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IntroductIon

Coronavirus disease 2019 (COVID-19) is a new 
pandemic respiratory illness with a highly variable 
clinical presentation, ranging from asymptomatic 
infection to profound respiratory and multiorgan fail-
ure (Wang et al., 2020b; Zhou et al., 2020a). With over 
100 million people infected and 2 million fatalities, 
COVID-19 ranks as one of the most lethal infectious 
diseases in the year 2020 (World Health Organization, 
2020). Amid enormous worldwide effort to stem this 

disease much about the pathophysiology of COVID-
19 and its causative agent, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2; Zhu et  al., 
2020), remains to be clarified. Here and in the accom-
panying series of articles (Herz et al., 2021; Kronfeld-
Schor et  al., 2021; Sengupta et  al., 2021), we discuss 
potential contributions of the field of chronobiology 
to the prevention, risk mitigation, prognosis, and 
rehabilitation of critically ill COVID-19 patients. This 
work is based on discussions at the European 
Biological Rhythms Society–convened workshop on 
Chronobiology and COVID-19 (Chronobiology of 
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COVID-19 CARE Conference). Convened in July 2020, 
this virtual workshop brought together 250 research-
ers and clinicians worldwide. They engaged in a 
wide-ranging dialogue to consider how chronobiol-
ogy and COVID-19 pathology might relate, what 
kinds of model systems are needed, and how clinical 
data might best be harnessed to explore such connec-
tions. Here, we provide a brief overview of COVID-19 
with an emphasis on elements potentially sensitive to 
circadian regulation based on the existing pre-COVID 
literature. We conclude with a review of how critical 
illness and the intensive care setting influence circa-
dian output, which is relevant to patients with severe 
COVID-19.

A BrIEf oVErVIEW of coVId-19

The causative agent of COVID-19, SARS-CoV-2, is 
a novel beta-coronavirus that bears genetic and clini-
cal resemblance to two prior endemic coronaviruses 
of global concern: SARS, severe acute respiratory 
syndrome, which appeared in 2002 and MERS, 
Middle East respiratory syndrome, which appeared 
in 2012 (Drosten et  al., 2003; de Groot et  al., 2013; 
Haagmans et al., 2014; Coronaviridae Study Group of 
the International Committee on Taxonomy of Viruses, 
2020; Kim et al., 2020; Zhu et al., 2020). While all three 
coronaviruses produce a similar picture of hypox-
emic respiratory failure in humans with a 20%-70% 
fatality rate once mechanical ventilation becomes 
necessary (Yam et al., 2003; Alsolamy and Arabi, 2015; 
Auld et al., 2020; Richardson et al., 2020), only SARS-
CoV-2 achieved pandemic spread. This may be 
related to a greater ability of SARS-CoV-2 to produc-
tively replicate in the nasopharynx without inciting 
symptoms of systemic illness that would otherwise 
cause infected individuals to self-isolate (Wölfel et al., 
2020). Epidemiologic information about the scope of 
asymptomatic spread remains incomplete due to the 
lack of comprehensive virus testing in most countries 
and a variable rate of false-negative tests. Among 
symptomatic patients, roughly 81% experience mild 
disease, 14% experience moderate symptoms requir-
ing hospitalization, and 5% require hospitalization 
plus advanced respiratory support in intensive care 
units (ICUs; Huang et  al., 2020; Richardson et  al., 
2020; Yang et al., 2020). While prior chronic lung dis-
ease represents a potent risk factor for severe COVID-
19, most COVID-19 risk factors are extrapulmonary 
in nature and include older age, obesity, hyperten-
sion, diabetes, and cardiovascular disease (Wang 
et al., 2020a; Zheng et al., 2020).

SARS-CoV-2 infection begins in the upper respira-
tory tract with differentiated airway epithelial cells 
being the initial sites of infection, particularly 

multiciliated cells and secretory (club) cells (Hui 
et al., 2020). Infection proceeds distally down the con-
ducting airways to the alveolar space leading to the 
infection of type I and type II pneumocytes as well as 
alveolar macrophages (Grant et al., 2020; Hou et al., 
2020; Hui et  al., 2020). While SARS-CoV-2 is cyto-
pathic in immortalized cells, it is the host inflamma-
tory response that is thought to be primarily 
responsible for acute lung injury and breakdown of 
alveolar architecture known as the acute respiratory 
distress syndrome (ARDS; Thompson et  al., 2017; 
Bryce et al., 2020; Schaller et al., 2020). The advent of 
ARDS frequently requires the initiation of mechani-
cal ventilation to maintain life, but the elevated air-
way pressure this intervention imposes is itself 
injurious and represents a second inflammatory “hit” 
(Slutsky and Ranieri, 2013). If the host immune sys-
tem succeeds in controlling the viral infection early, 
ARDS lung pathology can fully resolve (Doglioni 
et  al., 2020). However, in some individuals, ARDS 
lung pathology proceeds to a fibroproliferative stage 
rendering lungs mechanically stiff, permanently 
impairing ventilation, and unsustainably increasing 
the work of breathing (Thompson et  al., 2017). 
Autopsy studies show that respiratory failure is usu-
ally the proximate cause of death due SARS-CoV-2, 
although in critically ill patients, multisystem organ 
dysfunction frequently occurs as well (Bryce et  al., 
2020; Schaller et al., 2020; Wang et al., 2020b).

Two forms of systemic pathology bear special 
mention in severe COVID-19. The first is macrophage 
hyperactivation, leading to the elaboration of high 
levels of circulating pro-inflammatory cytokines such 
as interleukin 6 (IL-6; Moore and June, 2020). The 
term “cytokine storm” has been applied to COVID-
19; however, it is unclear whether this condition is 
unique to or even representative of most patients 
with this disease (Lukan, 2020; Mudd et  al., 2020). 
Emerging evidence suggests that mechanically venti-
lated COVID-19 patients may have suppressed type I 
interferon responses, suggesting a more complex pic-
ture than simple hypercytokinemia (Giamarellos-
Bourboulis et  al., 2020; Hadjadj et  al., 2020; Mudd 
et al., 2020). The second form of systemic pathology is 
hypercoagulation, resulting in microthrombus for-
mation and, somewhat counterintuitively, bleeding 
(Al-Samkari et  al., 2020; Bryce et  al., 2020). While 
sharing features with the more commonly known 
disseminated intravascular coagulation (DIC), 
COVID-induced hypercoagulability exhibits unique 
aspects including preserved levels of circulating 
fibrinogen and massively increased levels of von 
Willebrand factor from activated or damaged endo-
thelial cells (Ward et al., 2020; Zhang et al., 2020). The 
clinical ramifications are that COVID-19 patients 
have a dramatically increased risk of stroke, 



Haspel et al./ COVID, THE CLOCK, AND THE ICU 57

myocardial infarction, pulmonary and deep venous 
thromboembolism, and major hemorrhage (Helms 
et al., 2020b; Castro and Frishman, 2021). The mecha-
nism underlying thrombosis in COVID-19 remains to 
be clarified, although defects in platelet function were 
recently described in patients (Iba et  al., 2020; Zaid 
et al., 2020).

The prognosis of COVID-19 largely depends on 
the severity of respiratory failure. Patients with mild 
to moderate disease appear to clinically recover 
within 2 weeks, although viral RNA can be detected 
in many patients for longer periods (Sun et al., 2020; 
Wölfel et al., 2020). At present, patients who progress 
to mechanical ventilation spend a median of 10-17 
days intubated (Almeshari et  al., 2020). The long-
term recovery of severely ill COVID-19 patients has 
yet to be charted, although reports of protracted 
debility in the weeks following hospital discharge are 
common (Lambert and Corps, 2020; Halpin et  al., 
2021). In general, survival from critical illnesses is fol-
lowed by protracted functional and cognitive impair-
ment that persist even a year after hospital discharge 
(Schelling et al., 1998; Bein et al., 2018).

BrIEf oVErVIEW of SArS-coV-2

SARS-CoV-2 (Figure 1) is an enveloped single-
stranded RNA virus that, typical of coronaviruses, is 
distinguished morphologically by its spike (S) 

protein which forms crown-like projections around 
the viral particles on electron micrographs (Masters 
and Perlman, 2013; Brahim Belhaouari et  al., 2020). 
There are three additional structural proteins in the 
virion: the matrix (M) and envelope (E) proteins 
which reside in the membrane, and the nucleocapsid 
(N) protein that spools and protects the genomic 
RNA (Masters and Perlman, 2013; Kim et al., 2020). 
The S protein catalyzes viral entry and is thought to 
be the main determinant of tissue and species tro-
pism (Dinnon et al., 2020; Ou et al., 2020). It is a type 
I transmembrane protein with a prominent extracel-
lular region composed of two segments: an N-terminal 
(S1) segment that engages cell-surface angiotensin-
converting enzyme 2 (ACE2), and a C-terminal S2 
segment that promotes trimerization and contains a 
membrane fusion peptide (Cai et al., 2020; Ou et al., 
2020). The bioactivity of the fusion peptide is pro-
moted by cleavage of the S protein, which is catalyzed 
by extracellular proteases like TMPRSS2 or by lyso-
somal cathepsins (Hoffmann et  al., 2020; Ou et  al., 
2020).

The genome of SARS-CoV-2 consists of a single 
positive-strand RNA roughly 30 kb in length that is 
dominated by a single open reading frame (Orf1a/1b) 
taking up two thirds of its length (Kim et al., 2020). 
Orf1a/1b is translated off the genomic RNA as a sin-
gle polypeptide that is autoproteolyzed into multiple 
subunits forming the “Replicase-Transcriptase 
Complex” (RTC; Kim et al., 2020). The RTC is believed 

figure 1. Life cycle of the SArS-coV-2 virus. (a) Spike ( ), envelope, and matrix ( ) proteins are expressed on the surface of this 
single-stranded rnA virus. nucleocapsid protein binds and protects the genomic rnA (grnA) until (b) the virus enters the cells via 
spike protein interaction with cellular AcE2. (c) the grnA of the positive-stranded rnA is transcribed and translated as a single 
orf, yielding the rtc. Structural proteins are transcribed subsequently from the (subgenomic, sg) 5’ end of the grnA. (d) the rtc 
integrates with the endoplasmic reticulum to form a double-membrane vesicle (dMV). (e) this structure produces virus which is 
released. (f) Local viral load leads to the formation of multinucleated giant cells through the binding of spike and AcE2 proteins on 
the surface of local cells. Abbreviations: SArS-coV-2 = severe acute respiratory syndrome coronavirus 2; orf = open reading frame;  
rtc = replicase-transcriptase complex; AcE2 = angiotensin-converting enzyme 2.
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to be responsible for all subsequent steps of viral rep-
lication (Masters and Perlman, 2013). The structural 
proteins that comprise the viral capsid are expressed 
later in infection as a series of subgenomic RNAs 
(sgRNAs) that have a common 3’ end and sport an 
identical leader sequence derived from the 5’ end of 
the viral genome (Masters and Perlman, 2013; Kim 
et al., 2020). The leader sequence allows for capping 
and translation of all viral transcripts (Masters and 
Perlman, 2013; Kim et al., 2020).

The next step in the SARS-CoV-2 replication 
involves the establishment of a specialized organelle 
in continuity with the endoplasmic reticulum (ER) 
called a double-membrane vesicle (DMV) structure 
(Klein et al., 2020). The DMV is thought to coordinate 
viral replication and to sequester viral factors away 
from innate immune sensors in the cytoplasm (Klein 
et  al., 2020). Of note, DMV membranes bear ultra-
structural resemblance to autophagosome mem-
branes, and autophagy markers are upregulated in 
SARS-CoV-2–infected cells (Stukalov et al., 2020).

Viral RNA synthesis by coronaviruses generally 
involves the production of a complementary nega-
tive-strand RNA template starting from the 3’ end of 
the viral genome (Masters and Perlman, 2013; Kim 
et al., 2020). Full-length templates are used for syn-
thesis of progeny + RNA viral genomes, while the 
shorter sgRNA templates drive the expression of the 
four viral structural proteins plus accessory proteins 
that may play a role in virus-host interactions 
(Masters and Perlman, 2013; Liu et al., 2014). Rather 
than engaging in RNA splicing, coronaviruses have a 
unique method of ensuring inclusion of the genomic 
5’ leader sequence in each sgRNA, which is essential 
for translation. Directly upstream of the body of each 
structural gene is a conserved “Transcription 
Regulation Sequence” (TRS-B), which is identical to a 
motif in the 5’ leader sequence (TRS-L). As the RTC 
engages the negative-strand RNA synthesis, the poly-
merase can cross over from the TRS-B motif, located 
upstream of the coding sequence in each nascent 
sgRNA template, to the TRS-L sequence, thereby 
appending the 5’ end of the genome to each RNA. As 
a result, coronaviruses rely heavily on genetic recom-
bination to complete its life cycle and have a procliv-
ity for rapid viral evolution (Banner and Lai, 1991). 
Reflecting this, the dominant SARS-CoV-2 genotype 
appears to have changed with enhanced infectivity as 
the virus spread from China to Europe and beyond 
(Korber et al., 2020). Even in the same infected indi-
vidual, SAR-CoV-2 genomes can vary based on the 
anatomic location of sampling within the respiratory 
system (Wölfel et al., 2020).

The final step in the SARS-CoV-2 life cycle is the 
assembly and release of virions. For coronaviruses, 
structural proteins of the viral envelope (the S, M, 

and E proteins) are cotranslationally inserted into the 
ER membrane and traffic to the ER-Golgi intermedi-
ate compartment (ERGIC; Masters and Perlman, 
2013; Klein et al., 2020). There, nucleocapsids consist-
ing of progeny genomes bound by N protein interact 
with the envelope proteins and bud into the ERGIC 
lumen. Virions are believed to reach the extracellular 
space by bulk transport, although transport through 
lysosomal compartments was recently suggested as 
an alternative (Ghosh et al., 2020). A fraction of S pro-
tein reaches the plasma membrane, causing cell 
fusion with neighboring infected cells and the forma-
tion of multinucleated giant cells that are characteris-
tic of COVID-19 lung pathology (Masters and 
Perlman, 2013; Bryce et al., 2020).

To summarize, SARS-CoV-2 engages infected hosts 
at multiple levels during severe infection, inserting 
itself into the host’s physiological processes, immune 
responses, and fundamental cellular machineries. All 
these layers of biological organization are influenced 
by circadian rhythms, whose basic structure in mam-
mals is summarized in the next section.

relevant features of circadian clock organization

Circadian clocks impose a 24-h temporal structure 
on more processes than we are able to count (Zhang 
et al., 2014). In 1972, Arnold Eskin conceptualized cir-
cadian clocks as possessing an input pathway, an 
oscillator and output pathway (Eskin, 1979). We now 
know that this is an oversimplification of the system 
(Roenneberg and Merrow, 1998; Duguay and 
Cermakian, 2009; Ince et al., 2019; Reinke and Asher, 
2019), but it remains a useful tool for conceptualiza-
tion of circadian organization. The input pathway 
processes zeitgeber signals. Zeitgebers are the regu-
lar, predictable signals emanating from the environ-
ment that organisms and cells use to synchronize to 
time of day. For human behavior, light is the main 
zeitgeber, acting via specialized retinal cells that 
directly innervate the suprachiasmatic nuclei (SCN) 
of the hypothalamus (the pacemaker for human 
behavior). A well-known confounder of human syn-
chronization is self-regulated and socially regulated 
exposure to light such that the natural photic envi-
ronment is not faithfully represented to the brain. We 
do this by turning off the lights and closing our eyes 
when we sleep as well as by living indoors and there-
fore changing the amplitude of the light/dark cycle 
or, in extreme examples, by changing the timing of 
our light environment due to shift work. The conse-
quences of “living at the wrong time” (shift work) are 
dire. Long-term shift workers have increased risks of 
metabolic syndrome, coronary heart disease, and cer-
tain types of cancers (Schernhammer et  al., 2001, 
2003, 2006; Vetter et  al., 2016). The phenomenon 
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called social jetlag refers to the generally smaller shift 
in timing due to the mismatch of social (e.g., school or 
work) and biological clocks (Roenneberg et al., 2012). 
Social jetlag is also characterized by behavioral and 
physiological deficits. It is remarkable that even rela-
tively short bouts of desynchrony can result in meta-
bolic disturbance. After an experimental protocol 
called forced desynchrony, whereby human subjects 
are forced into a situation where they cannot synchro-
nize to the short or long zeitgeber cycle, individuals 
continue to show circa 24-h daily oscillations in phys-
iology but prediabetic features become evident 
(Scheer et al., 2009). A common consequence of con-
trolled phase shifts, as occurs in transmeridian travel 
or shift work, is decreased amplitude of the circadian 
clock (Dijk et al., 2012).

In addition to synchronization of the organism as a 
whole, each cell within us possesses a circadian clock. 
Indeed, the organismal clock is built on individual 
cellular circadian clocks. They respond to a cocktail of 
endogenous zeitgebers for their synchronization. 
Already in 2000, Basolobre et al. (2000b) showed that 
cyclic adenosine monophosphate (cAMP) analogs, 
dexamethasone, protein kinase C, and Ca2+ could 
synchronize and phase shift clock gene oscillations in 
Rat-1 fibroblasts. That this is relevant for human 
entrainment and clock-regulated gene expression 
was shown with administration of glucocorticoids 
once a day, in the afternoon, resulting in reentrain-
ment of clock gene expression in peripheral blood 
mononuclear cells (PBMCs; Cuesta et  al., 2015). 
Importantly, the timing of nutrient uptake has 
remarkable effects on the timing of clock gene expres-
sion in the liver. Experiments showed that the timing 
or phase of rhythmic gene expression in peripheral 
organs can resemble that of the SCN (entrained using 
light) or that of the liver (entrained using food) 

depending on the tissue and the relative strengths of 
the zeitgebers (Stokkan et  al., 2001). Cellular clocks 
may be amplitude - attenuated by irregular zeitgeber 
timing (Cuesta et al., 2015), as has been observed at 
the organismal level, leading to a dysregulated circa-
dian system. Obviously, entrainment or synchroniza-
tion is a dominant feature of the circadian clock.

Concerning the oscillator mechanism, genetic data 
show transcription factor networks toggling between 
activation and repression to execute daily timing at 
the molecular level (Aryal et  al., 2017). As with all 
other known transcription factors, the clock operates 
in large multimeric protein complexes. This formula 
creates many opportunities for fine tuning of daily 
timing. Changes in the timing of transcription, trans-
lation, and posttranslational modifications of any of 
the clock regulators, and changes in the temporal 
structure of zeitgebers could result in fundamental 
changes in characteristics of the oscillator and thus its 
synchronization properties.

The output pathways are like the hands of a clock, 
influencing clock-controlled regulation. Rhythmic 
gene expression—beyond the transcription factors 
thought to be at the center of the process—is gener-
ally tissue specific (Zhang et  al., 2014). Historically, 
there have been reports of some tissues lacking clock-
regulated gene expression, namely testis and thymus 
(Alvarez and Sehgal, 2005). More recently, the baboon 
transcriptome showed rhythms in these tissues (Mure 
et al., 2018). It may be that all tissues show daily tem-
poral structures at the molecular level. By extrapola-
tion, we suggest that all tissues will exhibit functional, 
tissue-specific circadian clock regulation.

relevance of the circadian clock to SArS-coV-2 
Biology and Pathology

Is there any reason to connect rhythms to the dis-
ease process—from infection to pathology—associ-
ated with critically ill COVID-19 patients? One could 
look at this from a level of the biology of the virus as 
it leads to (different degrees of) pathology to how the 
circadian clock may contribute to containment or 
exacerbation of symptoms to considerations in the 
clinical critical care environment. Any of these aspects 
may lead to novel opportunities for interventions.

Concerning viral biology, are ACE2, TMPRSS2, and 
FURIN clock regulated within cells? We interrogated 
the database that describes gene expression in 64 tis-
sues over 24 h in young, healthy, male baboons (Table 
1; Mure et al., 2018). These genes are broadly expressed, 
with BACE2 (the baboon ACE2 ortholog) and FURIN 
giving a signal in all assayed tissues. TMPRSS2 is sim-
ilarly broadly expressed except in the hippocampus, 
the putamen, and the retina. Rhythmicity of RNA 
expression corresponding to these genes, however, 

table 1. daily rhythms in expression of severe acute 
respiratory syndrome coronavirus 2–relevant genes in tissues 
isolated from baboons (Mure et al., 2018).

Gene Tissue

BACE2 (BABOON ACE2) Abdominal muscle

TMPRSS2 Omental fat

FURIN

Bladder
Cornea
Heart

Medial globus pallidus
Gastrocnemius muscle

Prefrontal cortex
Testicles
Thyroid

Ventromedial hypothalamus

Abbreviation: ACE2 = angiotensin-converting enzyme 2.
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occurs seldomly. The gene for ACE2 is rhythmic only 
in abdominal muscle. TMPRSS2 RNA is rhythmic 
only in omental fat tissue. FURIN-encoding RNA was 
rhythmic in nine tissues (bladder, cornea, heart, gas-
trocnemius muscle, testicles, thyroid, and three areas 
of the brain). ACE2 gene expression measured in 
homogenized mouse or human lung samples did not 
exhibit rhythmic expression (Zhang et al., 2014; Ruben 
et al., 2018). However, the lung has a high degree of 
cellular diversity, consisting of more than 40 cell types 
(Franks et  al., 2008; Montoro et  al., 2018; Reyfman 
et  al., 2019). It remains possible that ACE2 can be 
rhythmically expressed in specific cells types, in 
patients with inhaled exposures to irritants, or in the 
setting of chronic lung diseases.

ACE2, angiotensin-converting enzyme 2, catalyzes 
the hydrolysis of angiotensin 2 into angiotensin 1-7, 
which has important anti-inflammatory properties 
(Kuba et  al., 2013). As a result, the relationship 
between ACE2 levels and COVID-19 clinical severity 
is more complex than it appears at first glance. For 
example, ACE2 and angiotensin 1-7 levels tend to be 
reduced in older individuals, a group that it is never-
theless at high risk for clinically severe COVID 
(AlGhatrif et al., 2020; Miller et al., 2020). In this case, 
whatever benefit might be gleaned by lower ACE2 
levels on viral entry is apparently outweighed by the 
magnification of host inflammatory responses that 
result from the reduced amounts of angiotensin 1-7 in 
older patients. While rhythmicity of ACE2 levels in 
the lung has not yet been shown, ACE2 shows a diur-
nal variation in the blood (Veglio et  al., 1987). RAS 
has also been shown to influence the circadian clock 
by modulating the expression of core clock genes 
such as PER2 and BMAL1 (Nonaka et al., 2001).

Biological functions involved in viral processing 
within cells (lysosomes, endocytic trafficking, and 
various extracellular proteases) commonly exhibit 
circadian oscillations in activity (Mazzoccoli et  al., 
2015; Cuddapah et  al., 2019; Chang et  al., 2020). In 
general, a single rhythmic rate-limiting step in viral 
cell biology is sufficient to impose rhythmicity on the 
entire process. Therefore, there are a number of pos-
sibilities that could lead to rhythms in in vivo viral 
processing.

Concerning how the circadian clock may contribute 
to exacerbation of pathology in critically ill patients 
with COVID-19, several symptoms are particularly rel-
evant. These patients may experience respiratory fail-
ure, microcoagulation events, and cytokine storm. The 
molecular mechanisms involved in each of these are 
regulated by the circadian clock. For instance, human 
respiratory function shows clock regulation in mechan-
ics (airway resistance and flow characteristics), ventila-
tory response to hypercapnia, and airway responses to 
inhaled allergens (Shimoda and Semenza, 2011). 

Concerning hypoxemic respiratory failure that can 
occur in COVID-19, it is important to note that circa-
dian clocks are sensitive to cellular oxygenation status 
via the action of hypoxia inducible factor 1 alpha 
(HIF1a; Adamovich et al., 2017; Peek et al., 2017). As 
such, COVID-19 respiratory failure and its treatment 
likely alter clock-regulated gene expression in the lung, 
similar to what has been described in other acute lung 
injuries (Jafri et al., 1992; Richardson Jones et al., 1996; 
Bremner et al., 2000; Numminen et al., 2000). Regarding 
the coagulation cascade, both clotting function and 
clotting factors show complex time-of-day differences. 
Several studies have demonstrated a diurnal rhythmic-
ity in human platelet function (platelet counts and acti-
vation), endothelial function, and several coagulation 
and fibrinolytic parameters (activated factor VII, factor 
IX, beta-thromboglobulin, platelet factor 4, and fibrino-
gen; Rosing et  al., 1970; Tofler et  al., 1987; Akiyama 
et al., 1990; Willich et al., 1992, 1993; Etsuda et al., 1999; 
Ündar et  al., 1999; Guagnano et  al., 2000; Ringqvist 
et al., 2000; Gaenzer et al., 2001; Osmancik et al., 2004; 
Otto et al., 2004; Rudnicka et al., 2007). The circadian 
clock has been shown to modulate both intrinsic and 
extrinsic coagulation pathways, and the phase relations 
of the rhythms of different coagulation parameters may 
contribute to the known circadian variations in the fre-
quency of arterial (e.g., myocardial infarction, sudden 
cardiac death, cerebral infarction; Willich et  al., 1993; 
Montagnana et al., 2009) and venous (e.g., deep vein 
thrombosis and pulmonary embolism) thromboem-
bolic events as well as hemorrhagic phenomena (intra-
cerebral hemorrhage, rupture of aortic aneurysms; 
Maemura et al., 2006; Maas et al., 2020c).

With regard to the expression of cytokines, both 
the transcription of cytokine-encoding genes as well 
as stimulation of cytokine release show strong time-
of-day regulation. Clock proteins are known to be 
activators of some cytokines and suppressors of oth-
ers (Timmons et al., 2020). Clock regulation occurs in 
macrophages and monocytes (Figure 2) as well as for 
T cells, thus impacting the immune responses of these 
cells to pathogens (Scheiermann et  al., 2018). It has 
been suggested that mechanically ventilated COVID-
19 patients may have suppressed type I interferon 
responses (Hadjadj et al., 2020). It is possible that a 
misalignment here could influence the probability of 
the occurrence of a cytokine storm. This aspect is dis-
cussed in the companion paper on the clock and the 
immune system with respect to COVID-19.

coVId-19 and chronopharmacology

The development of therapies to mitigate COVID-19 
is an intense area of focus. Current therapies available 
to critically ill patients include anti-inflammatory 
drugs like glucocorticoids and tocilizumab, direct 
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antivirals like remdesivir, and SARS-CoV-2–
neutralizing antibodies conferred by convalescent 
plasma. Whether time of day plays a role in the effi-
cacy of these drugs in COVID-19 patients is unclear. 
However, the pharmacokinetics and pharmacody-
namics of many drugs are known to change over the 
24 h. Accordingly, so do the efficacy and tolerance to 
chemotherapy (Dallmann et al., 2016), and antibody 
response to vaccination (Long et  al., 2016). A recent 
study has shown that approximately 50% of all cur-
rently used drugs target the product of a gene under 
circadian control (Anafi et al., 2017). Finally, the out-
comes of certain types of surgery (e.g., aortic valve 
replacement; Montaigne et al., 2018) also vary across 
time of day. Time of day differences may reflect the 
time of maximum efficacy and success, or alterna-
tively, the time of minimum adverse effects (Ballesta 
et al., 2017).

Recently, a prospective meta-analysis from the 
WHO Rapid Evidence Appraisal for COVID-19 
Therapies (REACT) Working Group pooled data from 
seven trials totaling 1703 patients and showed that 
administration of systemic corticosteroids is associ-
ated with a lower 28-day mortality in critically ill 
COVID-19 patients (Horby et  al., 2020; Sterne et  al., 
2020). Commonly known for their potent anti-inflam-
matory properties, glucocorticoids also act to syn-
chronize the cellular circadian clock in most cells. 
Interestingly, dexamethasone does not act on the SCN 
clock, only on clocks in nonpacemaker cells (Balsalobre 
et al., 2000a). Theoretically, glucocorticoid administra-
tion has the potential to synchronize peripheral clocks 
in patients, although there are no studies demonstrat-
ing glucocorticoids can do this in the setting of critical 

illness. Whether the salutary effects of glucocorticoids 
on COVID-19 can be ascribed to circadian regulation 
is unknown, but it represents a topic for future inves-
tigation. Another strong synchronizer of circadian 
rhythms, melatonin, came to the attention of COVID-
19 researchers (Cardinali et  al., 2020; Zhou et  al., 
2020b). In a large registry of patients undergoing test-
ing for suspected COVID-19, routine use of melatonin 
was statistically associated with a negative COVID-19 
quantitative polymerase chain reaction (qPCR) result, 
suggesting melatonin might suppress SARS-CoV-2 
replication (Zhou et al., 2020b). Melatonin is currently 
under investigation as a potential SARS-CoV-2 antivi-
ral therapy (Rodríguez-Rubio et al., 2020).

Implications of the critical care Environment and 
the circadian clock on coVId-19

The potential effect of the ICU environment on a 
patient’s circadian clock has been acknowledged for 
years. This may be especially relevant in critically ill 
COVID-19 patients who require a prolonged ICU 
stay with limited exposure to normal environmental 
zeitgebers. ICUs are well known to feature low, non-
cycling or weakly cycling light environments and 
excessive noise due to equipment and alarms, condi-
tions which disturb normal sleep (Boyko et al., 2017). 
Furthermore, many patients are sedated due to vari-
ous medical problems, interrupting behavioral con-
trol of light-dark cycles. In addition, feeding occurs 
intravenously and continuously, rather than by more 
physiological boluses. Various measures have con-
firmed that many ICU patients show either sup-
pressed or inappropriately synchronized circadian 

figure 2. circadian rhythms in critical illness. (a) daily behavior and melatonin profiles in healthy individuals. (b) In intensive care 
unit patients with neurological and systemic critical illness, behavioral rhythms are absent and melatonin rhythms show a variety of 
changes depending on severity (as characterized by the Glasgow coma Scale) and medication (the use of pressors or not). data from 
Maas et al. (2020c). (c) At the level of the lung, experiments in mice show expression of the PEr2::Luc transgene (d) is delayed by approx-
imately 4.5 h in hypoxic conditions. data from Manella et al. (2020). (e) Peripheral blood mononuclear cells show rhythms of nr1d1 and 
crY1 gene expression (f) which are absent in cells from critically ill patients. data from Maas et al. (2020a). (g) these same genes, nr1d1 
and crY1, show an 8-h difference in phase of expression in monocytes obtained from healthy human subjects. data from Wittenbrink et 
al. (2018). (h) We do not know what the status of molecular rhythms is in these cells in critically ill patients. time is expressed as external 
time (Ext), a convention that runs for 24 h starting at midnight (daan et al., 2002).
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rhythms. For example, Gazendem et al. (2013) showed 
that the phase of the rhythm in core body tempera-
ture was displaced by more hours in sicker patients, 
defined by a higher APACHE III score. A recent paper 
confirmed this general finding but used heart rate 
variability as a measure. Knauert et al. (2015) found 
that most patients (>80%) showed daily rhythms but 
that, already in the first 2 days in the ICU, the phase 
of the rhythms was misaligned relative to a control 
population. Based on these observations, we antici-
pate that many critically ill COVID-19 patients may 
have circadian rhythms, but the entrained phase 
(synchrony relative to the natural day) will not be 
normal and it will be difficult to predict with current 
information.

Certain severe illnesses may lead to disrupted cir-
cadian clock regulation independent of the environ-
ment. Patients with neurologic or systemic critical 
illness have been shown to rapidly enter a state of 
profound behavioral quiescence with the onset of ill-
ness, during which rest-activity rhythm showed 
severe temporal disorganization and dissociation 
from melatonin rhythms (Maas et  al., 2020c). 
Dampening of melatonin amplitude has been associ-
ated with worsening encephalopathy, although 
improvement in encephalopathy was not associated 
with corresponding change in melatonin amplitude 
(Maas et al., 2020b). The altered oxygenation status in 
the lung can shift the phase of clock gene expression 
in the lung (Figure 2c and 2d; (Manella et al., 2020)). 
Furthermore, circadian gene expression becomes 
dampened in the ICU (Figure 2e and 2e; (Maas et al., 
2020a)). A key question remains with respect to the 
state of the clock specifically in cells involved in acute 
inflammation via production of cytokines, potentially 
contributing to cytokine storm. Some of the highest 
amplitude circadian rhythms described to date occur 
in peritoneal macrophages (Keller et  al., 2009). The 
monocyte subset of PBMCs show distinct phase rela-
tionships between clock gene expression relative to 
the whole blood cell population (Figure 2g vs 2e; 
(Wittenbrink et al., 2018)). It is not known how these 
cells function in critically ill patients or those in the 
ICU (Figure 2h).

Interestingly, strong physiologic stressors can induce 
a state of sleep-like behavioral quiescence in animal 
models, which occurs in tandem with protective mech-
anisms to restore cellular homeostasis and recover from 
cellular stress (Hill et al., 2014; Iannacone and Raizen, 
2016; Nath et al., 2016; Trojanowski and Raizen, 2016). 
During critical illness, normal sleep architectures on tra-
ditional electroencephalography (EEG) frequently dis-
appear and are replaced with various abnormal patterns 
that are neither sleep nor wake in a healthy state. It is 
therefore difficult to apply traditional EEG scoring 
methods for sleep and infer underlying sleep-associated 

neurophysiologic processes to critically ill individuals 
(Watson, 2007; Watson et al., 2013; Schabus et al., 2018; 
Wislowska et al., 2018).

Nearly 30% of patients admitted to an ICU develop 
delirium, which increases the mortality risk (Salluh 
et al., 2015). Patients with COVID-19 are at increased 
risk of delirium due to multiple factors, including (1) 
direct central nervous system (CNS) invasion, (2) 
induction of CNS inflammatory mediators, (3) sec-
ondary effect of noncerebral organ system failures, 
(4) effect of sedative strategies, (5) prolonged mechan-
ical ventilation, (6) immobilization, and (7) isolation 
without family (Kotfis et  al., 2020). Accordingly, a 
high rate of delirium (up to 84%) has been reported in 
critically ill patients with COVID-19 infection (Helms 
et al., 2020a). Basic research suggests a link between 
the circadian clock and delirium. In animal models, 
constant light exposure, inflammation, and mid-
azolam exposure can induce delirium-like phenotype 
(i.e., impaired executive and memory function) and 
reduced expression of PER2 in the SCN. This delir-
ium-like phenotype was abolished by the PER2 
enhancer nobiletin (Gile et al., 2018).

Although it is clear that the circadian clock is chal-
lenged in the ICU, the origin of circadian manifesta-
tions in critically ill patients cannot be definitively 
attributed to the ICU environments. For example, 
severe illnesses may have direct effects on the circa-
dian clock, regardless of the ICU environments. 
Furthermore, we have been operating with a bias that 
an intact circadian system is always optimal. This is 
partly due to observations of disruptions of metabo-
lism with short-term clock disruption and increased 
chronic pathologies with long-term disruption 
(Schernhammer et al., 2001; Scheer et al., 2009). Stress-
induced disruption of circadian rhythms or behav-
ioral quiescence may rather represent a distinct 
adaptive mechanism. If this is correct, then restora-
tion of daily rhythms in physiologic variables may be 
harmful. In other words, the “optimal state of biologi-
cal rhythms” during critical illness may be different 
from that in health.

Incorporation of the circadian clock Into critical 
care Paradigms for Health and Knowledge

Discovering the State of the Circadian Clock in the 
ICU. Chronobiologists are often biased to think that 
the presence of a circadian rhythm is the preferred 
state. Here, we have identified an ambiguous situa-
tion with a testable hypothesis. Our alternative 
hypothesis is that supporting the circadian clock 
with zeitgebers will lead to entrainment and daily 
rhythms, and this in turn will lead to a better out-
come. The null hypothesis would be that the pres-
ence of rhythms is an exacerbation and that the 
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suppression of rhythms sometimes seen in serious 
illness is adaptive. These hypotheses could be tested 
descriptively via collection of continuous data from 
ICU stations and analysis for rhythmicity and appro-
priate entrained phase as correlated with outcome. 
The data routinely collected in the ICU—e.g., tem-
perature, oxygen saturation, and heart rate—show 
circadian rhythms in normal individuals. It repre-
sents a huge amount of information if it can be har-
nessed and analyzed. The hypotheses could also be 
tested experimentally, for example, by examining 
whether the circadian phase, amplitude, or robust-
ness in temperature rhythms is associated with 
patient outcomes from severe COVID-19.

Given that the mediators of the most common 
complications in COVID-19 (hypercoagulation/
bleeding, cytokine storm) are extensively regulated 
by the circadian clock, it may be expected that they 
occur at discrete times of day. Understanding this 
would allow for preventive treatments. Without 
deeper knowledge of the endogenous circadian clock 
characteristics specifically in the ICU, correct deter-
mination of clock regulation of these complications is 
not possible. What is needed is a comprehensive atlas 
of potential circadian outputs in ICU patients that 
include minimally invasive measurements such as 
blood pressure, heart rate, body temperature, as well 
as serial peripheral blood sampling over at least two 
cycles. From this dataset, ICU-appropriate biomark-
ers of the circadian clock can be derived to determine 
the circadian profile of the patient (rhythmic/non-
rhythmic, amplitude, phase) and to assess the inter-
nal time of greatest risk for complications and that of 
optimal medication dosing schedules.

Delivering a Zeitgeber Cycle in the ICU. It can be chal-
lenging to administer a high-amplitude zeitgeber, 
whether light/dark or administration of corticoste-
roids with a <24-h half-life, to sedated or septic 
patients. Glucocorticoid administration should be 
weighed against its potentially life-threatening side 
effects including immunosuppression, and creating a 
dark environment for the patient during the night 
may interfere with patient care. On the other hand, 
modifying timing of nutritional support is feasible in 
the ICU for many patients and could potentially 
entrain peripheral clocks. We know of no efforts to 
administer food in the ICU intermittently, mimicking 
normal eating behaviors, in sedated patients. How is 
feeding accomplished in the ICU and what does 
nutrition therapy look like? Clinical trials and guide-
lines on nutrition therapy during and after critical ill-
ness have largely focused on optimal timing (early vs 
late initiation), route of delivery (gastric vs jejunal vs 
parenteral), and caloric/protein target. Enteral nutri-
tion (EN) is the preferred route of artificial nutrition 

therapy in critically ill patients. Initiation of nutrition 
support therapy in the form of early EN within 24-48 
h is recommended in the critically ill patient who is 
unable to maintain volitional intake, unless there are 
reasons to delay EN such as enteral obstruction, 
active gastrointestinal bleeding, and compromised 
splanchnic circulation (Taylor et  al., 2016; Singer 
et al., 2019).

Several methods of EN administration exist, 
including continuous, cyclic, intermittent, and bolus 
techniques. Continuous feeding involves hourly 
administration of EN over 24 h assisted by a feeding 
pump; cyclic feeding involves administration of EN 
over a time period of <24 h generally assisted by a 
feeding pump; intermittent feeding involves admin-
istration of EN over 20-60 min every 4-6 h via pump 
assist or gravity assist; and bolus feeding involves 
administration of EN over a 4- to 10-min period using 
a syringe or gravity drip.

In practice, pump-assisted continuous feeding is 
generally acceptable for critically ill patients to 
reduce EN-related complications such as aspiration, 
feeding intolerance/high gastric residual, under-
feeding, and diarrhea. However, a limited number of 
studies have been conducted to support this practice 
(Hiebert et  al., 1981; Kocan and Hickisch, 1986; 
Ciocon et al., 1992; MacLeod et al., 2007). Small ran-
domized controlled studies comparing bolus to con-
tinuous feeding in ventilated critically ill adults have 
shown greater volume with fewer interruptions in 
continuous feeding but no significant difference 
between feeding techniques with regard to patient 
outcome (Hiebert et  al., 1981; Kocan and Hickisch, 
1986; Ciocon et al., 1992; Bonten et al., 1996; Steevens 
et al., 2002; MacLeod et al., 2007). Based on existing 
evidence, the Society of Critical Care Medicine 
(SCCM) and American Society for Parenteral and 
Enteral Nutrition (ASPEN) suggest switching from 
bolus to intermittent EN in cases of feeding intoler-
ance, whereas European Society for Clinical Nutrition 
and Metabolism (ESPEN) recommends continuous 
rather than bolus EN (Grade B—strong consensus; 
Taylor et al., 2016).

Time-restricted feeding (TRF) is an approach to 
resetting biological rhythmicity via metabolic entrain-
ment of peripheral tissues. It may be time to explore 
the possibility of pursuing circadian realignment by 
optimizing the timing of feeding in relation to day-
night cycle for critically ill patients receiving EN 
(Sunderram et al., 2014). Currently, no study has been 
performed to investigate the effects of timing of feed-
ing in either bolus or continuous feeding in the ICUs. 
Future investigation will need to be equipped with a 
thoughtful selection of potential biomarkers of rhyth-
micity in peripheral tissues that can be collected in 
the clinical setting (e.g., microbiome, metabolomics/
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transcriptomics) and of clinically meaningful out-
come variables.

SuMMArY

Taken together there are numerous aspects of the 
COVID-19 pandemic that may have a relationship to 
circadian and other biological rhythms, ranging 
from behavior of asymptotic carriers, organ physiol-
ogy in the sick, the viral life cycle within infected 
cells, and the host immune response. Although bio-
logically plausible, there has been limited attention 
to the potential protective effects of healthy sleep 
and circadian rhythms. Interestingly, the consider-
ation of the available data on the ICU environment 
and critically ill patients points out the lack of data 
demonstrating if and how sleep and a synchronized 
clock contribute to healing. There are numerous 
examples of circadian disruption leading to illness 
but few examples of synchronization leading to 
healing. With judicious collection of time-stamped 
data, the current pandemic can be used to better 
understand how the circadian clock is involved in 
critical illness. We also propose that knowledge of 
the state of the circadian clock may be used to miti-
gate all stages of COVID-19.
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