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Abstract

Compelling evidence suggests the need for more data per individual to reliably map the functional 

organization of the human connectome. As the notion that ‘more data is better’ emerges as a 

golden rule for functional connectomics, researchers find themselves grappling with the challenges 

of how to obtain the desired amounts of data per participant in a practical manner, particularly for 

retrospective data aggregation. Increasingly, the aggregation of data across all fMRI scans 

available for an individual is being viewed as a solution, regardless of scan condition (e.g., rest, 

task, movie). A number of open questions exist regarding the aggregation process and the impact 

of different decisions on the reliability of resultant aggregate data. We leveraged the availability of 

highly sampled test-retest datasets to systematically examine the impact of data aggregation 

strategies on the reliability of cortical functional connectomics. Specifically, we compared 

functional connectivity estimates derived after concatenating from: 1) multiple scans under the 

same state, 2) multiple scans under different states (i.e. hybrid or general functional connectivity), 

and 3) subsets of one long scan. We also varied connectivity processing (i.e. global signal 

regression, ICA-FIX, and task regression) and estimation procedures. When the total number of 

time points is equal, and the scan state held constant, concatenating multiple shorter scans had a 

clear advantage over a single long scan. However, this was not necessarily true when 

concatenating across different fMRI states (i.e. task conditions), where the reliability from the 

aggregate data varied across states. Concatenating fewer numbers of states that are more reliable 

tends to yield higher reliability. Our findings provide an overview of multiple dependencies of data 

concatenation that should be considered to optimize reliability in analysis of functional 

connectivity data.
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1. Introduction

Functional connectomics is a mainstream modality for mapping brain organization (Smith et 

al., 2013; Greicius et al., 2003; Power et al., 2014; Sporns 2013; Yeo et al., 2011). Initially 

focused on the demonstration of findings at the population-level, the past decade has 

witnessed a burgeoning literature focused on the delineation of differences among 

individuals and clinical groups (Laumann et al., 2015; Braga and Buckner 2017; Fornito and 

Bullmore 2015). Recognizing concerns about reproducibility stemming from a reliance on 

small samples, researchers have raised the bar for sample size, leveraging the growing 

availability of public datasets to achieve this goal, for example, Human Connectome Project, 

UK Biobank, 1000 Functional Connectomes, Consortium for Reliability and 

Reproducibility, etc. (Biswal et al., 2010; X. N. Zuo et al. 2014; Van Essen et al. 2013; 

Biobank 2014). Unfortunately, the sample size is not the sole consideration for efforts to 

achieve reproducible findings in studies of individual and group-differences. The reliability 

of the measures obtained directly impacts the sample sizes required and the likelihood of 

replication (X.-N. Zuo et al., 2019; Matheson 2019). Recognizing this reality, researchers 

are increasingly emphasizing the need to obtain larger amounts of data per individual, as 

reliability appears to be directly related (Gordon et al., 2015; Noble et al., 2017; Xu et al., 

2016; Birn et al., 2013).

While the need for more data per individual appears to be straight-forward, how to achieve 

the desired amount of data is not. It is not always feasible to obtain more data due to 

practical limitations of a crowded scan protocol, or tolerability of the scanning environment 

(Meissner et al., 2020; Menon et al., 1997; Krause et al., 2019). Additionally, this solution 

does little to address questions about how to improve the amount of data available for 

analysis in existing data acquisitions. In response, a growing theme in the literature suggests 

that fMRI data from different fMRI scan states (e.g., rest, task, movie) can be combined to 

achieve the desired quantities (Elliott et al., 2019; O’Connor et al., 2017; Schmälzle et al., 

2017). At present, there is limited guidance about the relative trade-offs of using 

concatenated data, or how to best do so.

In this study, we examine the impact of data concatenation strategies on the reliability of 

functional connectomics and differences that can arise from the specific concatenation 

method employed. First, we examine the impact of concatenating data from multiple short 

scans versus a single long scan. This is an important issue in the literature, as studies 

focused on hyperkinetic populations, such as the Adolescent Brain Cognitive Development 

(ABCD) study by National Institutes of Health (NIH), have advocated for using multiple 

shorter scans as a means of improving tolerability and compliance (i.e., low head motion) 

(Casey et al., 2018). Second, we examine the impact of concatenating data from different 

states versus the same state. A recent study suggested that the calculation of functional 

connectivity from multiple states yields data that has superior reliability to that from the 

same state (Elliott et al., 2019). In this work, they compared a hybrid dataset, generated by 

concatenating data from different scans versus resting-state data. One question that arises is 

if the observed advantage was truly the product of combining different states, versus the 

concatenation of small segments of data from different scans - which was shown to be 

advantageous (relative to fewer large segments) in the single-subject MyConnectome dataset 
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(Laumann et al., 2015). Third, we address the question of whether there is any advantage to 

first calculating connectivity matrices for each scan and then combining, or to concatenating 

time-series data and then calculating connectivity. To date, there is little guidance in the 

literature regarding this issue. Finally, we examine the impact of the number of test-retest 

units versus the amount of data per unit on test-retest reliability as well as how 

concatenation of smaller segments of data contributes to different combinations of numbers 

of test-retest units and length of each subset (Noble et al., 2017).

It is important to clarify that the goal of the present work is not to question the value of 

combining all available data in a given study to optimize reliability for a given collection, as 

that is obvious from the existing literature (Elliott et al., 2019; Xu et al., 2016; Noble et al., 

2017; Noble et al., 2019). Instead, our goals are twofold. First, to address the issue of data 

concatenation and how to understand the trade-offs of different decisions when designing a 

new experiment for the acquisition of a fixed amount of data. Second, to clarify potential 

confusions in the literature regarding determinants of reliability - most notably, the reported 

advantages for hybrid (i.e., mixed state) functional connectivity measures, and the relative 

trade-offs related to the number of sessions versus scan duration (Elliott et al., 2019; Noble 

et al., 2017).

2. Methods

2.1. Data

All analyses in the present work were carried out using publicly available datasets selected 

based on the inclusion of extensive test-retests fMRI.

2.1.1. Human connectome project (HCP)—We made use of the HCP S1200 release 

dataset (Glasser et al., 2013; Marcus et al., 2013). The unrelated healthy young adult 

participants who completed all fMRI scans (i.e. rest and task) were considered in our study. 

We selected the low head motion participants (mean FD < 0.25 mm, max FD < 2.75 mm). 

The final sample used in this study included 217 (104 male, age = 28.5 +/− 3.7 years) 

unrelated participants. Extensive descriptions of the data and the minimal preprocessing 

applied can be found in prior publications (e.g., (Marcus et al., 2013; Glasser et al., 2013). In 

brief, for each participant, the dataset includes 4 resting fMRI (rfMRI) scans obtained across 

two days - namely REST1_LR, REST1_RL, REST2_LR, and REST2_RL in HCP files. 

Here the LR and RL represent left-to-right and right-to-left phase coding directions that 

were used in the gradient-echo EPI sequence (TR = 0.72 s, TE = 33.1 ms, flip angle = 52°, 

FOV = 208 × 180 mm, resolution = 2 × 2 × 2 mm); each rfMRI scan contains 1200 vol (~15 

mins). To control for the effects of head motion, we further selected a subsample from the 

HCP dataset as a low-motion replication dataset. Specifically, we selected participants with 

‘clean’ rfMRI data after the HCP minimal preprocessing on the Power-’voxplot’ (Power et 

al., 2017). This subsample consists of 22 subjects from 217 subjects selected by visual 

inspection (subject ID in Supplementary Table 1).

2.1.2. HCP test-retest dataset—We also used the HCP test-retest dataset, which 

contains 7 tasks and 2 resting-state sessions, repeated twice per participant. Six tasks were 

used in our analyses including working memory (WM, 405 vol), gambling (GAM, 253 vol), 
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motor tasks (MOT, 284 vol), which were collected during the first day, and language (LAN, 

316 vol), social (SOC, 274 vol) and relational (REL, 232 vol) tasks collected on the second 

day (Glasser et al., 2013; Van Essen et al. 2013). The emotion task (176 vol) was removed in 

the analyses because its minimal amount of volumes did not meet the low-motion criteria 

(details in the Study-2 section). For each task, there were two runs (one with LR phase 

coding direction and the other with RL). Thirty-one participants who have completed all the 

tasks and resting scans with low head-motion (mean FD < 0.25) were included in our 

analyses.

2.1.3. HNU dataset—The Hangzhou Normal University (HNU) dataset is openly 

available via the Consortium of Reliability and Reproducibility (CoRR: http://

fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html) (X.-N. Zuo et al. 2014). The 

dataset includes 300 scan sessions from 30 participants (15 males, age = 24 +/− 2.41 years) 

who were scanned for 10 sessions over a month. Each session included an rfMRI scan 

acquired at the same GE MR750 3T scanner using a T2 ∗ weighted EPI sequence (TR = 

2000 ms, TE = 30 ms, flip angle = 90°, resolution = 3.4 × 3.4 × 3.4 mm, FOV = 220mm2, 

300 vol, 10 mins). The details of this dataset were described in prior studies (Chen et al., 

2015). We selected this dataset because the time duration between retest datasets is equally 

controlled across participants (3 days duration between two retest sessions) and the head 

motion was relatively low (mean framewise displacement [mean-FD] < 0.2 mm for each of 

300 scans, less than 1% [ n = 3] of time points within each scan has FD > 0.2 mm).

2.1.4. MSC dataset—The Midnight Scan Club (MSC) dataset consists of 10 

participants, who each participated in 10 fMRI sessions over ten days beginning at midnight 

(https://openneuro.org/datasets/ds000224) (Gordon et al., 2017). Each session included 30 

mins of resting fMRI using a gradient-echo EPI sequence (TR = 2200 ms, TE = 27 ms, flip 

angle = 90°, resolution = 4 × 4 × 4 mm, 36 slices, 818 vol). Consistent with the previous 

study, one participant with high head motion was excluded from the current work. The 

details of the imaging acquisition are described in the previous studies (Gratton et al., 2018; 

Gordon et al., 2017). Instead of using the temporal mask (FD < 0.2 mm) provided with the 

preprocessed data, we opted for a slightly less conservative threshold (FD < 0.3 mm) for 

further censoring high-motion time points to control the head motion while ensuring enough 

time points remained per scan (> 300TR).

2.2. Data preprocessing

2.2.1. HCP and HCP test-retest datasets—We used the publicly available version of 

the dataset that has been processed with the HCP minimal preprocessing pipeline (Glasser et 

al., 2013). In line with prior resting-state studies, nuisance regression, and bandpass filtering 

(0.01–0.1 Hz) were then applied (Elliott et al., 2019). The nuisance regressors included 

Friston’s 24 head motion parameters, mean signals from white matter (WM) and 

cerebrospinal fluid (CSF), and linear and quadratic trends. The impact of regression with 

and without global signal was tested in our analyses. Given our focus on functional 

connectivity, nuisance regression, and bandpass filtering (0.01–0.1 Hz) were carried out for 

minimal preprocessed data from task conditions. In addition, we examined the impact of 

task-evoked signals on our findings by adding regressors to account for task events/stimuli 
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(Fair et al., 2007). Finally, the preprocessed data were projected to the cortical surface and 

smoothed with FWHM = 6 mm along the surface.

2.2.2. MSC—We made use of the preprocessed version of the MSC that is publicly 

available on OpenfMRI (https://www.openfmri.org/dataset/ds000224/) (Gratton et al., 2018; 

Gordon et al., 2017). The preprocessing steps included for this data included slice timing 

correction, grand mean scaling, and motion correction. The fMRI data were co-registered to 

the first session for distortion correction followed by detrending, nuisance regression 

(Friston’s 24 motion parameters, WM, CSF, and global signal) and bandpass filtering 

(0.009–0.08 Hz). The details of the preprocessing steps were described in Gordon et al., 

2017.

2.2.3. HNU—The HNU dataset was preprocessed using the Connectome Computation 

System (CCS: http://lfcd.psych.ac.cn/ccs.html) (Xu et al., 2015), a functional connectivity-

focused end-to-end analytic pipeline. Briefly, preprocessing steps for functional data using 

the CCS included: removal of the first 5 TR’s, despiking, motion correction, grand mean 

scaling, Friston 24-parameter model nuisance regression and bandpass filtering (0.01–0.1 

Hz). The preprocessed fMRI data were co-registered to anatomical image and projected to 

the native midthickness surface and smoothed with FWHM = 6 mm along the surface.

2.3. Functional connectivity and networks

To calculate functional connectivity matrices for each participant, vertex-wise time-series 

were first averaged within each of the 360 regions using a recent multi-modal parcellation 

atlas (Glasser et al., 2016). Pairwise Pearson correlations were calculated to generate a 360 × 

360 parcel-to-parcel connectivity matrix. Reliability was calculated for each functional 

connection in the upper triangle of connectivity matrices (64,620 connectivities). Yeo-

Krienen 7 Networks was used to cluster the parcel-wise connectivity into large-scale 

networks (visual, somatomotor, dorsal, and ventral attention, limbic, frontoparietal, and 

default) (Yeo et al., 2011). The network identity was assigned to each parcel using the 

winner-take-all approach based on parcel-to-network overlap (i.e. percentage of parcels 

covered by the network). In addition, we also measured the functional connectivity using the 

partial correlation (Smith et al., 2013, 2011). Since the efficient calculation of partial 

correlation involves shrinkage estimation, the optimal regularization parameters might be 

subject- and state-specific. Here, we employed the partial correlation without regularization 

(Matlab function partialcorr). The Schaefer parcellation with a relatively smaller number of 

parcels (N = 100, (Schaefer et al., 2018) was selected to reduce the computation costs. We 

also calculated the full correlation based on the Schaefer100 parcellation to ensure the 

robustness of the current study. In the following section, we focused on the full correlation 

results without specification, and reported the partial correlation in the supplement.

2.4. Test-retest reliability analyses

2.4.1. Terminology—To avoid a possible misunderstanding of terms used in the 

following section, we first clarify four key terms here: 1) Scan – a contiguous unit of fMRI 

data, defined by the start and stop of the MRI scanner. 2) Session – a unit of time that 

contains either a single or series of MRI experiments, defined by the participant entering and 
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exiting the MRI scanner. 3) Segment – an epoch of contiguous fMRI time-series that is cut 

from a scan for data concatenation over more scans or sessions. 4) Subset – in the current 

study, since the test-retest dataset for reliability calculation is not necessarily acquired from 

a single scan or session, we define each of the test and retest datasets as a subset regardless 

of whether the data were from a contiguous scan or concatenated from multiple scans. As 

commonly performed in the literature, z-score normalization was conducted for each of the 

segments before concatenation.

2.4.2. Intra-class correlation (ICC)—Intra-class correlation for functional 

connectivity was calculated to estimate test-retest reliability using a Linear Mixed Model 

(LMM) (Xu et al., 2016; O’Connor et al., 2017; Chen et al., 2015). For a given connection c 
denoted as Yij (c), i represents the participant and j indicates the test and retest subset. Age, 

gender, global mean for functional connectivity, and head motion were included in the 

model as covariates.

Yij(c) = μ00(c) + γi0(c) + agei + sexi + Gij + meanFDij + ϵij(c) .

The intercept μ00 (c) in the model represents the fixed effect of group average at connectivity 

c, while γi0 (c) represents the random effect for i th participant. Age, sex, and mean FD were 

included as the covariates in the model. In addition, as suggested in the prior study, we also 

included the global mean of functional connectivity (Gij) in the model to standardize the raw 

connectivity estimates Yij (c) for i th participant and j th subset (Yan et al., 2013). The inter-

individual variance σγ2 of the random effect and the variance σ∈2  of residual ∈ij were 

estimated using the restricted maximum likelihood (ReML) method in R (http://cran.r-

project.org/web/packages/nlme). ICC was calculated by dividing the inter-individual 

variation σγ2 by the sum of σγ2 and residual variance σ∈2 . The ICC values are categorized into 

four intervals: poor (0 < ICC ≤ 0.4), moderate (0.4 < ICC ≤ 0.6), good (0.6 < ICC ≤ 0.8) and 

excellent (0.8 < ICC ≤ 1) in the results (Landis et al., 1977; X.-N. Zuo and Xing 2014).

2.5. General study flow

In this study, we examined the impacts of data aggregation on the reliability of functional 

connectivity from different data types (i.e. resting, task, hybrid), and concatenation methods. 

Fig. 1 illustrates the specific comparisons of data aggregation strategies. More detailed 

descriptions for each study are introduced in the following sections.

2.6. Study-1. Concatenating from multiple scans versus a single long scan

In order to address whether the protocol that required multiple shorter resting scans rather 

than a single scan could achieve comparable or higher reliable functional connectomics, we 

first examined the reliability of concatenating data from multiple scans versus that from a 

single long scan. Three datasets with multiple scans separated by a regular time interval 

between retest sessions were used in this analysis: 1) the HCP (n = 217), which included 2 

sessions per participant (2 R-fMRI scans per session; 1 day apart between two sessions), 2) 

the HNU (n = 30), which included 10 R-fMRI scans per participant (3 days apart between 
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two sequent sessions), and 3) the MSC (n = 9) with 10 R-fMRI scans per participant (1 day 

apart between two sequent sessions). Of note, to maintain the continuity of R-fMRI scans, 

we performed the above analyses on the uncensored dataset and replicated this in the low-

motion subsample of HCP dataset as well.

For the HCP dataset, we calculated the reliability of contiguous data across sessions (i.e. 

between Day 1 and Day 2), specifically, between Day 1 LR and Day 2 LR scans, and 

between the Day 1 RL and Day 2 RL. For the concatenated data, we used two resting fMRI 

scans (LR and RL, 600 TRs per scan) collected in Day 1 as the data pool to extract time-

series segments and concatenate into subset 1. Similarly, data segments selected from two 

scans (LR and RL) in Day 2 were concatenated into subset 2.

Of note, the used scans matched on sequence (i.e. only LR or only RL) for contiguous data 

represents the test and retest of 15 mins scans (1200 TRs) with the same phase coding 

sequence for calculation of test-retest to obtain the best-case scenario for the reliability of 

contiguous data. An obvious concern that can arise is that the concatenated data combines 

across phase-encoding directions, while the contiguous data did not. To address this concern, 

we also calculated reliability for the scenario where they are not matched with the sequence 

to estimate the worst case direction over a day (Fig. S1A).

In the HNU dataset that consists of 10 sessions per participant, sequential sessions were used 

as test-retest subsets (i.e. test-retest between session #1 and #2, #2 and #3, …, #9 and #10) 

to examine the reliability of contiguous scans (280 TRs, ~ 10 mins). For the concatenated 

data, we first split 10 sessions into two data pools to generate test and retest subsets (Fig S1). 

Specifically, we used the first five scans (i.e. sessions 1–5) as the data pool to generate 

concatenated data for subset 1 and the last five scans (i.e. sessions 6–10) for subset 2. 

Similarly, different combinations of numbers of segments and lengths of segments to 

generate concatenated data were applied (i.e. 2 segments x 140 TRs, 4 segments x 70 TRs, 8 

segments x 35 TRs). For the concatenated subset with 2 or 4 segments, each segment was 

randomly selected from a single scan to guarantee the concatenated data were merged from 

different scans. To ensure no contiguous segments in a single scan were selected in creating 

a concatenated subset with 8 segments, we randomly selected four scans from the data pool 

and then randomly selected segments from half of each selected scan to generate 8 segments 

into a subset.

In the MSC dataset, which contains 10 scan sessions per participant, a procedure similar to 

that applied in the HNU dataset was carried out to yield test-retest subsets (Fig S1). In short, 

the reliability was examined for contiguous data between two sequential sessions (800 TRs, 

~ 30-mins per session), as well as concatenated data from different combinations (i.e. 2 

segments x 400 TRs, 4 segments x 200 TRs, 8 segments x 100 TRs, 16 segments x 50 TRs, 

800TRs [30 min] in total per subset).

2.7. Study-2. Concatenating from different states versus the same state

A recent study suggested that functional connectivity calculated by concatenating multiple 

fMRI task scans in the HCP dataset exhibits higher test-retest reliability than that from an 

equivalent amount of pure resting-state fMRI data (Elliott et al., 2019). While this may be 
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true, prior work using the MyConnectome dataset highlighted the advantage of 

concatenation from shorter scans over a single scan (Laumann et al., 2015). As such, it is not 

clear whether the better reliability for merged data from different states (referred to here as 

the ‘hybrid’ condition) is driven by the concatenation advantage or the combination of 

experiment states. To address this question, we generated the concatenated resting subsets 

that were matched to the hybrid condition with respect to the number/length of segments and 

compared the reliability between hybrid and concatenated resting data. In addition, we 

further examined the impact of concatenation from combinations of states.

2.7.1. Concatenated task versus concatenated resting state—We first evaluated 

the reliability of concatenated data over available scans (2 scans, LR and RL, 5.6 min in 

total) from the same task only versus resting state (2 scans, LR and RL, 5.6 min in total). We 

also compared the reliability of hybrid data yielded from two different fMRI tasks as 

compared to the concatenated data from a single state (task or resting). The reliability of six 

task states, resting state, as well as the hybrid from two different tasks were calculated. The 

effects of global signal regression (GSR) and task regression were examined in our analyses. 

Of note, we used the resting without ICA-FIX, consistent with the preprocessing procedure 

of task data. We also tested the ICA-FIX resting data in the supplementary materials (Fig. 7, 

S6).

2.7.2. Hybrid versus concatenating from resting state—We made use of the HCP 

test-retest dataset to assess the reliability of hybrid versus resting-state conditions between 

test and retest measurements. Specifically, we used six tasks to generate all of the possible 

hybrid subset combinations with regard to task state and encoding direction (LR and RL), 

consisting of 2 different tasks (2 tasks x 232 vol, 5.6 min), 2 different tasks that each 

contains 2 scans (2 tasks x 2 scans x 232 vol, 11.1 min), 4 different tasks (4 tasks x 232 vol, 

11.1 min) and 6 different tasks (6 tasks x 200 vol, 15 min). To match the number of 

segments of hybrid data, concatenated resting-state subsets for comparisons were created by 

concatenating 2, 4, and 6 segments. The segments were contiguous volumes (i.e., the first 

232 or 200 vol) from different resting scans, except for the 6-segments combination in which 

two additional segments were selected (#601–800 vol) since only 4 resting scans were 

acquired. In addition, we compared the reliability of concatenated hybrid and resting 

connectivity against that from a single contiguous resting scan truncated to the same time 

duration.

2.8. Study-3. Calculate and then combine versus combine and then calculate

When multiple scans are acquired, apart from combining time-series first, we can also 

calculate the functional connectivity per scan then average the connectivity afterwards. In 

this section, we have tested whether one strategy is superior to the other using the HCP and 

HNU datasets.

In the HCP dataset, resting fMRI data from Day 1 LR and RL scans were used for 1 subset 

while Day 2 LR and RL scans were used for the 2nd subset. Reliability was tested between 

the Day 1 subset and Day 2 subset. The functional connectivity matrix for each subset was 

either calculated from concatenated data over LR and RL scans, or averaged from 

Cho et al. Page 8

Neuroimage. Author manuscript; available in PMC 2021 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



connectivity that calculated from each of LR and RL scans separately. We tested 3 different 

time lengths, 1) 5 min by 2 scans per subset, 2) 10 min by 2 scans per subset, and 3) 15 min 

by 2 scans per subset.

In the HNU dataset, we selected two scans (session #1–2) to create subset 1 while two scans 

(session #6–7) for subset 2. In this way, the time duration between test-retest subsets are 

fixed to 12 days (scanned once every 3 days). Functional connectivity was calculated in both 

strategies from two sessions per subset. Similarly, we tested 2 different time lengths, 1) 5 

min by 2 sessions per subset, and 2) 10 min by 2 sessions per subset.

2.9. Study-4. Delineating the trade-off of amount of data per subset and number of 
subsets in evaluations of reliability

Beyond the general rule of ‘the more the better’ in data collection, in this section, we 

focused on how test-retest reliability increases with more numbers of subsets versus more 

amount of data per subset. We examined the reliability for different combinations of these 

two factors.

2.9.1. Test-retest subsets with concatenation—The MSC dataset was used here as 

it contains 10 sessions x 30 mins data per subject. We tested the number of subsets varied 

from 2, 3, 4, 5, and 6; the amount of time per subset varied from 10, 12.5, 15, 17.5, 20, 22.5, 

25, 30, 35, 40, 50, and 60 mins. For a combination of k subsets and t minutes per subset, the 

subset data was concatenated from x numbers of short contiguous segments (2.5 mins per 

segment, x = t /2.5). Specifically, for each participant, we first randomly cut all available 

data into a few 2.5 mins (68 vol) segments as a segment pool. We then randomly selected k ∗ 

x segments to create k subsets. The test-retest reliability was calculated for all combinations 

of numbers of subsets and the amount of data per subset. We replicated the analyses in the 

HCP dataset for different combinations of 2, 3, 4, 5 subsets by 10, 12.5, 15, 17.5, 20, 22.5, 

25 mins of data per subset. The subsets were concatenated in a similar way from short 

segments (2.5 mins, 208 vol).

2.9.2. Test-retest subsets without concatenation—We also considered the test-

retest subset acquired naturally in a single fMRI session instead of concatenated from 

multiple shorter scans in the MSC dataset. Similarly, we tested the number of subsets varied 

from 2, 3, 4, 5, and 6, while the amount of time per subset varied from 10, 12.5, 15, 17.5, 20, 

22.5, 25, and 30 mins. For a combination of k subsets and t minutes of scan duration, k 
sessions (k = 2,3,..,6) were randomly selected k sessions first and t min of contiguous time 

points from each of selected k sessions. The test-retest reliability was calculated for all 

combinations of numbers of sessions and scan duration.

3. Results

3.1. Study-1. Concatenating from multiple scans versus one long single scan

Here, we compared the ICC distribution for edge-wise functional connectivities based on 

fMRI data concatenated from multiple scans, with that obtained from a single long scan. 

Generally, using the HCP data, we found that when the amount of data was equated, there 
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was a clear advantage for multiple scans from the perspective of edgewise reliability. 

Specifically, the concatenated subset (7.5 min from each of 2 scans) yielded higher ICC’s 

than the contiguous data (15 min from a single scan) (Fig. 2A, ICC matrices in Fig S2B). To 

test the significance of the ICC improvement for concatenated data, we performed the 

permutation test by randomly shuffling the labels (concatenated vs. contiguous) 10,000 

times. We found that significance did not depend on whether GSR was included in 

preprocessing or not (without GSR: p(permute) < 10−4, effect size = 0.425 [0.436–0.414], 

GSR: p(permute) < 10−4, effect size = 0.209 [0.198,0.220]). Such advantages of 

concatenation were observed across all networks (Fig. 2B). Similar findings were obtained 

in the HNU (contiguous scan duration = 10 min, Fig. 2C–D) and MSC datasets (contiguous 

scan duration = 30 min, Fig. 2E–F), as well as the low-motion HCP subsample— all 

achieving statistical significance (Fig. S3A).

With regard to the concatenation window size, we found that from a reliability perspective, a 

higher number of shorter fMRI data segments appeared to engender advantages over a 

smaller number of larger segments. In the HNU dataset, 10 min of a contiguous scan yielded 

12% of connections with good reliability (ICC > = 0.6), which increased to 26% for 8 × 1.25 

min segments from four sessions. In the MSC dataset with 30 min of data, shorter segments 

consistently showed higher ICC than contiguous data (contiguous: 24% of connectivities 

were good; 16 × 1.875 min segments: 41% good). Of note, this advantage does not appear to 

result from the process of Z-scoring (i.e., mean centering and variance normalization) 

segments prior to combining; there was no advantage, and even slightly worse reliability, 

observed when segments were selected from the same scan (Fig. S2C). We also tested 

whether concatenating time-series data from the onset of each scan could achieve higher 

reliability, but did not find any clear evidence there is the onset effect (Fig. S3B).

We also examined the impact of the time duration in concatenated data. Several studies, 

including the present (Fig S2A), have demonstrated that data collected within a shorter 

duration (e.g. same day) were more reliable than those with longer duration (e.g. 1 day, 1 

week or month apart) (Zuo et al., 2013; Noble et al., 2019). Therefore, we expected that the 

concatenated segments from a shorter duration (same day) would generate higher reliability. 

Here, we used the HCP dataset, and calculated the reliability of concatenated data from the 

back-to-back scans on the same day (rfMRI_REST1_LR, rfMRI_REST1_RL, 7.5 min from 

each of 2 scans) as compared to concatenated data from two different days (i.e. 1 day apart, 

rfMRI_REST1_LR, rfMRI_REST2_LR, 7.5 min from each of 2 scans). As we expected, the 

segments selected from scans with a shorter duration on the same day yielded higher 

reliability than those over two days (Fig S3C).

In addition, we also tested the concatenation effect for partial correlation using the HCP 

data. In addition to ICC, we also calculated the discriminability to examine the reliability for 

the whole cortical connectome (Bridgeford et al., 2020). Consistent with previous studies, 

we found that the reliability of the partial correlation was lower than the full correlation for 

both contiguous and concatenated data (Table S6). However, when comparing the reliability 

of data from multiple scans versus a single scan, the partial correlation also showed an 

advantage in concatenated data over contiguous data (permutation p < 10−4).
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3.2. Study-2. Concatenating from different states versus the same state

Study-1 showed that the concatenation of data from multiple scans yielded connectivity 

estimates with higher reliability than those obtained using a single scan. However, the data 

was all obtained during the resting state. Here, we take the next step, and examine: 1) the 

reliability of concatenated data from a task state versus resting state, 2) the reliability of 

concatenated data from different states (rest, task) versus the same state, 3) whether the 

benefits of concatenation are maintained when concatenating data from multiple states (i.e. 

hybrid) versus a single state, and 4) the factors that potentially contribute to the reliability of 

hybrid concatenations. We focus on the full correlation in the following sections and partial 

correlation results in the supplement (Fig. S9).

3.2.1. Concatenated task versus concatenated resting state—Using HCP test-

retest dataset, we concatenated the available task scans (232 vol x 2 scans, 5.6 min in total) 

for each task state and compared their reliabilities to the concatenated resting data (232 vol x 

2 scans), as well as the contiguous resting data (464 vol from a single scan). We found that 

when task regression was performed, edgewise functional connectivities for two of the task 

states (i.e., language and social) exhibited higher ICC’s than those from either concatenated 

or contiguous resting data. When task regression was not applied, reliability scores for 

edgewise connectivities increased for all six task states, becoming higher than those from 

resting state (Fig. 3A). Similar findings were observed when GSR was carried out (Fig. S4).

3.2.2. Hybrid versus the same state—Next, we considered data concatenated from 2 

different states, instead of 2 scans from the same state. We systematically tested all the 

possible combinations of concatenating 2 different states. The concatenated language task 

with task regression showed the highest reliability among the possible combinations of 

different states containing the language task (Fig. 3B, left). When task-regression was 

performed (Fig. 3B, right), three concatenated tasks (language, social, and relational) 

showed higher reliabilities than their hybrid combinations (off-diagonals). It is important to 

note that hybrid data generated from two states associated with more reliable states (e.g., 

language and social tasks) tended to yield greater reliabilities than the other possibilities 

(e.g., motor and working memory tasks).

3.2.3. Hybrid versus resting state—We further compared the reliability of edgewise 

connectivities from multiple fMRI scan types (i.e. hybrid) to those from resting fMRI data, 

concatenated from multiple scans, as well as from equal amounts of resting data from a 

single scan. Besides the combination of 2 states (2 scans, 5.6 min in total) that were tested 

above, we also tested the hybrid connectivity of 2 states generated from a higher number of 

scan types (4 scans, 11.1 min in total). The concatenated resting data (equal length) were 

generated from 2 to 4 resting scans respectively, as well as equivalent length of contiguous 

resting data truncated from a single scan (Fig. 4). As expected, more data was better, 

regardless of hybrid or resting state. Concatenated resting data (blue dot) exhibited higher 

reliabilities than half of the 21 possible hybrid combinations from 2 scans with task 

regression. When compared with hybrid from 4 scans, the concatenated resting data yielded 

relatively higher reliabilities than most of the hybrid combinations (17 out of 21 

combinations), except for the hybrid generated among language, social and rest (Fig. 4). In 
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contrast, when task regression was not performed, the hybrid data showed generally higher 

reliabilities than concatenated and contiguous resting data (Fig. 4, right) combinations. 

Similar trends were found for GSR preprocessed data as well (Fig. S5).

Besides the combinations of 2 states we tested above, we also used 4 and 6 task states to 

generate different lengths of hybrid data, and systematically tested all possible combinations 

of different tasks (details in Method). We found that compared with contiguous resting data, 

that hybrid data generated from 2 tasks (total data: 5.6 min), 4 tasks (11.1 min), or 6 tasks 

(15 min) did not necessarily exhibit higher reliabilities (Fig. 5). When task-evoked activation 

was regressed out (Fig. 5A), nine out of forty-two combinations of the shorter, two-states 

hybrid had an advantage over the concatenated resting-state with respect to reliability (Fig. 

5, left panel). With more data (hybrid: 4 or 6 different tasks, resting: 4 or 6 segments), the 

concatenated resting data showed a clear advantage over all hybrid conditions and 

contiguous resting as well (Fig. 5, middle and right panels). Similar findings were observed 

in data with GSR (Fig. 5A, gray line). When matching the number of concatenation 

segments for resting conditions, the concatenated resting data offered higher reliability than 

most of the hybrid combinations from different task states (Fig. 5A, gray triangles on the 

blue lines).

We also assessed the ICC of hybrid conditions from task scans without task regression. As 

depicted in Fig. 5B, connectivity reliabilities for hybrid from task states were higher without 

task regression than with. Focusing on the results without GSR first (black line), when 

comparing such hybrid conditions with contiguous resting data, the hybrid conditions 

consistently yielded higher ICC’s than contiguous resting data (red triangles). The 

concatenated resting data (blue triangles), on the other hand, showed increased ICC and 

became more likely to have higher reliabilities than hybrid combinations from more than 2 

states (i.e. 4 tasks and 6 tasks). A similar trend was observed with GSR data (Fig. 5B, gray 

line).

3.2.4. Hybrid with more task states versus hybrid with fewer task states—We 

previously noted that connectivity reliabilities from the resting state were not superior to 

those from all of the task states (Fig. 3A). It seemed that combining more different task 

states (> = 4 tasks) might have a negative impact on reliability, resulting in lower reliabilities 

than resting state. Thus, we further controlled the number of segments and varied the 

number of task states combined. Specifically, we compared the reliabilities yielded from 

hybrid data concatenated from 4 different tasks (4 scans) as we examined above versus 2 

different tasks (2 scans per task, 4 scans in total). As we expected (Fig. 6, dark green 

diamonds), hybrid combinations from fewer states (2 tasks) appeared to yield higher 

reliabilities than hybrid from 4 tasks. In particular, hybrid data generated from language and 

social tasks exhibited higher reliabilities than concatenated resting data. Of note, language 

and social tasks are also the most reliable tasks and showed higher reliability than resting 

state (Fig. 3A). These findings also suggest that data concatenated from reliable states tend 

to yield more reliable connectivities. Similar observations were found in data with GSR (Fig. 

6, gray line, light green diamonds). The highest reliabilities were obtained for the hybrid 

data generated from fewer tasks, though less hybrid combinations were observed when task-

regression was not performed.
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3.2.5. What determines the reliability of hybrid data?—So far, our findings 

suggested that hybrid segments selected from more reliable states (e.g. language and social) 

and more homogeneous states (e.g. same state > different states) might obtain higher 

reliability. Thus, we further examined how these factors contribute to the reliability of hybrid 

data. Specifically, we evaluated 1) the averaged reliability of states used in hybrid 

concatenation and 2) the similarity of FC between states used in hybrid concatenation. As 

expected, we found that the reliability of the 2-segment hybrid data was significantly 

correlated with the mean reliability of the states used in concatenation (Fig 7A), while there 

was no relation with the similarity of FC between states (Fig 7B). Such correlations were 

consistent across all preprocessing pipelines (GSR and task regression). These findings 

suggest that hybrid data from 2 states were mainly driven by the reliability of state types 

used in the concatenation, not the homogeneity between states. However, when the hybrid 

data were concatenated from more states (i.e. 4 states), reliabilities of states did not exhibit 

any positive correlations with the reliability of the hybrid data (Fig 7C). Notably, a strong 

correlation was observed for the similarity of FC between states (Fig 7D). This suggests, 

when more state types were used in the hybrid concatenation, the homogeneity of the states, 

instead of the reliability of each state determines the reliability of the hybrid data.

We also noted that the shorter time duration yielded higher reliability for concatenated 

resting data (Fig S3C). Thus, we tested whether this true for hybrid data. Given that all HCP 

scans were collected in 2 days, we assigned the mean time duration to 1 if two states were 

collected on the same day otherwise 2. We then compared the reliabilities of hybrid 

conditions with a shorter and longer time duration. Unfortunately, we did not find significant 

differences with any preprocessing pipelines (GSR and task-regression). Similar non-

significant findings were observed for hybrid data from four states. We suspect that the 

segment duration matters more when all segments are the same state (e.g. rest), whereas 

when concatenating different states, the segment duration is much less important than the 

reliability of states or homogeneity of FC between states, which showed the dominant factor 

determining the reliability of the hybrid data.

3.2.6. Dominant preprocessing steps for the task, resting and hybrid data—
To examine the impacts of the preprocessing steps for different states and hybrid data, we 

first measured the similarity (Pearson’s r) of functional connectivity patterns within 

individuals under different preprocessing options across task, resting, and hybrid conditions. 

The group averaged functional connectivity with different preprocessing (i.e. GSR, ICA-

FIX, task-regression) is shown in Fig. S6A. We found that the GSR option dominated the 

functional connectivity patterns for resting, task as well as hybrid data (Fig. 7E). It is worth 

noting an interaction between ICA-FIX and GSR (Fig. 7F). Without ICA-FIX, no GSR 

option provided a higher ICC than GSR (permutation p < 10−4), while GSR showed an 

advantage over no GSR when ICA-FIX was performed (permutation p < 10−4). Similar 

interaction was detected in contiguous data with RL phase coding directions but not for LR 

sequence (Fig S6B). Further spike regression does not appear to help reliability especially 

ICA-FIX was applied (Fig S6B). When compared to the hybrid data, the concatenated 

resting conditions with GSR and ICA-FIX exhibited higher ICC than most of the hybrid 

combinations (Fig. 6, “X ” marks in gray color).
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3.3. Study-3 Calculate and then combine versus combine and then calculate

Besides time series concatenation, another data aggregation strategy is to first calculate the 

functional connectivity, then average connectivity matrices across scans. Here, we further 

compared these two strategies using the HCP dataset. We have included two scans, each 

scan varied from 5 min, 10 min, and 15 min for data combination. The strategy of 

concatenating the time-series first was denoted as Strategy-T, while calculating the FC per 

scan then averaging the FC was denoted as Strategy-A. We found no significant difference 

between Strategy-T and Strategy-A for 5 min, 10 min and 15 min data (Fig. 8). Similar 

findings were replicated in the HCP low-motion subsample and the HNU dataset (Fig. S7).

Intriguingly, when two strategies were compared using the Schaefer100 parcellation (Figure 

S10, Table S10), Strategy-T showed significantly higher reliability than Strategy-A for full 

correlation (p < 10−4). Similar findings are observed for partial correlation when the subset 

time is 20 min (10 min per segment). However, the Strategy-A appeared to be superior to 

Strategy-T for data over 30 min (permutation p < 10−4).

3.4. Study-4. Delineating the trade-off of amount of data per subset and number of 
subsets in evaluations of reliability

In Study 1, we showed that more data per subset improved the reliability between two 

subsets, regardless of whether the subset was contiguous or concatenated data. These 

findings echoed the general rule of ‘the more the better’ in data collection. Here we address 

a confusion that may arise in evaluations of reliability - whether increasing the number of 

subsets improves reliability more quickly than increasing amounts of data per subset.

We first focused on the contiguous data using the MSC dataset (30 min x 10 sessions per 

subject). We calculated the test-retest reliability using 30 min in total, but estimated from 

two models 1) two test-retest subsets with 15 min per subset, and 2) three subsets with 10 

min per subset. As shown in Fig. 9A, the reliability estimated from two subsets showed 

higher reliability than estimation from three subsets. We also tested the reliability for each 

subset created by concatenating smaller time-series segments (2.5 min) randomly selected 

within the subject from all available data without replacement (Fig. 9B). Similarly, when the 

total amount of the data was used (30 min), more data assigned to subsets (15 min x 2 

subsets) yielded higher reliability than when the data was split into more subsets (10 min x 3 

subsets).

We also tested subsets generated from 10, 12.5, 15, 17.5, 20, 22.5, 25, 30 min data, while the 

number of subsets was increased from 2 to 6 subsets (Fig S8). We observed that the 

reliability increased more quickly with increasing amounts of data per subset compared to 

increasing the number of subsets for both contiguous and concatenated data. Overall, when 

multiple scans were acquired, concatenating multiple scans into two subsets, instead of 

treating them as multiple retest subsets obtained higher ICC estimations.

4. Discussion

The present work evaluated the impact of different strategies for combining data from 

distinct fMRI scans on the reliability of functional connectivity. Several key findings 
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emerged. First, for a given state, we found a clear advantage for combining data from 

multiple scans of the same state, rather than acquiring an equivalent amount of data from a 

single long scan. Importantly, we found that this was not necessarily true when 

concatenation was carried out across different fMRI states (i.e. task conditions), where we 

observed an advantage for concatenating segments from the same state rather than different 

states. When concatenation was performed across differing states, the combination from 

more reliable states and more homogenous states tends to yield higher reliability. We next 

tested whether there is an advantage for combining time-series data across scans prior to 

calculating functional connectivity, versus calculating the functional connectivity for each of 

the individual scans and then averaging; we found no clear evidence of superiority for either 

strategy. Finally, as a growing number of high characterization test-retest designs are 

emerging, we drew attention to basic design principles to be considered in the design of test-

retest studies.

The present work is not the first to suggest an advantage for concatenation from multiple 

shorter scans over a single long scan. For example, previous work using the MyConnectome 

dataset has shown that functional connectivity measurements in a single subject converge 

faster with multiple scans of shorter length than with a single longer scan (Laumann et al., 

2015). One possible reason is that the noise obtained from the scanner (e.g. pink noise or 1/f 

noise) might be flattened out when concatenating multiple scans together (Akhrif et al., 

2018; Afshinpour et al., 2008). When a single long scan is acquired, however, the noise is 

maintained as the main variation between test and retest sessions, thereby reducing 

reliability. Another possibility is that the participants might have low head motion at the 

beginning of each scan (i.e., an onset effect). A recent study found that head motion events 

occur more frequently with longer scan length and suggested a scanner break inside the 

scanner to improve head motion in both children and adults samples (Meissner et al., 2020). 

The present work tested for the presence of an onset effect (i.e., whether concatenating time-

series data from the onset of each scan could achieve higher reliability) but did not find any 

clear evidence to support this hypothesis. This result is consistent with previous findings that 

the reliability is reduced when truncating the time points from the end of the time series 

(Shah et al., 2016). Nevertheless, the overall results highlight the advantages of 

concatenation in the calculation of functional connectivity and suggest acquiring multiple 

shorter scans instead of a single long scan in study design - an approach adopted by the 

recent NIH ABCD Study (Casey et al., 2018).

It is important to note that the concatenation method itself (i.e. cutting the time-series into 

shorter contiguous segments and z-scoring the segments) on the same scan did not show any 

benefits for reliability. This suggests that the non-stationary noise, if any, might not be 

removed by simply Z-scoring a short contiguous time-series. In fact, our results showed that 

cutting the original time-series into shorter segments decreases reliability (Fig. S2C). These 

findings indicate the downside of the concatenating shorter scans – a potential loss of the 

temporal continuity (e.g. auto-correlation) of the fMRI signals, which appear to be important 

(Kumar et al., 2016; Arbabshirani et al., 2019). One other downside of opting to concatenate 

multiple shorter scans, rather than pursue a single long scan, is the potential limitations this 

strategy introduces on temporal dynamic analyses—particularly those focused on the 

frequency domain (Hutchison et al., 2013). Thus, in the end, it is fair to say that there are 
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benefits to obtaining multiple shorter scans and concatenating them, though the trade-offs 

should be carefully considered during experimental design.

Aside from the experimental design, our findings suggest that while concatenating scans 

from multiple scans to maximize data is clearly beneficial, the increases in reliability 

achieved will be dependent in part by the reliability of the individual scan states being 

combined and the homogeneity among states used in hybrid combination. Researchers 

usually pay attention to the total amount of data merged, yet how the data has been merged 

might be less heeded. In the current study, we have systematically examined differing 

strategies for generating hybrid data. In contrast to prior suggestions (Elliott et al., 2019), we 

found that when matched with the number of segments in concatenation strategy, the 

generation of a hybrid dataset from different states does not necessarily produce functional 

connectivity measures with higher reliability than those obtained during resting state. In our 

analyses, concatenating resting state with the same concatenation strategy actually showed a 

substantially higher reliability than most of the hybrid combinations. This could be because 

merging different states introduces more variations leading to lower reliability. We have 

examined this hypothesis and found supportive evidence that hybrid data from fewer states 

are more likely to yield higher reliability than that from more different states. When 

concatenating multiple states’ data, the homogeneity between states determines the 

reliability of hybrid data. Overall, concatenating data from more reliable states, more 

homogeneous (i.e., high similarity of FC between states, same task scans, or only resting 

scans) showed higher reliability than data combined across states (i.e. hybrid). With the 

equivalent number of concatenation scans, concatenating from more reliable states tends to 

yield higher reliability.

Another important finding of the proposed work was the seeming similarity of results when 

concatenating time-series data prior to calculating the functional connectivity matrix, and the 

alternative of averaging functional connectivity matrices across independent scans. While 

the former strategy can be more memory-intensive, the latter is more computationally 

intensive. Depending on the length of the time-series data per scan, researchers may prefer 

to implement one way or the other. Our results suggest that the two methods should yield 

roughly equivalent functional connectivity matrices. However, concatenating the time-series 

first appears to have an advantage when the number of parcels was relatively small. A 

related question that arises when designing and analyzing highly characterized samples of 

individuals, is whether to use the maximum amount of data available for the ‘test’ and 

‘retest’ subsets, which would be split halves of the total data, or to make the individuals 

scans the test unit and have multiple retest subsets. Our analyses suggest that unless data 

amounts are more copious than nearly all acquired to date, the aggregation of data into two 

halves will provide the most reliable test- and retest units (Noble et al., 2017). The 

alternative approach would provide the tightest confidence intervals for reliability 

estimation, but as shown in our analyses, the actual reliability will be undesirably low (Zou 

2012). Of note, the subcortical regions and cerebellum might require more data to achieve a 

similar level of reliability than cortical regions (Noble et al., 2017). In the present work, the 

subcortical regions and cerebellum are not yet included and will be important to characterize 

in future work.
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In addition, the current work examined preprocessing options that need to be considered in 

functional connectivity analyses carried out in fMRI analysis across states - global signal 

regression and task regression. Our findings demonstrated that global signal regression is the 

main preprocessing step that dominates the functional connectivity pattern (Fig 7E). 

Nevertheless, the determinants of reliability for hybrid data (i.e. reliability and homogeneity 

of states used for hybrid combination) are replicable with or without either of these two 

steps; the reliability of each state and the homogeneity between states used in hybrid 

determines the reliability of the hybrid data. We also identified the presence of an interaction 

between GSR and ICA-FIX for resting-state data; the observed advantage for no GSR with 

resting-state data is not observed when ICA-FIX was carried out. Previous studies have 

demonstrated that ICA-FIX enables noise removal, though it can leave substantial spatial 

artifacts (Burgess et al., 2016). A combination with GSR appears to clean up such artifacts 

and improve brain-behavior prediction (Burgess et al., 2016; Li et al., 2019). This finding 

echoed previous work and suggested the value of adding GSR process if ICA-FIX is 

performed for concatenated resting data. In addition, it is worth noting that the task and 

corresponding hybrid data without task regression showed higher reliability than that with 

task regression. Our finding that reliability was higher for resting-state fMRI data than those 

obtained with any of the six tasks when task-regression was used, makes the impact clear. 

However, an obvious consideration is that the higher FC reliability might be driven, at least 

in part, by the consistent task-evoked activation in individuals (Cole et al., 2019). In 

particular, for blocked task activation design (e.g. the HCP tasks used here), the block-wise 

temporal fluctuation from the task-evoked hemodynamic response might be dominant in 

connectivity estimates if the task-induced activation is not removed. Previous studies have 

shown that task-evoked coactivation might induce an inflation effect on estimates of intrinsic 

functional connectivity (Duff et al., 2018). As such, removal of stimulus-evoked activity is 

suggested to clean up the ‘background connectivity’ in the task paradigm with a focus on 

intrinsic FC (Ito et al., 2019; Lurie et al., 2020; Norman-Haignere et al., 2012; Fair et al., 

2007). Though, it is also important to note that in some situations, task-related coactivation 

may be a desirable target for examination in FC studies, along with intrinsic FC (e.g., see 

Greene et al., 2020 for psychophysiological interaction model-based example).

Of note, our study also examined the functional connectivity using partial correlation. We 

revealed a similar advantage for combining data from multiple scans of the same state over a 

single long scan using partial correlation. However, we did not apply the regularized 

estimation (e.g. L1-norm regularization) in the present study (Smith et al., 2013, 2011). 

Given that the efficient calculation of partial correlation for large-scale connectivity relies on 

the shrinkage estimation and appropriate regularization, it will be important for future 

studies to further examine the optimal regularization parameters for concatenated data.

Finally, it is important to note that while reliability provides an upper bound on validity, the 

optimization of reliability alone is not sufficient for valid neuroscientific studies of 

individual differences and clinical populations (Carmines and Zeller 1979; Bridgeford et al., 

2020; Hong et al., 2020; Zuo et al., 2019). First, there are the potential contributions of 

artifacts to measurement reliability, as nuisance signals such as head motion are known to be 

reliable. Consistent with this concern, in some scenarios, the denoising procedure might 

remove reliable artifacts and even reduce the reliability while simultaneously increasing 
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indicators of validity (Shirer et al., 2015; Noble et al., 2019). Second, there is a need to 

consider the exact construct one is attempting to validly measure. A recent study has 

demonstrated that the task activation improves the prediction but only if the in-scanner task 

is related to the out-scanner predicted phenotype (Greene et al., 2020). Thus, depending on 

the desired content, the optimal strategy (e.g. preprocessing options) and/or states (e.g. task, 

rest) might be different (Noble et al., 2019). Future studies would benefit from an 

increasingly balanced examination of reliability and validity, which can be achieved in part 

through the inclusion of measures of validity (e.g., predictive, construct, content) in 

optimizations efforts, as advocated by frameworks such as NPAIRS (Strother et al., 2002). 

Optimized preprocessing strategies can be delineated through such a strategy as well.

Summary of Recommendations.

Consistent with prior work, the findings of the present work reaffirmed the “golden rule”: 

more data is better - whether obtained in a single condition or scan session, or multiple. With 

that said, our findings allowed us to make a base set of recommendations for consideration 

in functional connectivity study design and data analysis, when the amount of data available 

is equal. Specifically, we suggest that when possible, researchers:

1. Acquire and concatenate multiple short scans or sessions, rather than a single 

long scan. Caveat: This recommendation is appropriate for studies focused on 

static functional connectivity, not dynamic. For the latter, the suitability of 

multiple scans for analysis is dependent on the specific algorithms employed.

2. Concatenation of multiple scans with shorter duration offers higher reliability 

than those with a longer duration across sessions. Of note, data needs to be 

acquired from multiple scans; concatenating back-to-back shorter segments that 

are split from a single continuous longer scan does not appear to have any 

advantage.

3. Concatenation of data within a single scan condition is more likely to offer 

higher reliability than those across multiple conditions. Among conditions, 

concatenating more reliable conditions, and more homogeneous conditions (i.e. 

high similarity of functional connectivity between conditions) is more likely to 

yield higher reliability.

4. When conducting test-retest reliability studies, after multiple scans are acquired, 

the scans should be concatenated into two subsets, instead of treated as multiple.

5. When comparing the reliability, beyond the total amount of data, be cautious 

with the strategies of how data is concatenated for a fair comparison.

Conclusion

This work systematically evaluated the impact of data concatenation strategies on test-retest 

reliability of functional connectivity. When looking at equivalent amounts of data, our 

results highlight the potential advantages of concatenated data relative to contiguous, and 

other factors that can lead to higher or lower reliability for concatenated data. We drew 

attention to dependencies of the resultant reliability of a concatenated scan on the individual 
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scans from which data is aggregated. Finally, we drew attention to the differential impact of 

preprocessing (i.e. task regression, global signal regression). Combined, the present work 

provides an overview of multiple decisions that should be considered in efforts to optimize 

reliability during the acquisition and analysis of functional connectivity data.

Data and code availability

The data are available through Human Connectome Project (HCP: https://

www.humanconnectome.org/study/hcp-young-adult), Consortium of Reliability and 

Reproducibility (CoRR: http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html), 

and Midnight Scan Club (MSC: https://openneuro.org/datasets/ds000224). The 

preprocessing pipeline is available on Github https://github.com/zuoxinian/CCS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Graphical summary of comparisons for different data aggregation strategies.
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Fig. 2. 
Edgewise functional connectivity calculated from concatenated scans is more reliable than 

that based on a single contiguous scan of equal length. (A) Empirical cumulative distribution 

and bar plots of mean intraclass correlation coefficient (ICC) with error bars (standard 

deviation) for test-retest reliability of functional connectivities from contiguous and 

concatenated resting-state fMRI scans; results for calculation based on data with and without 

global signal regression (GSR) are depicted. (B) Empirical cumulative distribution of ICC 

for each network. Distribution of ICC from contiguous data is shown in gray while colored 

lines represent ICC from concatenated data. See FC and ICC matrices in Fig S1B. (C) 
Empirical cumulative distribution of ICC and (D) stacked bar plots depicting proportion of 

connections with poor, moderate, good and excellent ICC for contiguous and concatenated 

resting-state scans, calculated using the HNU dataset and the Midnight Scan Club dataset 

(E, F). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
Reliability of edgewise functional connectivity measures calculated for resting-state, task 

and hybrid fMRI data without GSR. (A) Proportion of connections with poor, moderate, 

good and excellent ICC when calculated for resting state and each of six task conditions in 

the HCP dataset, with (left-panel) and without task regression (right-panel). (B) Mean ICC 

for functional connectivity measures based on hybrid data generated by concatenating two 

scans from two different states (off-diagonal, upper triangle: LR scans, lower triangle: RL 

scans) and the same state (diagonal). See results with GSR in Fig. S4.
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Fig. 4. 
Reliability of edgewise functional connectivity measures calculated for resting and hybrid 

data generated from 2 tasks using either 2 or 4 segments without GSR. The label color for 

task states from cold to warm represents the reliability (i.e., mean ICC) of each state from 

low to high (detailed distribution shown in Fig. 3A). The same length of contiguous resting 

data was truncated from LR scans of the Day 1 session (red dots, 5.6 min; red square: 11.1 

min). The concatenated resting data was generated from 2 scans (blue dot: 5.6 min, LR and 

RL scans from Day 1) and 4 scans (blue square: 11.1 min, LR, RL scans from Day 1 and 

Day 2). See results with GSR in Fig. S5. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Reliability of edgewise functional connectivity for resting and hybrid data as a function of 

the numbers of states combined in the concatenation process (2, 4 and 6 different states). 

The mean ICC for data preprocessed with GSR (gray) and without GSR (black) was shown 

in ascending order. The same length of contiguous resting data was truncated from LR and 

RL scans of Day 1 session (highlighted with red lines). The concatenated resting data was 

generated from 2, 4, and 6 segments of resting scans (highlighted with blue lines). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 6. 
Reliability of edgewise functional connectivity for hybrid data as a function of the numbers 

of task states (2 versus 4 tasks) combined in the concatenation process. Hybrid combinations 

with less task states (green: 2 tasks) exhibited higher reliability than hybrid combining from 

more task states (black: 4 tasks). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 7. 
The factors that contribute to reliabilities of hybrid data and the effect of preprocessing steps 

for different states. (A, C) The correlations between the reliability of hybrid data and the 

average ICC of states used in 2-states hybrid (A) and 4-states hybrid (C). (B, D) The 

correlations between the reliability of hybrid data and the similarity of FC across states used 

in 2-states hybrid (B) and 4-states hybrid (D). (E) Averaged within-individual similarity 

(Pearson’s r) of functional connectivity patterns for rest, task, and hybrid data (5.6 min in 

total) with different preprocessing options. Working memory (WM) and social (SOC) state 
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was shown as an example of the task condition and concatenation from GAM and LAN for 

the hybrid condition. The group averaged functional connectivity matrices with different 

preprocessing options are shown in Fig S6. (F) Proportion of connections with moderate, 

good, and excellent ICC for concatenated resting-state data preprocessed with and without 

both GSR and ICA-FIX.
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Fig. 8. 
Calculation of edgewise functional connectivity measures for scans individually and then 

averaging, versus calculation after concatenation of scans. Two segments of 5 min, 10 min, 

and 15 min of data were generated. The strategy calculating the FC of each segment first 

then average all the FC as the final FC for each subset was denoted as Strategy-A, while 

concatenating time-series of all segments then calculating FC per subset as Strategy-T. The 

stacked bar and the empirical cumulative distribution of ICC showed no differences in ICC 

distribution between two strategies. The scatter plot shows the ICC of functional 

connectivity was almost the same between two strategies for 10 min data (2 segments x 5 

min).
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Fig. 9. 
Reliability of functional connectivity estimated using less subsets yields greater reliability 

than using more subsets given the same total time duration. (A) Cumulative distribution and 

stacked bar plots of reliability estimates for 2 subsets x 15 min contiguous scans versus 3 

subsets x 10 min scans. (B) Cumulative distribution and stacked bar plots of reliability 

estimates for 2 subsets x 15 min concatenated data versus 3 subsets x 10 min concatenated 

data.
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