25 Hz (75 beats/min).
doi:10.1371/journal.pone.0086427.g002
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noise (see Figure 5.D and Figure 5.F, respectively) compared to the

PSD approach. This is because the Gaussian kernel makes

k(x(n){x(n{m))&0 when either x(n) or x(n{m) is an artifact.

Although the baseline shift is present in both PSD and CSD,

CSD provides a more robust respiratory modulation frequency

peak compared to the PSD (see Figure 5.C and Figure 5.E,

respectively). The enhanced modulation peak is also observed in

the in-vivo signals (Figure 6.F and Figure 6.G, respectively) where

the CSD analysis provides a clearer respiratory frequency peak

compared to the PSD.

Benchmark Accuracy Measurements
The CSD-based algorithm provided a significantly lower RR

error compared to the PSD-based algorithm (Table 1). Expanding

the permitted cardiac and respiratory frequency bands, increased

the total range of the errors (Figure 7). RR or HR misdetections

increased the RMS error considerably.

The median RR error significantly decreased (pv 0.05) with

longer time windows for using CSD (from 1.77 to 0.95 breaths/

min) and PSD (from 7.82 to 3.18 breaths/min) approaches.

However, the median error was not statistically different in

estimating HR with longer time windows.

A Bland-Altman plot (Figure 8) showed good agreement with a

HR bias of 0.18 and limits of agreement of 21.52 to 1.91, and a

RR bias of 21.1 and limits of agreement of 26.52 to 4.32.

The accuracy of the algorithm per subject is illustrated in

Figure 9, where the estimated RR and HR using a 60-s sliding

window and reference values for each subject are represented.

When analyzing the estimation for each time-window (Figure 10),

it can be observed that most of RR errors are accumulated at low

frequencies (v 15 breaths/min). However, there are some errors

located out of the normal range because of artifacts and the use of

extended respiratory and cardiac frequency bands. The number of

erroneous estimates was reduced when increasing the window

length, which is reflected by a lower error range when using 120-s

windows.

Table 1 illustrates the performance of a number of methods

using the Capnobase benchmark dataset. CSD-based method

provided the lowest RR error when using 120-s windows. A

Wilcoxon signed-rank test for related samples with Bonferroni

correction for multiple comparisons has shown the significant

improvement (pv0.05) of our algorithm when compared to PSD

and the methods proposed by [7] and [17].

Discussion

In this study we have presented a novel methodology to estimate

both RR and HR simultaneously from pulse oximetry based on

CSD. The performance of the algorithm has been validated

against a benchmark dataset using RMS error, comparing all

estimations with reference RR and HR rates manually labeled by

a research assistant. The algorithm has shown high accuracy and

robustness estimating RR and HR simultaneously from PPG, even

when the search is extended to account for pathological and/or

Figure 3. Time-varying estimated and manually labeled reference RR and HR. Estimated (solid blue with * markers) and manually labeled
(dotted red with+markers) reference RR in (A) and HR in (B). For this subject the RMS errors estimating RR and HR are 0.25 breaths/min and 0.35
beats/min, respectively.
doi:10.1371/journal.pone.0086427.g003

Respiratory & Heart Rate from PPG with Correntropy
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Figure 4. CSD sensitivity to the kernel parameter. CSD-based algorithm’s perfomance estimating RR is illustrated for the kernel values:
sSilverman, 10sSilverman, 100sSilverman and 1000sSilverman. The sSilverman is calculated by Silverman’s rule.
doi:10.1371/journal.pone.0086427.g004

Figure 5. CSD applied to a simulated signal. (A) Simulated signal with 0.2 Hz modulation respiratory frequency (12 breaths/min), 1 Hz cardiac
frequency (60 beats/min), and m~1, (B) same simulated signal with some outliers randomly added, (C) and (D) the CSD of the simulated signal with
and without outliers, and (E) and (F) the PSD of the simulated signal with and without outliers, respectively. CSD analysis provides a clearer and more
robust against outliers respiratory frequency peak than conventional PSD.
doi:10.1371/journal.pone.0086427.g005

Respiratory & Heart Rate from PPG with Correntropy
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abnormal rates to 8 to 60 breaths/min and 30 to 180 beats/min.

In addition to its accuracy and robustness, the RR error

significantly decreased when longer time windows were used.

Moreover to generalize our findings broad ranges of subjects

including children and adults, under controlled ventilation or

spontaneously breathing over a wide RR ranges were studied.

Using CSD for frequency estimation is preferable to conventional

PSD functions as it accounts for higher-order moments and is more

robust to outliers [20]. CSD is particularly useful in signals with

amplitude modulation like the PPG signal that was analyzed in this

study. CSD provides the modulation frequency at its actual location

along the frequency axis [18], instead of at locations of the

secondary harmonics surrounding the carrier frequency peak. The

Figure 6. CSD applied to an in-vivo signal. CSD and PSD performance applied to an in-vivo signal (1 min) of one infant subject: (A) reference HR
(dotted red line with . markers) and mean HR represented by a dotted grey line, (B) reference RR (dotted red line with . markers) and mean RR
represented by a dotted grey line, (C) ECG signal, (D) capnometry, (E) PPG signal, (F) CSD and (G) PSD applied to the PPG signal. In addition, the
average CSD and PSD spectrum of the database’s population is illustrated in the background on (F) and (G) respectively, where the cardiac
component is represented in dark grey and the filtered signal that corresponds to respiration in light grey.
doi:10.1371/journal.pone.0086427.g006

Respiratory & Heart Rate from PPG with Correntropy
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respiratory effect on the PPG respiration is usually present as a

baseline shift and an AM synchronized with each breath [15]. CSD

represents both baseline shift and respiratory AM component at the

same position, whereas a direct PSD of the signal provides only the

RR derived from the baseline shift at its real position (see Figures 5

and 6). Thus, in signals with a dominant AM component, CSD will

provide a more robust respiratory frequency peak.

The results demonstrate that the CSD is an appropriate

technique to provide simultaneous and efficient estimation of

RR and HR, and will permit to monitor of HR and RR non-

invasively using only a peripheral sensor. The relevance of this

algorithm from the clinical perspective is that it facilitates an

accurate identification of abnormal or pathological rates. Thus,

this promising algorithm will expand the functionality and

diagnostic power of pulse oximeters. A number of algorithms

Figure 7. Boxplot of RMS error. Boxplot of the (A) RR and (B) HR RMS error estimated using time windows of 60 s and 120 s and tracked around
extended RR (from 8 to 60 breaths/min) and HR (from 30 to 180 beats/min). 1st quartile, median, and 3rd quartile values are displayed as bottom,
middle and top horizontal line of the boxes. Whiskers are used to represent the most extreme values within 3 times the interquartile range from the
quartile. Outliers (data with values beyond the ends of the whiskers) were displayed as crosses.
doi:10.1371/journal.pone.0086427.g007

Table 1. RMS error estimating RR and HR with different methods.

Median (1st and 3rd quartile)

Methods RR-RMS error (breaths/min) HR-RMS error (beats/min)

CSD120 s 0.95 (0.27, 6.20) 0.76 (0.34, 1.45)

PSD120 s 3.18 (1.20, 11.3)* 0.58 (0.21, 1.17)

Karlen et al. [6] 1.56 (0.60, 3.15) 0.48 (0.37, 0.77)

Garde et al. [7] 3.5 (1.1, 11)* 0.35 (0.2, 0.59)

Shelley et al. [15] 1.91 (0.41, 7.01) n/a

Nakajima et al. [17] 7.47 (0.59, 10.6)* n/a

RMS error median (quartiles) estimating RR and HR using different methods. The statistical significant difference (pv0.05) of the RMS error obtained with the CSD-based
algorithm in comparison to other methods is indicated (asterisk *).
doi:10.1371/journal.pone.0086427.t001

Respiratory & Heart Rate from PPG with Correntropy
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based on the PPG signal morphology [13], [28] time-frequency or

spectral analysis [11], [12], [14], [15], [17] digital filtering [5],

[17], and complex demodulation [10] have been proposed to

detect RR from PPG. Most of these methods are restricted to

healthy ranges only and many are computationally expensive.

Moreover, most of these methods have been tested only in

controlled environments (research laboratories), and their robust-

ness to artifacts and other influences that are very common in the

ambulatory environment have not typically been demonstrated.

Therefore, some of these methods have been implemented and

applied to the same Capnobase benchmark dataset. CSD-based

algorithm has provided lower RR error (0.95 breaths/min) using

120-s windows. The main limitation of the methods proposed by

Shelley et al. [15] and Nakajima et al. [17] is that they restrict

their estimations to RR v 40 breaths/min.

The Smart Fusion method proposed by Karlen et al [6] is

computationally efficient and was evaluated in an ambulatory

environment. It combines the three respiratory induced variations

(frequency, intensity, and amplitude) using a mean calculation. This

method improved the robustness of the RR estimation, with a

Figure 9. Scatter plot, error per subject. Scatter plot showing the median value of estimated and reference values of (A) RR and (B) HR for each
subject using 60-s time window. The respiratory and cardiac frequency peaks are detected around the extended RR and HR range. Observations with
artifacts are included. The dotted line represents the optimal performance.
doi:10.1371/journal.pone.0086427.g009

Figure 8. Bland-Altman for HR and RR estimation. Bland-Altman plots for comparison of (A) HR and (B) RR to the reference HR and RR manually
labeled by the research assistant. The bias and 95% of limits of agreement are ploted in solid lines. It showed a bias of 0.18 and limits of agreement of
21.52 to 1.91 beats/min for the estimated HR versus reference HR and a bias of 21.1 and limits of agreement of 26.52 to 4.32 breaths/min for the
estimated RR versus reference RR.
doi:10.1371/journal.pone.0086427.g008
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median error of 1.56 breaths/min per subject. However, RR

estimation was only provided during periods that have an

agreement between the three methods, which significantly reduced

the number of estimations. The CSD-based algorithm on the other

hand, provides an estimation for each time window. Using the same

ambulatory dataset, our algorithm provided a median error of 1.77

breaths/min and 0.69 beats/min per subject, using a 60-s window.

Moreover, the CSD-based algorithm showed lower limits of

agreement compared to those reported using an acoustic respiratory

rate sensor applied to monitor RR in pediatric patients [29].

Limitations of the Study, Open Questions, and
Future Work

Although the algorithm is computationally efficient (around 50

ms per window), the limitation of our algorithm is that a minimum

window length of 60 s is required to obtain reliable estimations of

HR and RR, whereas the smart fusion could provide RR

estimations with segments of 16 s. This requirement reduces

real-time performance of the CSD-based algorithm, and decreases

the ability to rapidly detect changes such as the onset of apnea that

may be critically important in clinical applications. Moreover,

despite the promising results, large RR inaccuracies might still

occur when dealing with signals with artifacts. Therefore, further

research is needed to improve RR estimations. One possible

solution may be to combine both morphology-based [6], [30] and

CSD-based spectral analysis applied to PPG signal, to provide

accurate HR and RR estimations in real time. In addition, we

could combine our algorithm with the SpO2 pattern character-

ization [7] and provide a more robust apnea detector.

Despite its high accuracy on a per-subject basis (Figure 9), the

CSD analysis provided some incorrect values when the estimates

for each window were analyzed (Figure 10). The errors increased

the error range in RR and HR when extended RR and HR are

allowed, due to their overlap in the spectral domain (Figure 7).

Low frequency processes other than respiration and artifacts can

modify the PPG signal and become a confounding factor for

accurately assessing RR. Baseline changes, for example introduced

spurious peaks at very low frequencies, which distort and shift the

respiratory frequency peak, providing more estimation errors at

low RR. Due to data windows that contained artifacts, a few

incorrect estimations were located out of normal ranges.

For this study the RR and HR were estimated using extended

respiratory and cardiac frequency bands when picking the

maximum frequency peak (Figure 1). However, these bands could

be adjusted or optimized depending on the application. Subjects of

different ages, subjects during rest or exercise and critically ill or

healthy subjects would dictate the use of different frequency bands.

Our CSD-based algorithm detects the respiratory and cardiac

frequency peaks from the spectrum. However, including more

sophisticated approaches such as an hybrid median filter [31] or

optimizing the permitted RR and HR transitions will reduce

misdetections due to short time artifacts and baseline changes.

In spite of the promising results of the CSD-based algorithm on

the benchmark dataset, its accuracy should be validated with a

dataset that includes critically ill children with reduced peripheral

perfusion like pneumonia or shock.

Conclusion

The proposed algorithm estimates both RR and HR directly

from the same spectral analysis, without requiring demodulation of

the signal or PPG cycle detection and it is more robust to outliers

than conventional spectral analysis. Furthermore, it permits the

detection of an extended range of possible values that may be

associated with pathological clinical states. The implementation of

CSD will lead to pulse oximeters that could monitor RR and HR

on a per-minute basis with a delay of around 50 ms, expanding the

functionality and diagnostic power of this non-invasive monitoring

tool. Implementing this algorithm on the Phone OximeterH, will offer

the potential for an easy-to-use, intuitive and low-cost tele-monitor

that will provide accurate vital signs, especially in low-resource

settings. In addition, the combination of both morphology and

CSD-based algorithms could provide enhanced HR and RR

estimations with higher time resolution.

Figure 10. Scatter plot, error per time window. Scatter plot showing the estimated and reference values of (A) RR and (B) HR for each 60-s time
window (represented by blue +) and for each 120-s time window (represented by black *). The respiratory and cardiac frequency peaks are detected
around the extended RR and HR range. Observations with artifacts are included. The dotted line represents the optimal performance.
doi:10.1371/journal.pone.0086427.g010
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