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ABSTRACT: In recent years, large-scale structure-based virtual
screening has attracted increasing levels of interest for identi-
fication of novel compounds corresponding to potential drug
targets. It is critical to understand the strengths and weaknesses of
docking algorithms to increase the success rate in practical
applications. Here, we systematically investigated the docking
successes and failures of two representative docking programs:
UCSF DOCK 3.7 and AutoDock Vina. DOCK 3.7 performed
better in early enrichment on the Directory of Useful Decoys:
Enhanced (DUD-E) data set, although both docking methods were
roughly comparable in overall enrichment performance. DOCK 3.7 also showed superior computational efficiency. Intriguingly, the
Vina scoring function showed a bias toward compounds with higher molecular weights. Both the tested docking approaches yielded
incorrectly predicted ligand binding poses caused by the limitations of torsion sampling. Based on a careful analysis of docking
results from six representative cases, we propose the reasons underlying docking failures; furthermore, we provide a few solutions,
representing practical guidance for large-scale virtual screening campaigns and future docking algorithm development.

■ INTRODUCTION
Structure-based virtual screening (SBVS), also known as
molecular docking, predicts binding geometries based on
structural complementarity between small molecules and a
target binding site. SBVS programs score and rank molecules
from large chemical libraries based on the predicted binding
energies.1−3 SBVS has been widely applied in drug discovery in
the past several years.4−10 A recent study clearly demonstrated
the power of the SBVS strategy, identifying novel nonpeptidic
3CLpro inhibitors and rapidly leading to a promising, oral
clinical candidate for treating COVID-19.11

In recent years, due to increases in computer hardware
capacity, continuous algorithm development, and significant
expansion of chemical synthetic libraries, large-scale SBVS has
provided opportunities for novel chemotype discovery from
millions or even billions of compounds.7,8,12−17 Lyu et al.
identified noncovalent inhibitors of AmpC β-lactamase and a
picomolar subtype-selective agonist of the D4 dopamine
receptor from 99 million and 138 million make-on-demand
compounds, respectively, using UCSF DOCK 3.7 (referred to
here as DOCK 3.7).7 Gorgulla et al. developed an open-source
drug discovery platform, VirtualFlow, using AutoDock Vina
(referred to here as Vina) as the main docking engine.17 They
demonstrated the power of Vina to identify novel inhibitors
with nanomolar affinity against the KEAP1-NRF2 complex
from over 1 billion compounds in the Enamine REAL library
and the ZINC database.17 The commercially available software
Glide was applied to discover micromolar hits against the
androgen receptor from 3 million lead-like compounds.8 The

successes of large-scale SBVS studies have confirmed that this
method has a wide range of applications, which are likely to
increase even further with the advent of AlphaFold 2.18

At present, sampling methods to identify ligand binding
geometries can be roughly divided into systematic search
algorithms and stochastic search methods.19 Various scoring
functions, including physics-based, empirical, knowledge-
based, and machine-learning, have been developed to estimate
binding affinities.20 DOCK 3.7 and Vina are the most common
tools employed by end users in large-scale SBVS studies due to
the ease of acquisition, high computational efficiency, and
continuous improvement. Notably, DOCK 3.7 and Vina have
used very different paths of methodology development (Figure
1). In brief, DOCK 3.7 uses systematic search algorithms, in
which ligand conformations are precomputed before docking;
Vina adopts stochastic search methods, requiring only a
starting ligand conformation and performing on-the-fly
conformational sampling. DOCK 3.7 employs a physics-
based scoring function, consisting of van der Waals (vdW),
electrostatic, and ligand desolvation terms;21,22 Vina uses an
empirical scoring function, which includes two gauss terms, a
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repulsion term, a hydrophobic term, a hydrogen-bonding term,
and a penalty on rotatable bonds, and was trained with the
PDBbind data set.23 Due to the distinct features in docking
methodologies employed by the two programs, we expected
that docking results generated by the two may differ greatly for
specific protein targets.
Since large-scale SBVS has been extensively applied to

identify novel ligands, the application of these programs should
be rigorously assessed in a large-scale and unbiased setting.
Careful analysis of docking successes and failures will facilitate

the practical application of these programs to specific targets.
Moreover, it is critical to understand the strengths and
weaknesses of different docking algorithms to lower the risk of
failures resulting from the inherent drawbacks of each program.
Here, we assessed two representative docking programs,
namely, DOCK 3.7 and Vina, which are highly optimized for
large-scale SBVS usage. The overall performance was
evaluated, including the ability to enrich actives and the
computational cost. Issues such as biases for specific
compound properties and irregular torsion distribution in

Figure 1. Comparison of DOCK 3.7 and Vina methodologies. The two programs use different compound input file preparation strategies. DOCK
3.7 uses a precalculated strategy to prepare compound conformations stored in DB2 files, whereas Vina requires only a PDBQT-formatted 3D
structure. To search the compound conformation space, DOCK 3.7 uses a graph-matching algorithm, whereas Vina uses gradient optimization
sampling with the Monte Carlo method. DOCK 3.7 uses physics-based scoring functions including vdW, electrostatic, and desolvation terms. Vina
employs an empirical scoring function, including two gauss terms and repulsion, hydrophobic, hydrogen bond, and rotatable bond terms with
different weights; weight is here represented by size. Terms with positive and negative weights are represented by orange and green circles,
respectively.
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docking poses were discussed. Six representative targets were
analyzed in great detail: β-2 adrenergic receptor (ADRB2),
MAP kinase-activated protein kinase 2 (MAPK2), FK506-
binding protein 1A (FKB1A), androgen receptor (ANDR),
coagulation factor X (FA10), and catechol-O-methyltransferase
(COMT).

■ COMPUTATIONAL METHODS
Data Set. The Directory of Useful Decoys: Enhanced

(DUD-E)24,25 was used to assess the performance of the two

docking programs. This data set is available at http://dude.
docking.org/. It contains 102 protein targets with correspond-
ing experimentally validated active ligands and 50 property-
matched decoys for each active. There are a total of 22 886
actives and more than 1 million decoys.
UCSF DOCK 3.7. Targets were prepared using the DOCK

Blastermaster pipeline,26 in which polar hydrogens were added
to protein residues, cofactors were parametrized, target spheres
were generated for sampling precomputed ligand conforma-
tions, and the energy grid was calculated to score docking

Figure 2. Docking enrichment comparison. (A) Overall performance of DOCK 3.7 and Vina on the DUD-E data set. Each dot represents data
from one target. The number shown in each box is the median value. (B) EF1 values of targets categorized by family. (C) EF1 value comparison for
proteins using DOCK 3.7 (blue) and Vina (orange). Targets indicated in red were selected for further in-depth analysis. The paired t-test was
employed, (ns) denotes no significant difference, (*) indicates 0.05 ≥ p-value ≥ 0.01, (**) means p-value < 0.01.
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poses. Cofactor parameters were extracted from DUD and
DUD-E.24,25 Metal ions in the binding pocket were treated as a
part of the protein target and were prepared according to a
previous procedure,27 where the partial atomic charge on the
metal ion was modified by redistributing 0.2 electron to each
binding-site atom coordinating with the metal ion, individually.
SPHGEN was used to place matching spheres in a binding
pocket.28 In this step, the crystallographic ligand heavy atoms
were chosen as the initial set of spheres; these were followed
by neighboring spheres generated by SPHGEN, resulting in 45
matching spheres by default.26,28 In energy grid generation,
CHEMGRID29 was used for vdW grid calculations using an
AMBER force field, QNIFFT30,31 was used for Poisson−
Boltzmann-based electrostatic potential calculations, and
SOLVMAP22 was used for ligand desolvation calculations.
Small molecules in DB2 formatted files32−34 were downloaded
from the DUD-E Web server.25 These molecules have had the
corresponding conformation space systematically searched
with OMEGA (OpenEye).21,35 DOCK 3.7 uses a graph-
matching searching algorithm to sample ligand conformations.
The rigid anchor fragments in ligands were positioned
successively to match the precalculated target spheres with a
starting distance tolerance of 0.05. This was followed by
increasing the distance tolerance (distance_step = 0.05) until it
reached the maximum distance (distance_maximum = 0.5) or
the number of orientational samples up to 1000 (match_goal =
1000). For each ligand, the sphere matching process quit if it
took longer than 10 s (timeout = 10.0). The vdW score for all
parts of the molecules was less than 10 kcal/mol (bump_max-
imum = 10 and bump_rigid = 10). For all systems, the same
docking setup was employed. Sphere “coloring” is a method of
labeling chemical properties and filtering probable ligand
orientations in DOCK 3.7 that significantly increases the speed
of docking calculations and improves enrichment performance
when used properly; this method was not used in this study to
avoid the possibility of enriching similar scaffold compounds.
For each docking pose in DOCK 3.7, a total energy score was
calculated, including the vdW, electrostatic, ligand polar
desolvation, and ligand apolar desolvation energies. For each
molecule, the pose with the best docking score was output.
AutoDock Vina (v.1.1.2). Target and crystal ligand files

were prepared for docking with AutoDockTools (ADT)
version 1.5.6,36,37 in which the Gasteiger charge and atom
type were added. Metal ions in the binding pocket were
reserved and were also prepared with the default ADT
procedure. It is worth noting that Vina does not require us
to assign partial atomic charges to metal ions due to the
empirical scoring function.38 The coordinates of the box center
and the box size, determined by the position of the crystal
ligand, were used to determine the target pocket for molecular
docking. Specifically, the box center coordinates were
calculated by ADT, and the box size was confirmed by adding
15 Å to each of the three dimensions. The molecule input files
(in PDBQT format) were converted from SYBYL MOL2
format using ADFRsuite version 1.0.39,40 We used the default
global searching exhaustiveness of 8. Only the lowest-scoring
pose for each molecule was output. Except where otherwise
specified, default parameters were used.
Assessment Criteria. Performance was assessed based on

the ability of each docking program to enrich true positives.
Enrichment factor41 is a simple metric that indicates how many
actives are enriched at a defined “early recognition” point
within a library. The enrichment factor at 1% of the ranked

database (EF1) was calculated to represent early enrichment
ability. Furthermore, the adjusted logAUC metric,22,42 a
variation of the receiver operator characteristic (ROC) metric,
was used to evaluate the overall enrichment ability. Adjusted
logAUC plots were generated to visualize docking perform-
ance, in which the log10 of the percentage of decoys found were
shown on the x-axis, the percentage of actives found were
shown on the y-axis, and the random logAUC (14.5%) was
deducted.
Compound Property Analysis. RDKit43 was used to

calculate the physicochemical properties of compounds,
including molecular weight (MW), octanol−water partition
coefficient (logP), number of rotatable bonds (rotB), number
of hydrogen bond donors (HBD), number of hydrogen-bond
acceptors (HBA), and charge (Q).
Torsion Distribution Analysis. TorsionChecker,44,45 a

command line version of TorsionAnalyzer, was applied to
determine the rationality of torsions. Torsion of a rotatable
bond in each docking pose was compared to the distribution
based on the crystal structure extracted from the Cambridge
Structural Database (CSD)46 or the Protein Data Bank
(PDB).47,48 We used OpenBabel49 to convert Vina output
PDBQT files to SDF format before calculating torsion
distribution. We then extracted irregular torsions in docking
poses outside the defined second tolerance interval in
TorsionAnalyzer, which indicated that a specific torsion was
rare in the torsion library. To determine why irregular torsions
frequently occurred in the docking poses of both programs, we
counted the occurrence of irregular torsions. TorsionAnalyzer
was used to visually inspect irregular torsions.

■ RESULTS AND DISCUSSION
Overall Performance. The docking enrichment perform-

ances were summarized in Figure 2 and Table S1. Our results
were comparable to those previously reported results using
DOCK 3.7 or Vina, respectively.21,50 The two programs
showed comparable overall enrichment performance, with
median adjusted logAUC values of 16.2 and 16.8, respectively.
However, DOCK 3.7 significantly outperformed Vina for early
enrichment of actives, with the median EF1 of 10.9 and 7.0 of
all DUD-E targets or median EF1 of 11.4 and 7.45 of different
target families, respectively. A comparison of the performances
of different target families showed that Vina outperformed
DOCK 3.7 on nuclear receptors, whereas DOCK 3.7
performed better on G-protein-coupled receptors (GPCRs)
and proteases; the two programs generally had comparable
performances on the other families (Figure 2B). A radar plot
showing the detailed EF1 values distribution is shown in Figure
2C. Using the default parameters, DOCK 3.7 took an average
of 4 s to dock each molecule in DUD-E, which was 23 times
faster than Vina, where all docking experiments were carried
out in the same Linux cluster using Intel(R) Xeon(R) Gold
5117 CPUs with 2.00 GHz. Here, we chose six representative
targets for detailed analysis based on the protein target family,
early enrichment performance, types of actives enriched, and
typical issues in docking (Figure 2C). For example, a GPCR
target ADRB2 and a kinase target MAPK2 had similar early
enrichments, while different types of actives were enriched by
DOCK 3.7 and Vina, respectively. FKB1A was chosen due to
the completely distinct types of inhibitors enriched by two
docking approaches. ANDR was selected to represent nuclear
receptors for which DOCK 3.7 failed to generate docking
poses, and the failure of rigid docking on this target was
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reported previously.25 Both programs performed well in
protease FA10. COMT was selected as a representative
metalloenzyme to analyze the successes and failures of docking
programs on metalloenzymes.
Top-Scoring Actives Enriched by Each Program. We

expected that the top-scoring active lists may differ between
DOCK 3.7 and Vina because they employ different searching
algorithms and scoring functions. We analyzed the top 5% of
ranked molecules and extracted the intersection of actives
enriched by both programs. The top docking lists shared a
fraction of actives in common. For FA10, DOCK 3.7
performed slightly better than Vina, but the two programs
enriched structurally dissimilar actives in the top docking lists
(Figure 3). The enrichment performance of Vina was much
better than that of DOCK 3.7 for ANDR (Figure 3).
Intriguingly, there were cases like FKB1A, for which the two
docking approaches enriched completely different sets of
actives (Figure 3). This suggested that properly combining

results from different docking approaches might improve early
enrichment in SBVS studies.51−53

Molecular Property-Dependent Scoring Bias. We
examined the compound property distributions (including
MW, logP, rotB, HBD, HBA, and Q) compared to docking
scores for each target (Figure S1). A previous study suggested
that small-sized active ligands of the DUD-E data set were
ranked worse in both Vina and AutoDock when DUD-E active
ligands were divided into three groups�small-sized (MW <
400 Da), medium-sized (400 ≤ MW, Da ≤ 500), and large-
sized (MW > 500 Da).50 In our study, there was no correlation
between the MW and DOCK 3.7 score (Figure 4A). However,
there was a correlation between MW and the Vina docking
score for all DUD-E molecules, with a Pearson correlation
coefficient of −0.31 within the confidence interval when
considering molecules with docking scores less than 0 kcal/mol
(Figure 4B). Such a correlation still existed when both actives
and decoys were analyzed, individually (Figure S2). The
empirical scoring function of Vina was trained with the

Figure 3. Comparison of the enriched actives in the top 5% ranking lists of FA10, ANDR, and FKB1A. The Venn diagrams, showing the
intersecting and unique actives enriched by DOCK 3.7 and Vina, were generated using Matplotlib.54 The structures shown on the left and right
sides are the representative top-scoring actives for each target from DOCK 3.7 and Vina, respectively.
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PDBbind refined set,23,55 in which a correlation between MW
and binding free energy does exist (Figure 4C), suggesting that
the Vina scoring function prefers high-MW compounds.
Therefore, caution should be taken when using Vina in
large-scale SBVS campaigns. Since a docking score normal-
ization scheme via the number of ligand heavy atoms was
previously proposed to reduce the bias toward high-MW
compounds,56 a similar approach might be employed in a Vina
scoring function by rescaling the weight of energy functions.
Docking Pose Analysis. Incorrect docking poses are a

source of docking failures, and ligand torsion sampling is
critical in determining docking pose correctness.57,58 We
compared CSD torsion distributions with torsions generated
during docking and counted the occurrence of irregular
torsions. DOCK 3.7 and Vina produced 281 and 311 types of
irregular torsions, respectively (Table S2). The five highest-
ranked irregular torsions are included in Table 1. The
occurrence of irregular torsions was noticeably much higher
in the Vina results than in those of DOCK 3.7. Vina generated
the most irregular torsions in carbon−carbon single bonds;
these are one of the most common bond types in small
molecules, and irregular distribution would result in severely
disturbed docking poses. DOCK 3.7 employs a precomputed
conformational ensemble approach to hasten the ligand
conformational sampling process; Omega software is applied
to determine accessible conformations for each ligand in the
sampling process. During the ligand conformational ensemble
preparation stage, conformations with severe internal steric
clashes are removed. This contributes to the finding that
irregular torsions occur significantly less frequently in DOCK
3.7 than in Vina. We speculate that the following reasons
contribute to irregular torsion occurrence in DOCK 3.7. First,
to precompute conformations, the applied rotatable torsion
values were extracted from a knowledge-based list of angles,
which may contain systematic issues.35 Second, there was a
lack of ligand strain energy restriction in the scoring function.
Although a ligand strain energy term was recently added in
DOCK 3.7, its performance requires further validation.59 Vina
utilizes an on-the-fly searching algorithm, considering the
binding pocket information when it samples a set of molecule
conformations. Nevertheless, the internal steric hindrance is
not treated during docking, resulting in many irregular

torsions. Clearly, adding a ligand strain energy term to the
Vina scoring function may help to correct this problem.
In-Depth Analysis of Six Representative Systems. We

next conducted an in-depth analysis of the results from six
representative systems to better understand the different
performances of DOCK 3.7 and Vina. Figure 5 depicts the
adjusted logAUC of each target. Figure 6 shows the crystal
binding modes, the docking poses of the crystal ligands, and
the docking modes of representative actives.
ADRB2. Kolb et al. previously stated that the ligand-binding

pocket of ADRB2 is nearly ideal for molecular docking because
it is a narrow, deep cleft that is mostly hidden from solvent.61

However, DOCK 3.7 and Vina achieved only middling or poor
overall performance on this target (Figure 5A). Recognizing
critical interactions between docking poses and key residues is

Figure 4. Overall performance of DOCK 3.7 and Vina when considering target compound MW. (A) Total energy distribution of molecules with
scores ranging from −100 to 10 kcal/mol in DOCK 3.7. (B) Total energy distribution of molecules with scores less than 0 kcal/mol in Vina. (C)
Correlation between ligand MW and binding free energy of protein−ligand complexes in the PDBbind refined set (v2003). Rp, Pearson correlation
coefficient.

Table 1. Five Highest-Ranking Irregular Torsionsa

aNote that the 2D representations of irregular torsions were created
with RDKit. The 3D representations of torsions in representative
molecules were generated with UCSF Chimera.60 The black arrows in
the 3D structures indicate the torsion.
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an important metric in practical SBVS.57,62 ADRB2 was found
to have a conserved hydrogen-bond network between its
actives and Asp1133.32, Tyr3167.43, and Asn3127.39.63 Therefore,
the hydrogen-bond network formed in this target was used as a
criterion to compare docking performances of the two
programs. We noticed that most top-ranked actives in
DOCK 3.7 formed favorable interactions, demonstrated in
Figure 6. Although the top-ranked docking poses from Vina
occupied the crystal ligand binding pocket, they did not form
key interactions with the receptor (Figure 6). Besides, the
docking pose of crystal ligand in DOCK 3.7 is more accurate
than that of Vina in this target (Figure 6). Nevertheless, it
appeared that larger molecules received better docking scores
using Vina in this case, leading some actives with low MWs to
receive poor scores even though key interactions formed with
protein residues.
MAPK2. MAPK2 has a flat, half-buried pocket with several

hydrophobic residues surrounding the ligand that aid in
recognizing nonspecific interactions. In addition, the hydrogen
bond with the backbone amide nitrogen of Leu141 in the
hinge domain (and the hydrogen bond or electrostatic
interaction with Lys93 and Asp207) contribute to specific
recognition.64−67 The presence of a distinct interaction model
suggests that the binding pocket of MAPK2 may be ideal for
molecular docking. The enrichment performance with the
adjusted logAUC values of 19.63 for DOCK 3.7 and 29.87 for
Vina confirmed this (Figure 5B). Furthermore, DOCK 3.7 and
Vina both reproduced the crystal ligand binding mode in this
target (Figure 6). Top-ranked actives in DOCK 3.7 formed
both specific and nonspecific interactions (Figure 6), whereas
the majority of top-ranked decoys did not form key

interactions and even extended to the adjacent pocket.
However, only a portion of top-ranked actives in Vina were
able to form favorable interactions. We designed an
interaction-based filtering experiment based on the key
interactions that existed in MAPK2, requiring at least one
hydrogen bond to form between the ligand and the backbone
amide nitrogen of Leu141.68 Surprisingly, the enrichment ratio
in the top 1% of compounds from DOCK 3.7 and Vina
significantly increased to 24.94 and 19.96 from 12.97 and
13.97, respectively. This suggested that interaction-based
filtering may increase the hit rate for certain targets.
FKB1A. The binding pocket of FKB1A has a deep

hydrophobic cleft formed by Tyr26, Phe36, Phe46, Phe48,
Val55, Ile56, Trp59, Tyr82, Ile91, and Phe99;69−72 fitting of
the cleft with the core structure of inhibitors is the primary
stabilizing force in FKB1A−macrolide ligand binding.69 It was
previously reported that unfavorable steric overlaps impede
ligand fitting in the binding pocket of rigid proteins, and the
experimentally reported structure of FKBP12-FK506 has
therefore failed in rigid docking.71 That is one of the reasons
why both programs performed poorly on this target (Figure
5C) and why both programs failed to reproduce the crystal
ligand binding mode (Figure 6). Two types of developed
inhibitors, nature-inspired ligands and polycyclic ligands,73

were enriched by DOCK 3.7 and Vina, respectively (Figure 3).
However, because the actives enriched by DOCK 3.7 had
similar core structures compared to the crystal ligand, we
speculate that nature-inspired ligands may be enriched by the
graph-matching sampling method. Placing polycyclic ligands in
the rigid deep hydrophobic cleft with DOCK 3.7 is likely
challenging because the precomputed conformations of these

Figure 5. Adjusted logAUC plots for representative targets based on docking results from DOCK 3.7 and Vina (blue and orange lines,
respectively). Adjusted logAUC plots of (A) ADRB2, (B) MAPK2, (C) FKB1A, (D) ANDR, (E) FA10, and (F) COMT. The black dotted lines
show the results of randomly docking ligands. The adjusted logAUC percentages are shown in the top left of each graph.
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ligands may not match the rigid pocket. However, binding
pocket information is considered in Vina when ligands are
sampled; therefore, once polycyclic ligands were sampled and
scored, they were positioned into the pocket. It was clear from
the lack of hydrogen bonds between the docking poses and
protein residues (e.g., Tyr26 and Tyr82) that the top-ranked
polycyclic ligands were not the best match for the binding

pocket in Vina (Figure 6). The steric hindrance of the 80s loop
of the target may have prevented ligands with slightly larger
substructures from matching the receptor.71 There were other
docking poses that formed favorable interactions but were
ranked poorly by both DOCK 3.7 and Vina. This indicated
that both programs require us to treat protein flexibility to
recognize true actives for FKB1A.

Figure 6. Ligand binding models for six representative targets. The left, middle, and right images in each row depict the representative target
complex structure of the crystal ligand (the crystal binding mode in orange, DOCK 3.7 pose in pink, and Vina pose in cyan), the docking pose of a
top-scored active by DOCK 3.7, and the docking pose of a top-scored active by Vina, respectively. Green dotted lines indicate hydrogen bonds.
Images were generated using UCSF Chimera.
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ANDR. ANDR possesses a completely buried and highly
hydrophobic binding pocket composed of a large nonspecific
apolar cavity, in which vdW contacts form between several
hydrophobic residues and the ligand steroid nucleus.
Furthermore, several polar residues, which firmly tether the
steroid molecule via hydrogen-bond networks, play important
roles in ligand recognition.74 The various binding-site
conformations suggest that it is a difficult target for the rigid
docking strategy. Vina significantly outperformed DOCK 3.7
in enriching actives for this target (Figure 5D). Besides, Vina
reproduced the crystal ligand binding mode successfully, while
DOCK 3.7 failed to generate a docking pose in this case
(Figure 6). Top-ranked actives from both DOCK 3.7 and Vina
formed key interactions (Figure 6). However, DOCK 3.7
achieved only a 31.97% docking pose generation rate, which is
likely the main reason for its failure on this target. Compared
to decoys, there was a higher ratio of active compounds
containing one or zero rotatable bonds (Figure S3). This
suggested that ANDR actives were more rigid than decoys,
potentially resulting in a higher failure rate of actives. We
altered some parameters to correct this problem, such as
ignoring check_clash to tolerate internal clashes, increasing
maximum_score to allow molecules with poor predicted
docking scores, and increasing bump_maximum and bump_rig-
id to reduce the repulsion of vdW scores. These changes did
not significantly improve the docking success rate, despite
some improvements in enrichment. We next tried scaling the
vdW parameter, which increased the docking pose success rate
to 75.92%, but this did not improve enrichment. Thus, the
precalculated rigid ligand conformations used by DOCK 3.7
increased the difficulty of achieving satisfying results. This
phenomenon indicated that the precalculated ligand con-
formation strategy and hardcore repulsive vdW parameters
may not be suitable for these binding pockets.
FA10. FA10, one of the 15 proteases present in DUD-E, has

a distinctive binding pocket with a highly durable shape and
concave subpockets. The S1 pocket, with Asp189 and Tyr228
at the bottom, contributes to both electrostatic interactions
and hydrophobic interactions, and the S4 pocket (containing
Tyr99, Phe174, and Trp215) is involved in both cation-Π and
hydrophobic interactions.75,76 Inhibitors of FA10 are com-
monly L-shaped.75 In ligand binding mode, both ligand ends
are fixed by prominent interactions with the S1 and S4
subpockets, and some ligands form hydrogen bonds in the
middle part that consolidate the binding conformation. This
may explain why both DOCK 3.7 and Vina performed well on
this target (Figure 5E). Furthermore, active recognition may be
promoted by ligand warheads25 or mismatched compound
MW distribution (Figure S3). However, both programs failed
to reproduce crystal ligand binding mode in this target (Figure
6). The top-ranked actives in DOCK 3.7 were all found to
form key interactions (Figure 6), whereas those with poor
scores not only formed poor interactions but also extended to
other subpockets. In Vina, there were inconsistencies in rank
and pose rationality for actives. Moreover, it appeared that
Vina misidentified nonrotatable bonds, such as torsion, in the
amidino group as rotatable bonds (Figure 6). This error was
caused by the PDBQT preparation, an issue that requires
further study.
COMT. COMT, a metalloenzyme present in DUD-E, has a

binding pocket composed of S-adenosylmethionine (SAM)
and catechol binding sites.77 COMT is a complicated target
with several conformations due to its high structural plasticity,

although conformations are limited when inhibitors bind
because it assumes a nearly closed conformation.78 Although
we concentrated on the catechol binding site, we retained SAM
and Mg2+ as cofactors due to their importance in maintaining
the complex structure, which is indispensable in catalysis and
ligand identification. For this target, correct coordination with
Mg2+ and formation of several key hydrogen bonds with
binding pocket residues are the criteria for identifying docking
poses. Actives of COMT share nearly identical core structures
with the crystal ligand. Thus, when combined with appropriate
charge distribution for both metal ions and coordinated atoms,
the graph-matching sampling algorithm facilitated the gen-
eration of correct docking poses, and the physics-based scoring
function aided in correctly ranking those poses. As a result,
DOCK 3.7 performed well on this metalloenzyme (Figure 5F).
However, due to the inability of Vina to assign charges to
metal ions with ADT and the fact that it disregarded atomic
charges when sampling and scoring,38 docking poses rarely
formed correct coordination with Mg2+ (Figure 6). Vina failed
to reproduce the crystal ligand binding mode in COMT
(Figure 6). We then used the AutoDock4Zn scoring function to
rerun the simulation with Mg2+ replaced in the input files with
Zn2+. With this change, the enrichment rate improved
significantly (adjusted logAUC = 18.29), and metal ions
were properly coordinated in docking poses. However,
phenolic hydroxyl and nitro groups were nonplanar with the
benzene ring in most poses, which were not the lowest energy
conformations. Additionally, the computational time increased.
This implied that significant efforts should be made to improve
the performance of Vina on metalloenzymes.

■ CONCLUSIONS
In this study, we measured the overall performance of DOCK
3.7 and Vina on the DUD-E data set and systematically
analyzed docking successes and failures. DOCK 3.7 out-
performed Vina in early recognition, despite their comparable
overall average performance. Each program had advantages for
different protein families; for example, Vina outperformed
DOCK 3.7 on nuclear receptors, and DOCK 3.7 performed
better on GPCR and proteases. However, the computational
efficiency suggested that DOCK 3.7 was on average 23 times
faster than Vina on the DUD-E data set using default settings.
The disparity in the enriched actives they identified provides
an opportunity to develop a robust strategy to capitalize on the
advantages of each. However, the scoring function of Vina is
biased toward high-MW compounds, which should be kept in
mind when analyzing the results of large-scale SBVS using Vina
as the main docking engine. Furthermore, the abundance of
irregular torsions in docking poses generated by both programs
indicates that a ligand strain energy term should be added to
the molecular docking scoring function, or a torsion-based
postdocking filtering assay should be designed properly.
Through an analysis of six representative systems, namely,
ADRB2, MAPK2, FKB1A, ANDR, FA10, and COMT, we
found that different factors contributed to the performance of
DOCK 3.7 and Vina.
Our research yielded three key messages. First, a

comprehensive benchmark should be executed to select a
program and parameters appropriate for the target of interest
before performing a large-scale virtual screening. Second,
knowing the strengths and weaknesses of different docking
programs on different targets based on their methodologies
will aid in selecting the appropriate program for a specific
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application. Third, a detailed pose-docking filtering workflow
should be established based on the binding-site properties to
achieve a satisfactory screening result.

■ ASSOCIATED CONTENT
Data Availability Statement
The script of this project is available to all at https://github.
com/hnlab/benchmark_DOCK_Vina. UCSF DOCK 3.7 is
free for academic research (http://dock.compbio.ucsf.edu/
DOCK3.7/). AutoDock Vina is an open-source software to all
(https://vina.scripps.edu/). The DUD-E data set is freely
available at http://dude.docking.org/. RDKit is an open-source
cheminformatics software (https://www.rdkit.org/). Torsio-
nAnalyzer is freely available for academic users (https://www.
zbh.uni-hamburg.de/en/forschung/amd/software/torsion-
analyzer.html).
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c05826.

Total energy distribution of compounds in case studies;
Total energy distribution against MW when taking into
consideration actives and decoys MW, respectively;
Properties of compounds in case studies; Adjusted
logAUC and EF1 of targets in DUD-E data set; Irregular
torsions distribution (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Niu Huang − National Institute of Biological Sciences, Beijing
102206, China; Tsinghua Institute of Multidisciplinary
Biomedical Research, Tsinghua University, Beijing 102206,
China; orcid.org/0000-0002-6912-033X;
Email: huangniu@nibs.ac.cn

Authors
Min Xu − College of Life Sciences, Beijing Normal University,
Beijing 100875, China; National Institute of Biological
Sciences, Beijing 102206, China; orcid.org/0000-0001-
8706-897X

Cheng Shen − National Institute of Biological Sciences, Beijing
102206, China; Graduate School of Peking Union Medical
College, Chinese Academy of Medical Sciences, Beijing
100730, China; orcid.org/0000-0002-8888-3316

Jincai Yang − National Institute of Biological Sciences, Beijing
102206, China; orcid.org/0000-0002-0033-0187

Qing Wang − National Institute of Biological Sciences, Beijing
102206, China; School of Pharmaceutical Science and
Technology, Tianjin University, Tianjin 300072, China;
orcid.org/0000-0002-1155-2340

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c05826

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Beijing Municipal Science &
Technology Commission grants (Z211100003321007 and
Z201100005320012 to N.H.) and Tsinghua University.

■ ABBREVIATIONS
SBVS, Structure-based Virtual Screening; DUD-E, Directory of
Useful Decoys-Enhanced; ADRB2, beta-2 adrenergic receptor;
MAPK2, MAP kinase-activated protein kinase 2; ANDR,
androgen receptor; FA10, coagulation factor X; FKB1A,
FK506-binding protein 1A; COMT, catechol-O-methyltrans-
ferase

■ REFERENCES
(1) Shoichet, B. K. Virtual Screening of Chemical Libraries. Nature

2004, 432 (7019), 862−865.
(2) Lyne, P. D. Structure-Based Virtual Screening: An Overview.
Drug Discov. Today 2002, 7 (20), 1047−1055.
(3) Irwin, J. J.; Shoichet, B. K. Docking Screens for Novel Ligands
Conferring New Biology: Miniperspective. J. Med. Chem. 2016, 59
(9), 4103−4120.
(4) Zhou, Y.; Ma, J.; Lin, X.; Huang, X.-P.; Wu, K.; Huang, N.
Structure-Based Discovery of Novel and Selective 5-Hydroxytrypt-
amine 2B Receptor Antagonists for the Treatment of Irritable Bowel
Syndrome. J. Med. Chem. 2016, 59 (2), 707−720.
(5) Wang, Y.; Sun, Y.; Cao, R.; Liu, D.; Xie, Y.; Li, L.; Qi, X.; Huang,
N. In Silico Identification of a Novel Hinge-Binding Scaffold for
Kinase Inhibitor Discovery. J. Med. Chem. 2017, 60 (20), 8552−8564.
(6) Peng, S.; Xiao, W.; Ju, D.; Sun, B.; Hou, N.; Liu, Q.; Wang, Y.;
Zhao, H.; Gao, C.; Zhang, S.; Cao, R.; Li, P.; Huang, H.; Ma, Y.;
Wang, Y.; Lai, W.; Ma, Z.; Zhang, W.; Huang, S.; Wang, H.; Zhang,
Z.; Zhao, L.; Cai, T.; Zhao, Y.-L.; Wang, F.; Nie, Y.; Zhi, G.; Yang, Y.-
G.; Zhang, E. E.; Huang, N. Identification of Entacapone as a
Chemical Inhibitor of FTO Mediating Metabolic Regulation through
FOXO1. Sci. Transl. Med. 2019, 11 (488), No. eaau7116.
(7) Lyu, J.; Wang, S.; Balius, T. E.; Singh, I.; Levit, A.; Moroz, Y. S.;
O’Meara, M. J.; Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A. A.;
Shoichet, B. K.; Roth, B. L.; Irwin, J. J. Ultra-Large Library Docking
for Discovering New Chemotypes. Nature 2019, 566 (7743), 224−
229.
(8) Li, H.; Ban, F.; Dalal, K.; Leblanc, E.; Frewin, K.; Ma, D.;
Adomat, H.; Rennie, P. S.; Cherkasov, A. Discovery of Small-
Molecule Inhibitors Selectively Targeting the DNA-Binding Domain
of the Human Androgen Receptor. J. Med. Chem. 2014, 57 (15),
6458−6467.
(9) Harriman, G.; Greenwood, J.; Bhat, S.; Huang, X.; Wang, R.;
Paul, D.; Tong, L.; Saha, A. K.; Westlin, W. F.; Kapeller, R.; Harwood,
H. J. Acetyl-CoA Carboxylase Inhibition by ND-630 Reduces Hepatic
Steatosis, Improves Insulin Sensitivity, and Modulates Dyslipidemia in
Rats. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (13), E1796−E1805.
(10) Cao, R.; Liu, M.; Yin, M.; Liu, Q.; Wang, Y.; Huang, N.
Discovery of Novel Tubulin Inhibitors via Structure-Based
Hierarchical Virtual Screening. J. Chem. Inf. Model. 2012, 52 (10),
2730−2740.
(11) Unoh, Y.; Uehara, S.; Nakahara, K.; Nobori, H.; Yamatsu, Y.;
Yamamoto, S.; Maruyama, Y.; Taoda, Y.; Kasamatsu, K.; Suto, T.;
Kouki, K.; Nakahashi, A.; Kawashima, S.; Sanaki, T.; Toba, S.;
Uemura, K.; Mizutare, T.; Ando, S.; Sasaki, M.; Orba, Y.; Sawa, H.;
Sato, A.; Sato, T.; Kato, T.; Tachibana, Y. Discovery of S-217622, a
Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical
Candidate for Treating COVID-19. J. Med. Chem. 2022, 65 (9),
6499−6512.
(12) Huang, X.-P.; Karpiak, J.; Kroeze, W. K.; Zhu, H.; Chen, X.;
Moy, S. S.; Saddoris, K. A.; Nikolova, V. D.; Farrell, M. S.; Wang, S.;
Mangano, T. J.; Deshpande, D. A.; Jiang, A.; Penn, R. B.; Jin, J.;
Koller, B. H.; Kenakin, T.; Shoichet, B. K.; Roth, B. L. Allosteric
Ligands for the Pharmacologically Dark Receptors GPR68 and
GPR65. Nature 2015, 527 (7579), 477−483.
(13) Manglik, A.; Lin, H.; Aryal, D. K.; McCorvy, J. D.; Dengler, D.;
Corder, G.; Levit, A.; Kling, R. C.; Bernat, V.; Hübner, H.; Huang, X.-
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