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Background: Invasive fungal infection (IFI) is one of the leading
causes of early death after renal transplantation. Voriconazole (VRC)
is the first-line drug of IFI. Because of the large inter- and
intraindividual variability in VRC plasma concentrations and the
narrow therapeutic window for treating patients with IFIs, it is
crucial to study the factors which could influence pharmacokinetic
variability. We performed a population pharmacokinetics (PPK)
study of VRC for personalized medicine.

Methods: A total of 125 trough concentrations (Cmin) from 56 pa-
tients were evaluated, retrospectively. Nonlinear mixed effect model
was used to describe a PPK model that was internally validated by
bootstrap method. Potential covariates included demographic char-
acteristics, physiological and pathological data, concomitant medi-
cations, and CYP2C19 genotype.

Results: A 1-compartment model with first-order absorption and
elimination was fit to characterize the VRC pharmacokinetics in renal
transplant recipients (RTRs). Aspartate aminotransferase (AST) had
a significant influence on clearance (CL) while CYP2C19 genotype
had a major impact on the volume of distribution (V). The parameters
of CL and V were 4.76 L/h and 22.47 L, respectively. The final model
was V (L) = 22.47 · [1 + 2.21 · (EM = 1)] · [1 + 4.67 · (IM = 1)] ·
[1 + 3.30 · (PM = 1)] · exp (0.96); CL (L/h) = 4.76 · (AST/33)^
(20.23) · exp (0.14). VRC Cmin in intermediate metabolizers was
significantly higher than in extensive metabolizers.

Conclusions: Liver function and CYP2C19 polymorphism are
major determinants of VRC pharmacokinetic variability in RTRs.
Genotypes and clinical biomarkers can determine the initial scheme.
Subsequently, therapeutic drug monitoring can optimize clinical
efficacy and minimize toxicity. Hence, this is a feasible way to
facilitate personalized medicine in RTRs. In addition, it is the first
report about PPK of VRC in RTRs.
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INTRODUCTION
Kidney transplantation is the substitutive and lifesaving

treatment for some individuals with end-stage renal disease,
which can significantly prolong the survival time and improve
the quality of life of uremia patients. Clinical studies showed
that invasive fungal infection (IFI) is the second leading cause
of early death in renal transplant recipients (RTRs), which is
a consequence of the long-term use of immunosuppressants
and broad-spectrum antibiotics. Despite its low incidence
(1.3%),1 it has a high mortality rate (40%–60%) of IFI,2–4

especially in invasive pulmonary aspergillosis (81.3%). It has
been reported that patients with IFI have an increased risk of
delayed graft function and multiple infections.5

Voriconazole (VRC) is an azole compound with
a broad-spectrum antifungal activity. Currently, it is the gold
standard therapy of invasive aspergillosis,6 candidiasis,7 and
other serious IFIs. It is recommended that VRC requires for
therapy drug monitoring (TDM), due to its wide intra- and
interindividual variability, narrow therapeutic range, and risk
of toxicity including neurotoxicity (auditory hallucinations
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and hepatic encephalopathy), liver and visual toxicity.8–10 As
a result, it is important to find crucial factors associated with
pharmacokinetic variability of VRC.

To date, published data regarding RTRs taking VRC
are limited to epidemiology, risk factors of infection,2–4,11 and
effect on immunosuppressants.12,13 Research is mainly
focused on hematopoietic stem cell transplantation, liver or
lung transplantation, and intensive care patients taking VRC.
However, the population pharmacokinetics (PPK) of VRC
has not been reported in RTRs.

Accordingly, the aims of the current study were (1) to
characterize the PPK model of VRC in RTRs and to explore
the crucial factors influencing VRC serum concentration, and
(2) to study distribution of CYP2C19 genotype in RTRs and
its effect on VRC serum concentration.

MATERIALS AND METHODS

Patients and Methods

Patients and Data Collection
All patients with a history of renal transplantation who

were admitted to the hospital and received VRC for the
prevention or treatment of IFI from September 2015 to June
2016 were eligible for this study. This was a retrospective
observational study at the Department of Urological Organ
Transplantation of the Second Xiangya Hospital, Central
South University. This study was approved by the Ethics
Research Committee of the Second Xiangya Hospital, Central
South University (yxlb-lcys-201501). Exclusion criteria were
as follows: (1) age #15 years; (2) concomitant medications
known to influence VRC pharmacokinetics (eg,, rifampin,
a strong inducer of CYP2C19); and (3) patients with signif-
icant clinical data missing.

Patients’ medical records were reviewed by using a stan-
dardized data collection template,14 including VRC dosing, fre-
quency and duration of use, demographic information (age, sex,
and weight), laboratory test results (blood, liver, and kidney
function index), time after transplant, and concomitant medica-
tions taken during voriconazole therapy [glucocorticoid and pro-
ton pump inhibitors (PPI)]. A blood sample is obtained from
each patient to determine the VRC Cmin and CYP2C19 gene
phenotype (CYP2C19*2, CYP2C19*3, and CYP2C19*17).

Blood Sampling and Analytical Assays
The usual dose for VRC is 200 mg b.i.d. as starting dose.

The doses were adjusted based on first Cmin. All Cmin were
collected 30 minutes before the next dose. The VRC serum
concentrations were analyzed by automatic 2-dimensional liq-
uid chromatography (2D-HPLC; Dmitr Instrument Co Ltd,
Hunan, China). Two-dimensional separation condition consists
of the following: the first-dimensional chromatographic column
was FRO C18 (100 · 3.0 mm, 5 mm, ANAX); mobile phase:
20 mmol/L ammonium acetate–acetonitrile = 48:52 (vol/vol);
flow rate: 1.0 mL/min. The second-dimensional chromato-
graphic column was ASTON HD C18 (150 · 4.6 mm i.d.,
5 mm, ANAX); mobile phase: 40 mmol/L ammonium
acetate–acetonitrile = 85:15 (vol/vol); flow rate: 1.2 mL/min;
detection wavelength: 273 nm; column temperature: 458C;

sample size: 200 mL. The linearity range was 0.35–11.3 mcg/
mL. The intraday and interday precisions were within 1.94%–
2.22% and 2.15%–6.78%, separately. The absolute and relative
recovery ranged from 88.2% to 93.6% and from 94.2% to
105.3%. The stability of blood sample at room temperature for
8 hours and in 2208C of 3 repeated freeze–thaw cycles were
within 68% and 610%, respectively.

DNA Sequencing and CYP2C19 Genetic
Polymorphism

CYP2C19 phenotypic subgroups were classified into 5
categories, namely: (1) ultrarapid metabolizer (UM, CY-
P2C19*17/*17), (2) rapid metabolizer (CYP2C19*1/*17),
(3) extensive metabolizer (EM, CYP2C19*1/*1), (4) interme-
diate metabolizer (IM, CYP2C19*1/*2, CYP2C19*1/*3, CY-
P2C19*2/*17), and (5) poor metabolizer (PM, CYP2C19*2/
*2, CYP2C19*2/*3, CYP2C19*3/*3).15

Blood samples (1–3 mL) for genotype detection were ob-
tained from 56 patients. DNA was purified by using the E.Z.N.A
SQ Blood DNA Kit II (Omega Bio-Tek, Norcross, GA) method.
Genotype test adopted Sanger dideoxy DNA sequencing method
by using ABI3730xl-full automatic sequencing instrument (ABI
Co) from BoShang Biotechnology Co Ltd in Shanghai.

Population Pharmacokinetics Analysis
Nonlinear mixed effect model (NONMEM) was per-

formed by using Phoenix NLME software (Version 1.4,
Pharsight, A Certara Company, USA). Extended least square
method (FOCE ELS) was adopted in the whole process.
Kruskal–Wallis test was used to analyze the correlation of
Cmin with dosage form and time after transplant (P , 0.05).

Structural Model
Nonlinear mixed-effects model to analyze PPK may

offer the possibility of gaining information on pharmacoki-
netics from relatively sparse data. We use multiple-trough
sampling (Cmin) method and NONMEM to estimate interin-
dividual variability in clearance (CL) and volume of distribu-
tion (V), by fixing absorption rate constant (Ka).16 A study
showed that a linear elimination model would appropriate to
VRC serum concentration compared with other linear mod-
els.17 The 1-compartment model with first-order absorption
and elimination was fitted with VRC pharmacokinetic model
and the absorption rate was fixed to a value of 1.1 h.18–20

Statistical Model
The following exponential models were used to deter-

mine the interindividual variability:

Additive exponential model : Pij ¼
Ppop ·

�
1þ �

Pj
�
mean

�
· uj

�
· exp

�
hij

�

Proportion exponential mode : Pij ¼
Ppop ·

�
Pj
�
mean

�
uj
�
· exp

�
hij

�

Residual variability was tested by comparing 4 models as
follows:
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Additive error model : Cobs ¼ Cpred þ ei

Proportional error model : Cobs ¼ Cpred · ð1þ eiÞ

Combined error model : Cobs ¼ Cpred · ð1þ eiÞ þ e

Exponential error model : Cobs ¼ Cpred · expei

The following variables were used for all equations: Pij is
the pharmacokinetic parameter of a certain individual, Ppop is
typical values of PPK parameters, Pj is covariate (influencing
factor), uj is corrected value of covariate, hij is individually
random variation with a mean of zero and a variance of v2;
Cobs is observed concentrations, Cpred is predicted concentra-
tions, and ei is random variation with a mean of zero and
a variance of s2. The Optimal model was determined by
considering objective function value (OFV), coefficient of
variation, and RetCode value.

Covariate Model
Firstly, the correlations between pharmacokinetic pa-

rameters and covariates were preliminarily inspected by the
line graph. Then, covariates were incorporated in the base
model, one at a time, using forward addition and backward
deletion (stepwise). A significant covariate was retained when
the following criteria were met: (1) a decrease in OFV
.3.84 (P , 0.05) was included in forward addition, and an
increase in OFV .6.63 (P , 0.01) was significant in backward
deletion (approximate to x2 distribution, x20:05;1 = 3.84, x20:01;1 =
6.63), (2) clinical plausibility for added variable, and (3) the 95%
confidence interval (CI) for parameter estimates did not include
zero.

Model Selection and Validation
Goodness-of-fit statistics and graphical plots were used

to evaluate the adequacy of fitting. Accuracy and stability of
prediction of covariate model were validated by bootstrap
method. One thousand resamples from the original date were
performed. Mean values and 95% CI of bootstrap parameters
were compared with estimates of the final model.

RESULTS

Patient Demographics and Dose
Characteristics

A total of 125 Cmin (a median of 2.18, range = 0.16–
9.59 mcg/mL) from 56 inpatients were collected. An

TABLE 1. Demographic and Clinical Data

Parameter Result

VRC Cmin, mg/mL 2.63 6 2.02 (0.16–9.59)

Time after renal
transplantation No. patients (%)

#1 mo 10 (17.9%)

1–3 mo 15 (26.8%)

3–6 mo 6 (10.7%)

6–12 mo 13 (23.2%)

.1 yr 12 (21.4%)

Sex (Male/Female) 39/17 (69.6%/30.4%)

Age, yr 40 6 8 (18–60)

Weight, kg 55 6 10 (33–78)

HGB, g/L 110 6 27.5 (66–168)

PLT, 109/L 194 6 56.4 (60–356)

ALT, U/L 45.7 6 108.7 (1.9–681.1)

AST, U/L 33.0 6 48.1 (7.9–311.5)

ALB, g/L 35 6 3.5 (26–46)

TBIL, mmol/L 8.9 6 4.2 (2.6–28.2)

DBIL, mmol/L 3.8 6 2.9 (0.3–19.1)

CREA, mmol/L 173.1 6 129.1 (47.5–544.0)

CLcr, mL/min 51.8 6 24.7 (11.6–111.6)

RM; EM; IM; PM 2; 24; 25; 5 (3.6%; 42.9%; 44.6%; 8.9%)

PPI (1/0) 26/30 (46.4%/53.6%)

Glucocorticoid (1/0) 39/17 (69.6%/30.4%)

ALB, albumin; ALT, alanine aminotransferase; CLcr, creatinine clearance rate;
CREA, serum creatinine acid; DBIL, direct bilirubin; HGB, hemoglobin; PLT, platelets;
TBIL, total bilirubin.

FIGURE 1. CWRES (condition weighted residuals) histogram (A) and QQ (quantile–quantile) plot (B).
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average of 2–3 blood samples were collected from each
patient. Patients’ demographics and characteristics are
summarized in Table 1. There was still a broad variation
in Cmin of VRC under the monitoring. About 72.1% of
Cmin values were in therapeutic window (1.0–5.5
mcg/mL), while 20.0% were subtherapeutic and 8.8%
were supratherapeutic. Occurrence of IFI was likely in
the first year after transplantation (78.6%), which is a seri-
ous threat for successful outcomes following kidney
transplantation.

Population Pharmacokinetic Analysis
A 1-compartment model with first-order absorption

and elimination was sufficient to characterize VRC pharma-
cokinetics. The population-typical values of CL and V were
4.76 L/h and 22.47 L, respectively. Interindividual variabil-
ity was described by the proportion exponential model, and
residual variability was described by proportional error
model [Cobs = Cpred · (1 + 0.15)]. As shown in Figure 1,
distribution of conditional weighted residuals (CWRES) in
histogram and QQ plot indicated that data met normal
distribution.

The stepwise screening process is presented in Table
2. From all 12 covariates, only aspartate aminotransferase
(AST) and CYP2C19 genotype were found to exert signif-
icant influence on PK parameters and were incorporated
into parametric equation. Model 1: V (L) = 22.47 · [1 +

2.21 · (EM = 1)] · [1 + 4.67 · (IM = 1)] · [1 + 3.30 · (PM
= 1)] · exp (0.96); CL (L/h) = 4.76 · (AST/33)^(20.23) ·
exp (0.14).

Furthermore, we analyzed the association between
VRC dosage form, time after transplant, CYP2C19 genetic
polymorphism, and Cmin. RM and PM metabolizers were not
statistically analyzed because the sample sizes were only 2
and 5. No significant relationship was found between dosage
form, time after transplant, and Cmin. It appeared that Cmin in
RMs is significantly lower than in the other 3 genotype sub-
groups (as shown in Table 3). The differences of VRC Cmin

were statistically significant between EMs and IMs (P ,
0.05). Moreover, the allele frequencies of CYP2C19*2, CY-
P2C19*3, and CYP2C19*17 were 53.2%, 3.2%, and 4.8%,
respectively.

Model Evaluation
The values of vV, vCL, and s in final model were

obviously lower than in the base model, as seen in Table 4.
The final model has lower interindividual and residual varia-
tion, indicating that CYP2C19 genotype and AST incorpo-
rated in equations had a significant effect on VRC
pharmacokinetic. The final model allowed more accurate pre-
diction of Cmin. Although the population-predicted concen-
trations were strongly biased in the base model in scatter

TABLE 2. Results of Stepwise Screening of Individual Covariates

Parameters and Covariates* Objective Function Value (OFV) Variation of OFV (DOFV) P

Forward: P , 0.05 (3.841) Base model 427.058 —

CL-AST 409.735 27.323 ,0.01

CL-DBIL 412.827 24.231 ,0.05

CL-CYP 395.265 221.793 ,0.001

V-Glucocorticoid 412.615 24.443 ,0.05

V-PPI 411.991 25.067 ,0.05

V-CYP† 395.265 221.793 ,0.001

CL-AST, V-CYP‡ 386.594 28.671 ,0.01

Backward: P , 0.01 (6.635) V-CYP§ 395.265 +8.671 ,0.01

CL-AST 409.735 +23.142 ,0.001

*Only influential covariates were listed. A decrease in OFV .3.84 (P , 0.05) was included in forward addition and an increase in OFV .6.63 (P , 0.01) was significant in
backward deletion (approximate to x2 distribution, x20:05;1 = 3.84, x20:01;1 = 6.63).

†The x2 distribution of CYP: x20:05;3 = 7.82, x20:01;3 = 11.34, x20:001;3 = 16.27. The largest decrease in OFV was chosen as base for the next step.
‡No effect chosen to add when the third covariate was introduced.
§No effect chosen to subtract.

TABLE 3. Mean Cmin in Different CYP2C19 Gene Status

Gene Status Gene Polymorphism Cmin, mg/mL

RM (n = 2, 3.6%) CYP2C19*1/*17 0.40 6 0.14

EM (n = 24, 42.9%) CYP2C19*1/*1 1.76 6 1.24*

IM (n = 25, 44.6%) CYP2C19*1/*2,*1/*3,*2/*17 3.02 6 2.07*

PM (n = 5, 8.9%) CYP2C19*2/*2 4.43 6 2.46

*EM versus IM, wilcoxon rank sum test, P = 0.0011, P , 0.01.
RM, rapid metabolizer; EM, extensive metabolizer; IM, intermediate metabolozer;

PM, poor metabolizer.

TABLE 4. Comparison of Parameters Between the Basic Model
and the Final Model

Parameter

Base Model Final Model

Estimate 95% CI Estimate 95% CI

uV 122.81 33.37–212.25 22.47 10.32–34.61

uCL 5.66 4.46–6.68 4.76 3.52–6.01

SD SD

vV 1.16 0.71 0.98 0.72

vCL 0.47 0.26 0.37 0.25

s 0.40 0.04 0.39 0.04
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plots of detected values versus population-predicted values
(Fig. 2A1, B1), the population-predicted concentrations
agreed well with the observed voriconazole concentrations
in the final model. In addition, CWRES of predicted con-
centrations of the final model was more uniformly distrib-
uted within the range [y = 62 (61.96 s)] (Fig. 2A2, B2). In
contrast, the 2 average CWRES trend lines of the base model
slightly extended outward at the end. Overall, all of the
above illustrates that the final model was more accurate
and stable.

Model Validation—Bootstrap Method
Bootstrap is a recommended internal validation

method for PPK model based on data resampling tech-
nique. All 1000 bootstraps were completed successfully.
The population parameter estimates were similar to the
simulation values and fell within 95% CI from bootstrap
(Table 5). Hence, the model was confirmed to be stable and
accurate.

DISCUSSION
Currently, clinicians have increasing interest in pre-

vention and treatment of IFI using VRC. To our knowledge,
this is the first PPK study of VRC in RTRs. Recently,17–20

a 1-compartment model was reported to describe the PPK
characteristic of VRC in patients. However, there have been
conflicting data that support a 2-compartment model with
Michaelis clearance.21,22 The inconsistent results may be
due to small sample size and limited VRC serum concentra-
tion. The V and CL for RTRs were 22.47 L and 4.76 L/h,
respectively. By comparison, 2 studies conducted in liver
transplant recipients (CL/F = 5.8 6 5.5 L/h, Vss/F = 94.5 6
54.9 L, F = 53%–94%) and lung transplant recipients (CL =
3.45 L/h, Vc = 54.7 L, Vp = 143 L) resulted in a similar CL,
although different V was observed.23,24 This difference might
attribute to the patients’ underlying disease and immune
status.

As shown in Table 2, AST is an indicator for liver
function, which significantly affected CL in this study. A

FIGURE 2. DV-PRED (detected values vs. population-predicted values) plot and CWRES-PRED (condition weighted residuals vs.
population-predicted values) plot of basic model (A1, A2) and final model (B1, B2).
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previous clinical trial also demonstrated that PM has a signif-
icant decrease on CL.19 CYP2C19 genotype had the same
degree of influence on CL and V in stepwise (OFV =
21.793) for this study. Finally, CYP2C19 genotype was
incorporated into the equation for V. Also, CL was impacted
by direct bilirubin (DBIL) to a certain extent, but DBIL was
not identified to be significant in RTRs, although it is a sig-
nificant factor in patients with pulmonary disease
ðCL ¼ uCL · ðDBIL=2:6ÞuDBILÞ.20 Both PPI and glucocorti-
coid seem not to be important factors on VRC serum concen-
tration in RTRs. However, it is still under debate, because of
different sample size, diversity of PPI, and condition of
patients.18,19,21,25,26

CYP2C19 genetic polymorphism is a crucial determi-
nant of the extensive pharmacokinetic variability of VRC.21,27

The frequencies of CYP2C19*2 and CYP2C19*3 allele are
much higher in Asians (15%–20%) than in Caucasians (2%–
3%).28 The allele frequencies of CYP2C19*2, CYP2C19*3,
and CYP2C19*17 (53.2%, 3.2%, and 4.8%) in the present
study are very similar to those of another study in a Chinese
population (50.0%, 6.3%, and 2.1%),27 but it is not consistent
with data from other countries (15%, 0.4%, or 0.5%).14,29

Interestingly, one IM (Cmin = 2.18 mcg/mL) is with CY-
P2C19*2/*17 genotype that rarely appears in other studies.
It is probably because the gain-of-function allele CY-
P2C19*17 is unable to completely compensate for the loss-
of-function allele CYP2C19*2.15 Further, the distribution in
different populations is distinctly different from various stud-
ies,30–33 which showed that Caucasians have a high frequency
of *17 allele (49%)34, while other ethnic groups, especially
Chinese, have a high frequency of *2 allele (Table 6). The
proportion (;50%) of slow metabolizers in Chinese is far
above the average level of other Asian populations (15%–
20%),27,29 indicating that Chinese are susceptible to altered
pharmacokinetic of VRC due to slow metabolism. Thus, gen-
otyping in advance is necessary for the initial dose.

Although introduction of CYP2C19 genotype and AST
into the final model significantly reduces the interindividual
variability, the population prediction by the final model
showed a deviation at high concentrations, which indicted
that incorporated factors only explained a part of the variation
of VRC pharmacokinetic in RTRs. One of the reasons is that
there is saturated metabolism in patients with loss-of-function
mutants.

Population estimates of covariate model were within
95% CI of bootstrap simulation values, which suggested that
the model was stable and accurate. At the same time, the wide
CI was seen, which indicates that Cmin of VRC should be
monitored.

There are several limitations of this study as follows:
(1) The sample size is small and only Cmin was analyzed. (2)
The results need to be validated in further prospective studies.
Nevertheless, our retrospective study provides valuable infor-
mation for subsequent research on VRC pharmacokinetics/
pharmacodynamics (PK/PD). Furthermore, it would be prom-
ising to guide individual treatment in RTRs by combining
PK/PD based on TDM and genotypes screening.

In conclusion, we have developed PPK model in RTRs:
V (L) = 22.47 · [1 + 2.21 · (EM = 1)] · [1 + 4.67 · (IM = 1)]
· [1 + 3.30 · (PM = 1)] · exp (0.96); CL (L/h) = 4.76 ·
(AST/33)^(20.23) · exp (0.14). Liver function and
CYP2C19 polymorphism are major determinants of VRC
pharmacokinetic variability in RTRs. VRC Cmin in interme-
diate metabolizers was significantly higher than in extensive
metabolizers. This is the first report about PPK of VRC in
RTRs.

TABLE 5. Parameter of the Final Model and Bootstrap
Evaluation (1000 Times)

Parameter

Final Model*
Bootstrap
Evaluation

Estimate 95% CI Estimate 95% CI

uV 22.47 10.32 to 34.61 15.86 9.94 to 27.48

uCL 4.76 3.52 to 6.01 4.00 3.36 to 4.67

u1 2.21 21.56 to 5.98 0.91 20.07 to 2.02

u2 4.67 2.04 to 7.30 4.00 1.39 to 7.12

u3 3.30 1.14 to 5.47 5.39 1.88 to 10.10

u4 20.23 20.44 to20.02 20.20 20.35 to20.03

SD SD

vV 0.98 0.72 0.38 1.317E-08

vCL 0.37 0.25 0.29 0.00

s 0.39 0.04 0.40 0.04

*The final model: (L) = uV · [1 + u1 · (EM = 1)] · [1+ u2 · (IM = 1)] · [1 + u3 ·
(PM = 1)] · exp (hv); CL (L/h) = uCL · (AST/33)^u4 · exp (hcl); uV, uCL: typical
population values of pharmacokinetics parameters; u1, u2, u3, u4: correction factors of
parameters; hv, hcl: inter-individual variation of parameters.

TABLE 6. Comparison of Alleles in Different Populations

Population Sample Size* 1 (%)† 2 (%)† 3 (%)† 17 (%)† References

Caucasian 111 (35) 31 20 None 49 Int J Antimicrob Agents.
2016;47:124–131.

Chinese 328 (144) 41.6 50.0 6.3 2.1 Int J Antimicrob Agents.
2014;44:436–442.

Korean 511 (104) 61 25 13 1 Infect Chemother. 2013;45:406–414.

Indian No data available (55) 51 30 0.9 18.1 Int J Clin Pharm. 2015;37:925–930.

Thai 285 (115) 69.6 25.6 4.8 None Drug Metab Pharmacokinet.
2015;31:117–122.

*The first number is blood samples, and the value in bracket is the number of patients.
†The allele frequencies of CYP2C19*1, CYP2C19*2, CYP2C19*3 and CYP2C19*17.
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