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Few breakthroughs have been achieved in the treatment of lower-grade glioma (LGG) in
recent decades. Apart from the conventional pathological and histological classifications,
subtypes based on immunogenomics would provide reference for individualized treatment
and prognosis prediction. Our study identified four immunotypes of lower-grade glioma
(clusters A, B, C, and D) by bioinformatics methods in TCGA-LGG and two CGGA
datasets. Cluster A was an “immune-cold” phenotype with the lowest immune infiltration
and longest survival expectation, whereas cluster D was an “immune-rich” subtype with
the highest immune infiltration and poor survival expectation. The expression of immune
checkpoints increased along with immune infiltration degrees among the clusters. It was
notable that immune clusters correlated with a variety of clinical and immunogenomic
factors such as age, WHO grades, IDH1/2 mutation, PTEN, EGFR, ATRX, and TP53
status. In addition, LGGs in cluster D were sensitive to cisplatin, gemcitabine, and immune
checkpoint PD-1 inhibitors. RTK-RAS and TP53 pathways were affected in cluster D.
Functional pathways such as cytokine–cytokine receptor interaction, antigen processing
and presentation, cell adhesion molecules (CAMs), and ECM–receptor interaction were
also enriched in cluster D. Hub genes were selected by the Matthews correlation
coefficient (MCC) algorithm in the blue module of a gene co-expression network. Our
studies might provide an immunogenomics subtyping reference for immunotherapy
in LGG.
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INTRODUCTION

Lower-grade gliomas were previously regarded as World Health Organization (WHO) grade I and
grade II gliomas in contrast to high-grade gliomas. Nowadays, the concept of diffuse lower-grade
gliomas (LGGs), which refer to WHO grades II and III astrocytomas, oligodendrogliomas, and
oligoastrocytomas (Eckel-Passow et al., 2015; Zeng et al., 2018), was applied to better define the
slowly invasive and relatively indolent progression features. With a 10-year median survival, nearly
70% of LGG patients tend to gradually transform into high-grade glioma patients in which the tumor
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immune microenvironment (TIM) and genetic changes play vital
roles (Appolloni et al., 2019; Nejo et al., 2019). The prognosis of
LGG could hardly be predicted accurately by conventional
pathological and histological classifications; thus, new subtypes
based on immunogenomics are urgently required.

Classifications based on molecular and genetic markers had
been adapted since the 2016 WHO classification of the central
nervous system tumors (Louis et al., 2016) and were emphasized
in the 2021 version (Louis et al., 2021). Isocitrate dehydrogenase
(IDH) mutation plays an important role in altering the tumor
immune microenvironment. The decrease of PD-L1 in IDH
mutation gliomas means a strong T-cell activation (Han et al.,
2020). In LGG, oligodendroglioma and astrocytoma were further
classified based on 1p/19q co-deletion, p53 mutation, alpha-
thalassemia/intellectual disability syndrome X-linked (ATRX)
mutation, and telomerase reverse transcriptase (TERT)
promoter mutation in IDH1/2-mutant gliomas (Ohba et al.,
2020). The tumor microenvironment (TME) of glioma could
be delineated by infiltrating immunocytes and genetic landscapes.
It has been reported that the innate immune cells would be
manipulated and reprogrammed in the TME to facilitate the
tumorigenesis, progression, and spread and subsequently lead to
tumor immune evasion in gliomas (Zindl and Chaplin, 2010;
Hinshaw and Shevde, 2019). Tumor mutational burden (TMB),
which is closely correlated with immune infiltration, consists of
the base substitutions, insertion, or deletion mutations of the
whole exome. A study had classified LGG patients into two
groups based on TMB and found that the infiltration of B
lineage, CD4 T cells, CD8 T cells, neutrophils, macrophages,
and dendritic cells would lead to shorter overall survival along
with the high expression of immune checkpoints PD-1 and
CTLA-4 (Yin et al., 2020).

Immune checkpoint inhibitors had promising therapeutic
effects in several tumors (Lipson et al., 2015; Emens et al.,
2017). The inhibition of PD-1 and CTLA-4 could notably
enhance immunosurveillance and prolong the survival time in
mouse glioma models (Wainwright et al., 2014; Xu et al., 2020).
However, the clinical application remains challenging because of
the “cold phenotype” of glioma (Qi et al., 2020). Our study would
seek for the most suitable immunotyping for immune checkpoint
blocking therapy.

Here, four immune clusters of LGG based on The Cancer
Genome Atlas (TCGA) immune datasets were identified and then
verified in two Chinese Glioma Genome Atlas (CGGA) datasets.
The immune cell infiltration features, hub genes, potential drugs,
and prognosis were studied by bioinformatics methods. This
study might offer reference for immunogenomics subtyping
for individualized LGG therapy.

METHODS

Data Processing
RNA-seq data (level-3, HTseq-FPKM) and clinical information
of lower-grade glioma (LGG, grade II–III) samples were obtained
from The Cancer Genome Atlas (TCGA) dataset. A total of 481
samples were finally selected after removing samples with no

survival state, no WHO grade, recurrent tumor, reduplicated
sequencing, and whose survival time were less than 1 day. In
addition, RNA-seq and clinicopathological data were obtained
from the Chinese Glioma Genome Atlas (CGGA) website as the
validation set. A total of 332 samples with complete survival
information were chosen from the CGGA-693 dataset (CGGA-
LGG-1) and 162 samples were obtained from the CGGA-325
dataset (CGGA-LGG-2). The batch effect correction was
performed by the R package termed “SVA.”

Identification of Immune-Related Clusters
in Lower-Grade Gliomas
Single-sample Gene Set Enrichment Analysis (ssGSEA) was
conducted in the three datasets based on the expression level
of 29 immunity-associated signatures by the R package “GSVA.”
Consensus clustering was then applied to define the immune
subgroups based on the ssGSEA scores by the
“ConsensusClusterPlus” package in R. The K-means clustering
algorithm was performed with 100 resampling iterations by
random selection of 80% of the total samples to ensure the
clustering stability. The best cluster number was determined
by the consensus matrix (CM) heat maps, cumulative
distribution function (CDF) curves, and delta area score of
CDF curves. A principal component analysis (PCA) was used
to illustrate the reliability of optimal methods. Thorsson et al.
(2018) had identified six immune function subtypes by an
extensive immunogenomic analysis: wound healing (C1), IFN-
γ dominant (C2), inflammatory (C3), lymphocyte depleted (C4),
immunologically quiet (C5), and TGF-β response (C6). A Sankey
plot was applied to visualize the relationships between our four
clusters and the six identified immune functional subtypes
mentioned previously.

Features of Immune Cell Clusters in the
Immune Microenvironment of Lower-Grade
Gliomas
The Estimation of Stromal and Immune cells in Tumors using
Expression data (ESTIMATE) algorithm was used to evaluate the
LGG microenvironment (Yoshihara et al., 2013). Immune scores
and stromal scores were calculated to reveal the abundance of
infiltrating immune and stromal cells. ESTIMATE scores were
calculated for reflecting non-tumor composites. Tumor purity
was inferred by the aforementioned scores. The Kruskal–Wallis
test was used to compare differences in multiple clusters. Heat
maps were drawn by the “pheatmap” package in R.

Estimation of Immune Cell Infiltration
TheMicroenvironment Cell Populations-counter (MCP counter)
algorithm (Becht et al., 2016) was used to quantitate the
abundance of immunocytes in heterogeneous tissues by the
“MCPcounter” R package. The absolute abundances of two
stromal cells and eight immune cells were evaluated by
immune cell scores, including T cells, CD8 T cells, cytotoxic
lymphocytes, B lineage, NK cells, monocytic lineage, myeloid
dendritic cells, neutrophils, endothelial cells, and fibroblasts.
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Prediction of Potential Drugs
The SubMap analysis (Hoshida et al., 2007; Roh and Chen, 2017)
from Gene Pattern (https://www.genepattern.org/) was used to
predict the response to immune checkpoint blockade (anti-PD-1
and anti-CTLA-4 immunotherapy). In addition, the chemotherapy
response was predicted based on the public pharmacogenomics
database termed “Genomics of Drug Sensitivity in Cancer” (GDSC,
http://www.cancerrxgene.org). The half-maximum inhibitory
concentration (IC50) of each patient was estimated by the R
package “pRRophetic” with Ridge’s regression, and the accuracy
of the prediction was estimated by a 10-fold cross-validation. The
IC50 of each sample in TCGA dataset was calculated based on the
predictionmodels of bleomycin and doxorubicin, and cisplatin and
gemcitabine.

Gene Set Enrichment Analysis
The GSEA algorithm was used to investigate the biological
functions and pathways of clusters A and D, with C2:CP
KEGG gene sets from MSigDB as the reference gene sets.
False discovery rate (FDR) < 0.05 was the screening threshold.

Weighted Gene Co-Expression Networks
Analysis and Protein–Protein Interaction
Networks Analysis
A weighted gene co-expression networks analysis (WGCNA)
algorithm was used to mine the synergistically expressed gene

modules. Immune-related genes from the ImmPort dataset
(https://www.immport.org/) were classified into different
modules which were significantly correlated with the four
immune clusters by the R package “WGCNA.” Samples were
clustered by a hierarchical clustering algorithm implemented in
the R function “hclust.” The soft thresholding power β = 3 was
selected by the R function “pickSoftThreshold” (scale free R2 = 0.
85). The expression matrix was converted into the adjacent matrix
and then into the topological matrix for gene clustering. An average
linkage hierarchical cluster approach was used to cluster genes into
a dendrogram. The STRING database (Szklarczyk et al., 2011) was
explored to construct the protein–protein interaction (PPI)
network. In the PPI gene network of the target module, hub
genes were the top ten genes ranked by the MCC algorithm of
“cytoHubba” plugin in Cytoscape 3.8.0. In addition, the survival
curves based on the best cut-off value of hub genes were drawn by
the “survminer” package in R.

Statistical Analysis
Student’s t-test was applied for normal distributions, and the
Mann–Whitney U-test was performed for nonparametric
distribution. Chi-square or Fisher’s exact tests were used for
categorical data. Kaplan–Meier curves and log-rank tests were
used to evaluate the survival time of different immune clusters.
The nonparametric Kruskal–Wallis (KW) test was used to
analyze the difference in IC50 in different clusters. The
Benjamini–Hochberg procedure was applied to control the

FIGURE 1 | Consensus clustering results in TCGA-LGG cohorts. (A) Consensus clustering matrix of k = 4 as the optimal cluster number. (B) CDF curves of the
consensus score from k = 2–9. (C) Delta area under the CDF curve. (D) Principal component analysis for the ssGSEA scores of four clusters. Each subgroup was
distinguished by different colors. (E) Sankey diagram to visualize the relationships between our four clusters and the six identified immune function subtypes.
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false discovery rate (FDR) for multiple testing. p < 0.05 was
considered statistically significant (* represented p < 0.05, **
referred p < 0.01, and *** referred p < 0.001).

RESULTS

Identification of Four Immune-Related
Clusters in Lower-Grade Gliomas
Unsupervised consensus clustering was applied to explore a novel
immune classification of LGGs based on the ssGSEA scores of
TCGA dataset. The optimal clusters number was found to be four

with maximal consensus within clusters and minimal ambiguity
among clusters (Figures 1A–C). PCA verified that the ssGSEA
scores could completely be distinguished into four subtypes
which were referred to as cluster A, cluster B, cluster C, and
cluster D in TCGA dataset (Figure 1D). The clustering results
were the same in CGGA-1 (Supplementary Figure S1A) and
CGGA-2 datasets (Supplementary Figure S1B). The Sankey
diagram revealed the immune function characteristics of the
four clusters (Figure 1E). The majority of clusters A and B
were related to the C5 function of “Immunologically Quiet.”
Cluster D was related to the C4 function of “Lymphocyte
Depleted.”

FIGURE 2 | Immune characteristics of the four clusters in the TCGA dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.
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Landscape of the Four Clusters in the
Tumor Immune Environment in
Lower-Grade Gliomas
We identified four immune clusters and their immune characteristics
in TCGA, CGGA-1, andCGGA-2 datasets (Figures 2A, 3A, 4A) were
shown in the heat maps. Cluster D showed the highest degree of
immune infiltration and it was followed by clusters C, B, and A.
Cluster D was considered the “immune-rich” phenotype with the
highest enrichment scores and the least tumor purity while cluster A
was the opposite which was regarded as an “immune cold” phenotype
(Figures 2A–D, Figures 3A–D, Figures 4A–D). Apart from that,
clusters A and B could be seen as a “low-immune infiltration”
subgroup whereas clusters C and D were considered as a “high-

immune infiltration” subgroup. The expression of the immune
checkpoint genes PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2
(PD-L-2), CTLA-4, HAVCR2, and LAG3 which played a vital role
in the oncogenesis and progression of LGG were expressed in the
following order: D > C > B > A (Figures 2E–J, Figures 3E–J,
Figures 4E–J).

Clinical Features and Gene Mutation
Characteristics of the Four Immune
Clusters
To evaluate the clinical features and gene mutation
characteristics among the four immune clusters, age, gender,

FIGURE 3 | Immune characteristics of the four clusters in the CGGA-1 dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8948655

Zhu et al. Immune Clusters in Lower-Grade Glioma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


tumor grade, IDH1 (R132) status, IDH2 R172 status, PTEN
status, EGFR status, ATRX status ,and TP53 status in TCGA
dataset were counted (Table 1; Figure 5). In clusters A, C, and
D, people aged more than 40 years accounted for more
proportion, whereas those younger than 40 years were more
common in cluster B. WHO grade II glioma tended to be
common in the “low-immune infiltration” subgroup (clusters
A and B), whereas the “high-immune infiltration” subgroup
(clusters C and D) counted more in WHO grade III glioma. The
frequency of IDH1 (R132) mutation was much higher in the
“low-immune infiltration” subgroup than the “high-immune
infiltration” subgroup. The frequency of PTEN and EGFR

mutations was significantly higher in cluster D, which had
the highest immune infiltration. In clusters B and C, which
had mild immune infiltration changes, ATRX mutation
frequencies were higher than those in clusters with extreme
immune infiltration changes (clusters A and D). TP53 mutation
was common in cluster B. Gender and IDH2 (R172) mutation
status were not significant covariates in the immune
classification. In addition, the “low-immune infiltration”
subgroup (clusters A and B) showed longer overall survival
than the “high-immune infiltration” subgroup (clusters C and
D) (Figure 6), indicating that immune infiltration of LGG
played a negative role in the prognosis.

FIGURE 4 | Immune characteristics of the four clusters in the CGGA-2 dataset. (A) Heat map of the four immune clusters based on ssGSEA scores. (B) Stromal
scores, (C) immune scores, and (D) tumor purity of different clusters. (E–J) Violin plots for the immune checkpoint gene expressions of PDCD1, CD274, PDCD1LG2,
CTLA-4, LAG3, and HAVCR2 in different clusters.
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TABLE 1 | Correlations among the four immune clusters and clinical characteristics in the TCGA-LGG dataset.

Covariates Cluster Total A B C D p value

Age <40 221 (45.95%) 84 (43.3%) 85 (54.49%) 28 (45.16%) 24 (34.78%) 0.035
≥40 260 (54.05%) 110 (56.7%) 71 (45.51%) 34 (54.84%) 45 (65.22%)

Gender FEMALE 214 (44.49%) 95 (48.97%) 60 (38.46%) 28 (45.16%) 31 (44.93%) 0.2738
MALE 267 (55.51%) 99 (51.03%) 96 (61.54%) 34 (54.84%) 38 (55.07%)

Grade G2 230 (47.82%) 107 (55.15%) 83 (53.21%) 28 (45.16%) 12 (17.39%) 0
G3 251 (52.18%) 87 (44.85%) 73 (46.79%) 34 (54.84%) 57 (82.61%)

IDH1 R132 status Mutation 368 (76.51%) 161 (82.99%) 135 (86.54%) 37 (59.68%) 35 (50.72%) 0
Wild 113 (23.49%) 33 (17.01%) 21 (13.46%) 25 (40.32%) 34 (49.28%)

IDH2 R172 status Mutation 20 (4.16%) 12 (6.19%) 6 (3.85%) 1 (1.61%) 1 (1.45%) 0.2292
Wild 461 (95.84%) 182 (93.81%) 150 (96.15%) 61 (98.39%) 68 (98.55%)

PTEN status Mutation 29 (6.03%) 5 (2.58%) 8 (5.13%) 4 (6.45%) 12 (17.39%) 2.00E-04
Wild 452 (93.97%) 189 (97.42%) 148 (94.87%) 58 (93.55%) 57 (82.61%)

EGFR status Mutation 30 (6.24%) 7 (3.61%) 6 (3.85%) 6 (9.68%) 11 (15.94%) 0.001
Wild 451 (93.76%) 187 (96.39%) 150 (96.15%) 56 (90.32%) 58 (84.06%)

ATRX status Mutation 174 (36.17%) 45 (23.2%) 83 (53.21%) 26 (41.94%) 20 (28.99%) 0
Wild 307 (63.83%) 149 (76.8%) 73 (46.79%) 36 (58.06%) 49 (71.01%)

TP53 status Mutation 216 (44.91%) 66 (34.02%) 92 (58.97%) 29 (46.77%) 29 (42.03%) 1.00E-04
Wild 265 (55.09%) 128 (65.98%) 64 (41.03%) 33 (53.23%) 40 (57.97%)

FIGURE 5 | Heat map of clinical features and gene mutation. Characteristics of the four immune subtypes in the TCGA-LGG dataset.

FIGURE 6 | Kaplan–Meier survival curves of the four clusters in the (A) TCGA dataset, (B) CGGA-1 datasets, and (C) CGGA-2 datasets.
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Comparison of Immune and Stromal Cells
Among the Four Clusters
To explore the differential distribution of immunocytes and
stromal cells in tumor immunity clusters, the MCPcounter
algorithm was used to calculate the contents of two stromal
cells and eight immune cells in the four clusters in TCGA,
CGGA-1, and CGGA-2 datasets (Figures 7A–C). Immune cell
scores of CD8 T cells, B lineage, NK cells, myeloid dendritic
cells, endothelial cells, and fibroblasts in the “high-immune
infiltration” subgroup (clusters C and D) were significantly
higher than those in the “low-immune infiltration” subgroup
(clusters A and B). Then, the correlation landscape of
immunocytes was characterized to compare the relative
subpopulations of infiltrating immune cells and immune
scores among the four cluster patterns (Figure 7D). Cox
regression analysis of the 10 immune cells in TCGA, CGGA-
1, and CGGA-2 datasets are shown in Supplementary Figure
S2, revealing the prognostic risk factors of infiltrating
immunocytes.

Therapeutic Potential of Different Immune
Clusters
We compared the expression profiles of the four immune
clusters in TCGA datasets by the Subclass Mapping
algorithm which assessed the response to anti-PD-1 and anti-

CTLA-4 therapies. A significant correlation was observed when
comparing cluster D with the PD-1 response group (Bonferroni-
corrected p = 0.001, Supplementary Figure S3A). It revealed
that cluster D might have a better response to anti-PD-1 therapy
while no significant correlation of anti-CTLA-4 therapy was
observed in all the clusters. The “pRRophetic” algorithm was
applied to evaluate the sensitivity of four common chemical
drugs: cisplatin, bleomycin, doxorubicin, and gemcitabine for
the four immune clusters. A lower IC50 value would indicate a
better sensitivity in the prediction models. For bleomycin and
doxorubicin, the “low-immune infiltration” subgroup (clusters
A and B) was more sensitive than the “high-immune
infiltration” subgroup (clusters C and D). For cisplatin and
gemcitabine, cluster D was the most sensitive and cluster A was
the least sensitive compared with the other clusters (Figures
8A–D). Moreover, to compare the accuracy of the four immune
clusters, prognosis signatures in other references were used to
compare the C-index. The results were also exciting: in the
C-index for predicting the LGG survival possibility, our
immune clusters showed better predictive value than other
signatures (Maimaiti, Aierpati et al., 2022; Maimaiti, Aierpati
et al., 2021) (0.813 > 0.774 > 0.712 > 0.662, Supplementary
Figure S3B).

Gene Set Enrichment Analysis
A GSEA analysis was performed to screen the correlated
biological pathways in immune clusters A and D. Cluster D

FIGURE 7 | Immune cells scores of the four subtypes in 10 human immunocytes using the MCPcounter algorithm. (A) TCGA, (B) CGGA-1, and (C) CGGA-2
cohorts showed significantly different immune cell populations among the four subtypes. (D) Intrinsic correlation between infiltrating immunocytes and immune scores.
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was enriched in Allograft rejection, complement and
coagulation cascades, cytokine–cytokine receptor interaction,
graft versus host disease, antigen processing and presentation,
cell adhesion molecules (CAMs), ECM-receptor interaction,
and focal adhesion in TCGA, CGGA-1, and CGGA-2
datasets. Enrichment results of cluster A were not significant
under the strict FDR <0.05 threshold in all the three datasets
(Figure 9).

Mutation Landscapes in Lower-Grade
Gliomas
Tumor mutational burden of coding errors is reported to
have a certain correlation with the tumor immune
microenvironment. We explored this correlation of
different immune clusters in TCGA-LGG datasets (Figures
10A–D). The frequency of IDH1 missense mutations in the
“low-immune infiltration” subgroup was higher than that in

FIGURE 8 | Sensitivity of chemotherapeutics in different immune clusters. Differences in IC50 of (A) bleomycin, (B) cisplatin, (C) doxorubicin, and (D) gemcitabine
were estimated among the four immune clusters.

FIGURE 9 |GSEA enrichment analysis for clusters A and D in (A) TCGA, (B) CGGA-1, and (C) CGGA-2 datasets. No significant enrichment was found in cluster A
with a threshold of FDR <0.05.
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the “high-immune infiltration” subgroup (80 and 87% in
clusters A and B, 61 and 43% in clusters C and D). TP53
mutations were higher in clusters B (52%) and C (49%) than
those in clusters A (29%) and D (36%). Meanwhile, most of
them were missense mutations. The CIC missense mutation
was high in cluster A. ATRX mutations including missense
mutations, nonsense mutations, and multi-hit were at a high
frequency in clusters B and C. TTN, EGFR, and ATRX
mutations were common in the “high-immune infiltration”
subgroup. PTEN, KEL, and PLK3CA mutations were higher
in cluster D. the TP53 pathway was highly affected in cluster

A and RTK-RAS and TP53 pathways were affected in cluster
D (Figures 10E,F).

Weighted Gene Co-Expression Network
Analysis and the Immune Characteristics of
Hub Genes
The WGCNA networks of immuno-related genes with immune
infiltrating clusters were constructed. The optimal soft
thresholding power β was selected (Figures 11A, Figure 9)
and three modules were obtained (Figures 11B,C). Red, blue,

FIGURE 10 |Mutation landscapes of immune clusters. (A)Gene mutation landscape in cluster A, (B) cluster B, (C) cluster C, and (D) cluster D. Pathways affected
in (E) cluster A and (F) cluster (D).
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and green modules were positively correlated with the “high-
immune infiltration” subgroup (clusters C and D) and negatively
correlated with the “low-immune infiltration” subgroup (clusters
A and B), p < 0.05 was used as the threshold. The turquoise
module was positively correlated with clusters C and D and
negatively correlated with cluster A. The brown module was
positively correlated with cluster A and negatively correlated with
clusters B and D. Pink and yellow modules were positively
correlated with cluster B and negatively correlated with cluster
A. In the blue module, which was most correlated with cluster D,
the top ten hub genes selected by the MCC algorithm in the PPI
network were CD28, CD8A, CSF2, GZMB, IFNG, IL15, IL2,
IL2RA, IL7R, and PRF1(Figure 11D). Hub genes were positively
correlated with most of the immune cells and immune functions,
such as HLA, CCR, etc., (Figure 11E). A survival analysis showed

that high expression of CD28, CD8A, IFNG, IL2RA, IL7R, IL15,
and PRF1 had a poor prognosis whereas a better prognosis was
found in IL2 and GZMB (Figure 12).

DISCUSSION AND CONCLUSION

The prognosis of LGG patients had few significant improvements
in the past 30 years. Individualized therapeutic schedules were
because of the natural intrinsic heterogeneity of LGG (Deng et al.,
2020). Li et al. (2021) provided a metabolic signature-based
subgrouping method for LGG and Zhou et al. (2021) divided
LGG into three clusters based on a tertiary lymphoid structure to
provide potential treating options. Since the existence of an
afferent system between the brain and peripheral immune

FIGURE 11 |Weighed co-expression analysis of immuno-related genes in the TCGA cohort. (A) Selection of soft thresholding power (B)Gene dendrogram and the
correlation modules. (C) Heat map of module-trait relationships. (D) Hub genes and their internal correlation network. (E) Correlation heat map for hub genes and
immune gene sets.
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system had been demonstrated (Qi et al., 2020), immunotherapy
would be a promising strategy for its ability to penetrate the
blood–brain barrier (Xu et al., 2020). Wu et al. (2020) classified
diffuse LGGs into three immunological subtypes and found that
the high lymphocytic and macrophage M2 infiltrate subtype
indicated a worse prognosis. The immune microenvironment
of LGG remained complicated. We studied the correlations
between immunogenomic changes and immunity infiltration
features in LGG to identify proper immune clusters and hub
genes for precision treatment.

Our study identified four immune clusters in TCGA dataset
and they were verified in two CGGA datasets. Cluster A, which
had the lowest immune infiltration, was regarded as an “immune
cold” phenotype. Clusters A and B could be considered a “low-
immune infiltration” subgroup and both of them were closely
correlated with “Immunologically Quiet” (C5) functional
subtypes. Clusters C and D were considered the “high-
immune infiltration” subgroup when cluster D was inferred as
an “immune-rich” phenotype with the highest immune
infiltration degree. In general, the expression of immune
checkpoints such as PDCD1, CD274, PDCD1LG2, CTLA-4,
LAG3, and HAVCR2 increased along with the order (cluster
D > C > B > A), indicating higher hazards of immune escape in
high-immune infiltration clusters. LGGs in clusters A and B
tended to have a lower WHO grade, higher IDH1 mutation,
and better overall survival than those in the “high-immune
infiltration” subgroup. The LGGs in “immune-rich” cluster D
showed significant PTEN and EGFR mutation frequencies and
notable sensitivity to anti-immune checkpoint PD-1 therapy and
the chemotherapy of cisplatin and gemcitabine. On the contrary,
LGGs in the “low-immune infiltration” subgroup (clusters A and
B) were more sensitive to bleomycin and doxorubicin. The results
would provide potential individualized treatment
recommendations for LGGs. Cluster D was enriched in KEGG
pathways such as cytokine–cytokine receptor interaction, antigen

processing and presentation, cell adhesion molecules (CAMs)
and ECM-receptor interaction, reminding us that different
immunophenotypes may be caused by changes in the
aforementioned pathways. Meanwhile, RTK-RAS and TP53
pathways were affected in cluster D. In the blue module of
WGCNA networks, CD28, CD8A, CSF2, GZMB, IFNG, IL15,
IL2, IL2RA, IL7R, and PRF1 were selected as the hub genes which
were closely correlated with most of the immune cells. Seven of
them were correlated with a poor prognosis, two of them were
protective prognostic factors and one of them had no significant
association with prognosis.

An immune clustering analysis of our study indicated that
high-immune infiltration would lead to a worse prognosis with
immune checkpoint activation. This distinct feature might result
from the immunocyte recoding by cytokines and chemokines in
the LGG microenvironment (Hinshaw and Shevde, 2019).
Immunocytes were turned into tumor-promoting phenotypes
and conversely promoted tumor growth and immune evasion.
In addition, the relatively lower IDH1mutation and higher PTEN
and EGFR mutation frequency in high immune infiltration
clusters also supported the aforementioned inference.
Although LGG patients in cluster D would suffer poor
prognosis expectations, they might benefit from immune
checkpoint PD-1 inhibitors and chemotherapeutic drugs of
cisplatin and gemcitabine. Cisplatin and gemcitabine had
shown encouraging tolerance and efficacy in clinical trials
(Gertler et al., 2000; Massimino et al., 2002; Massimino et al.,
2005; Hall et al., 2019). The TME in LGG appears to be different
from other solid tumors because of the presence of the
blood–brain barrier or properties of macrophages. In the
present research, the M2-type macrophage was significantly
enriched in primary LGG, and the proportions of
macrophages can still constitute up to 50% in the TME of
LGG. Some researchers demonstrated that high levels of M2-
type macrophages were defined as the adverse prognostic factors

FIGURE 12 | Overall survival analysis of (A) CD8A, (B) CD28, (C) CSF2, (D) IFNG, (E) IL2RA, (F) IL15, (G) IL7R, (H) PRF1, (I) IL2, and (J) GZMB.
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in LGG. Conversely, high levels of M1-type macrophages and
CD8+T cells were identified as protective factors. Apart from
that, the revolution of drug delivery methods in nanoplatforms
and liposomes had shown a promising future to precisely deliver
the individualized chemotherapeutic drugs for LGGs (Shein et al.,
2016; Renault-Mahieux et al., 2021; Wang et al., 2021). Most of
the hub genes correlated with cluster D had the function of
immunocyte activation. CD28 is involved in T-cell activation, cell
proliferation induction, and T-cell survival. CD8 mediates
efficient cell–cell interactions within the immune system.
IFNG can activate effector immune cells and enhance antigen
presentation. IL2RA is involved in the regulation of immune
tolerance by controlling regulatory T cells. IL7R mediates the
proliferation of lymphoid progenitors. IL15 stimulates the
proliferation of T-lymphocytes. PRF1 plays a key role in
defence against neoplastic cells. IL2 can stimulate B-cells,
monocytes, lymphokine-activated killer cells, natural killer
cells, and glioma cells. GZMB mediates target cell death and
CSF2 promotes the production, differentiation, and function of
granulocytes and macrophages. Although the majority of hub
genes play a role in tumor promotion in the microenvironment of
LGG, which was consistent with the poor prognosis expectation
in cluster D, two hub genes termed IL2 and GZMB exerted a
protective role in prognosis. It revealed the complex inherent
interconnections of immunogenomic changes.

There are still some limitations in our study. First, we were
unable to conduct an external validation in native cohorts.
Second, we only used the ssGSEA and MCPcounter
algorithms to corroborate our findings, and we will need to
conduct assays to confirm our conclusion in the future. In
conclusion, immunotyping of LGGs revealed the heterogeneity
of the immune microenvironment and genomics changes. Our

classifications would be beneficial for individualized prognostic
prediction and anti-tumor therapy.
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