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ABSTRACT
Background. Rosacea is a common inflammatory disease of facial skin. Dysregulation
of innate immunity with enhanced inflammation and increased abundance of LL-37
at the epidermal site is a characteristic feature of rosacea. Cinnamtannin B1 (CB1) is a
condensed tannin with anti-inflammatory and anti-microbial activities. The aims of the
study were to evaluate the potential of CB1 as a therapy for rosacea and to characterize
the potential mechanisms of action.
Methods. We intraperitoneally administered 20 mg/kg CB1 once daily for 2 days
into the LL-37-induced mouse model of rosacea. The effects of CB1 in vivo were
evaluated by the observations of lesions, histology, immunohistochemistry, and the
transcription and translation of pro-inflammatory cytokines and chemokines. Human
keratinocyte HaCaT and monocyte THP-1 were used to characterize the effects of CB1
on LL-37-induced inflammation in vitro. The changes in pro-inflammatory chemokine
interleukin-8 (IL-8)were quantitated by enzyme-linked immunosorbent assay (ELISA),
and the expressions of genes involved were determined by Western blotting.
Results. CB1 attenuated local redness, inflammation, and neutrophil recruitment
in the mouse model of rosacea in vivo. CB1 suppressed myeloperoxidase (MPO)
and macrophage inflammatory protein 2 (MIP-2) production, a functional homolog
of interleukin-8 (IL-8), at the lesions. In vitro experiments confirmed that CB1
reversed the LL-37-induced IL-8 production in human keratinocytes HaCaT and
monocyte THP-1 cells. CB1 inhibited IL-8 production through downregulating the
phosphorylation of extracellular signal-regulated kinase (ERK) in themitogen-activated
protein kinase (MAPK) pathway.
Conclusion. CB1 attenuated LL-37-induced inflammation, specifically IL-8 produc-
tion, through inhibiting the phosphorylation of ERK. CB1 has potential as a treatment
for rosacea.
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INTRODUCTION
Rosacea is a chronic skin inflammatory disease common in Caucasians, which is estimated
to affect over 15 million adults in the USA alone (Bickers et al., 2006). The symptoms of
rosacea include facial redness, transient or persistent erythema, superficial dilated blood
vessels, papules, and even thickening sebaceous skin on the nose (Crawford, Pelle & James,
2004). The disease is most prevalent in middle-aged adults and females (Spoendlin et al.,
2012) and has been associated with psychosocial distress of the patients. Environmental
stimuli, such as ultraviolet radiation, microbes, and chemical irritants, have been known
to trigger rosacea.

The pathogenesis of rosacea is not fully understood yet. Over-activation of the innate
immune system in response to environmental stimuli such as UV and microbes is known
to play important roles (Yamasaki & Gallo, 2009). An enhanced amount of anti-microbial
peptide cathelicidin, observed in rosacea regions of the patients, has also been linked to the
production of reactive oxygen species (ROS) and inflammatory cytokines and chemokines
at the sites. Although cathelicidin is not the singular factor of rosacea causation and
the peptide itself is known to mediate both pro- and anti-inflammatory effects based on
concentration, cell type, and kinetics of response in different models of inflammation (Yang
et al., 2020a). Intradermal injection of LL-37, a cleavage active product of cathelicidin, was
shown to reproduce rosacea-like redness and neutrophil recruitment in the animal model
(Yamasaki et al., 2007).

Topical and/or systemic anti-microbial agents including azelaic acid, retinoids,
metronidazole, tetracyclines, and ivermectin (Pelle, Crawford & James, 2004; Jones, 2009;
Fallen & Gooderham, 2012; Cardwell et al., 2016) have been shown to relieve rosacea
symptoms clinically. All the above-mentioned agents are also known to have antioxidant
effect (Yamasaki & Gallo, 2009). Concerning the adverse effects associated with these
agents and antibiotic-resistance issues, botanical therapies may be good alternatives for the
patients (Emer, Waldorf & Berson, 2011; Fisk et al., 2015).

Cinnamtannin B1 (CB1) is a condensed tannin with anti-inflammatory and anti-
microbial activities. CB1 could reduce the release of reactive oxygen species (ROS) (Gonzalez
et al., 2012), inhibit neutrophils activation (Yang et al., 2020b), as well as inhibit the activity
of cyclooxygenase-2 (COX-2) (Killday et al., 2011). Our group and others also observed
that CB1 has some activity against the growth of Bacillus subtilis, Staphylococcus aureus,
and Propionibacterium acnes (Idowu et al., 2010).

Given the anti-oxidant, anti-inflammatory, and anti-microbial activities of CB1, we
aimed to investigate the potential of CB1 as a therapy for rosacea. In this study, we
demonstrated the anti-inflammatory activities of CB1 in vivo and in vitro in LL-37-induced
inflammation and further characterized the cellular mechanisms involved.

MATERIALS AND METHODS
Preparation of Cinnamtannin B1 (CB1)
The CB1 used in this study was isolated from the stem of Formosan Cinnamomum
validinerve, which was collected at Mudan mountain at Pingtung County, Taiwan. The
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plant sample was identified by one of the authors, Prof. Ih-Sheng Chen, and the voucher
specimen was deposited in the Herbarium of the College of Pharmacy, Kaohsiung Medical
University, Kaohsiung, Taiwan. The separation and isolation of the CB1 has been reported
(Yang et al., 2020b). Briefly, the stem was dried and extracted with MeOH. The extract was
then partitioned with EtOAc: H2O (1:1) solvent system and then separated by column
chromatography. The purity of CB1 in this preparation was over 90% based on 1H & 13C
NMR analysis.

Reagents and chemicals
The cleaved human cathelicidin peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKD-
FLRNLVPRTES) was customarily synthesized with 95% purity and without any
modifications by Genemed Synthesis Inc. (South San Francisco, CA). The chemicals
used in the animal model were obtained from Sigma (St Louis, MO, USA). Reagents for
reverse transcription-polymerase chain reactions (RT-PCR) were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). The enzyme-linked immunosorbent assay (ELISA)
sets for inflammatory-related cytokine detections in both animal models and in vitro tests
were purchased from BD Biosciences (San Diego, CA). All of the reagents for cell culture
were from Hyclone (Logan, UT, USA).

LL-37-induced rosacea-like animal model
The mouse model of rosacea was adopted from Yamasaki et al. (2007). The experimental
protocol was approved by the Kaohsiung Medical University Institutional Animal Care
and Use Committee (IACUC number 106015). Briefly, 4-5 weeks-old male BALB/c mice
(National Laboratory Animal Center, Taipei, Taiwan) were weighed and grouped to
minimize group weight differences for naïve control (NA), phosphate-buffered saline
(PBS)-treated group (LL-37), and CB1-treated group (LL-37 + CB1) after one-week
acclimatization. Each animal was marked 4-6 positions on the dorsal area. Except for
the NA group, mice were injected with 40 µL of LL-37 (320 µM) intradermally twice
daily for 2 days at the marked positions on the back. The CB1 (4 mg/mL) or PBS were
intraperitoneally administered (100 µL/20 g) to mice daily for two days after the first
and the third inductions. For each mouse, the marked positions were photographed and
harvested a day after the last LL-37 induction. The skin sections were processed for the
histological examination, myeloperoxidase (MPO) measurements, MIP-2 measurements,
or mRNA extraction. The mice were anesthetized by isoflurane (2%) before harvesting the
skin sections and euthanization.

Histological examination of the skin section
Themarkedmice skin sections were harvested and fixedwith 4%neutral formalin buffer for
at least 1 day. The skin sectionswere embedded in paraffin and cut into 3µmthick slices. The
sections were stained with hematoxylin and eosin or processed for immunohistochemistry
staining for Gr-1, rat anti-mouse polyclonal antibody (R&D Systems, Minneapolis, MN,
USA). Each skin section was separated into 4-6 fields at 200-fold magnification; the
numbers of neutrophils were counted manually from each field then normalized by the
field number.
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RNA isolation and real-time reverse transcription-polymerase chain
reactions (RT-PCR)
Total RNA was isolated from the skin samples by isol-RNA lysis reagent (5-Prime,
San Francisco, CA, USA). The total RNA of each sample was reverse-transcribed to
cDNA by RevertAid RT Kit (Thermo Fisher Scientific, Waltham, MA, USA) using oligo
(dT). The expression of the genes was quantified using SYBR Mix (Thermo Fisher
Scientific, Waltham, MA, USA) by Real-time PCR 7900 (Applied Biosystems, Foster
City, CA, USA). The assay reactions were 95◦C for 10 min, followed by 40 cycles of
95◦C for 15 s and 60◦C for 1 min. The fold-changes of the genes between groups
were calculated by the 11Ct method. The primers used in this study included HPRT
(5′-TCAGTCAACGGGGGACATAAA-3′ and 5′-GGGGCTGTACTGCTTAACCAG-3′)
(Shi et al., 2010), MIP-2 (5′-AGTGAACTGCGCTGTCAATGC-3′ and
5′-GCCCTTGAGAGTGGCTATGACT-3′) (Mukhopadhyay et al., 2011), and KC (5′-
CAGCCACCCGCTCGCTTCTC-3′ and 5′-TCAAGGCAAGCCTCGCGACCAT-3′) (Degos
et al., 2015).

Cytokine measurements
The skin samples were harvested and homogenized with 5-fold tissue weight volume of
lysis buffer (10 mM pH 8.0 Tris–HCl buffer with 150 mM NaCl, 1% Tween 20, 10%
Glycerol, 5 mM EDTA) and 200:1 diluted protease inhibitor cocktail solution (Merck
Millipore, Danvers, MA, USA). After centrifugation, the supernatants were quantified for
macrophage inflammatory protein 2 (MIP-2) by ELISA kit (R&D Systems, Minneapolis,
MN, USA).

Myeloperoxidase (MPO) activity assay
TheMPO activity, as an indicator of the total inflammation level of the lesions, was adopted
from protocols published previously (Queiroz et al., 2009). Briefly, the skin sections were
homogenized in one mL cooled phosphate buffer (pH 4.7) supplemented with a 5 µL
Protease inhibitor cocktail set solution (Merck Millipore, Danvers, MA, USA). After
centrifuging the homogenized sample, the sample buffer was replaced by 0.05 M sodium
phosphate buffer (pH 5.4 , containing 0.5% hexadecyltrimethylammonium bromide
(HTAB) solution). After three times frozen-thawed cycles (frozen at −80◦C for 8 min
and thawed at room temperature for 10 min), the samples were centrifuged and the
supernatants were collected for MPO evaluation. For MPO quantification, 12.5 µL of the
samples and diluted standards were mixed with 62.5 µL of 3,3′, 5,5′-tetramethylbenzidine
(TMB) solution (1.6 mM TMB, 0.0045% H2O2, 0.5% HTAB solution) in 96-well plates.
The plates were then incubated at room temperature for 5–45 min, and the reaction was
stopped by adding 50 µL of the stop solution (4 M H2SO4). The OD values at 450 nm/570
nm were recorded. The amount of myeloperoxidase was normalized by the amount of total
protein in each sample.

Cell culture
Human keratinocyte HaCaT was from Prof. Yen, Kaohsiung Medical University (Huang
et al., 2019), and monocyte THP-1 cell line was obtained from Bioresource Collection

Kan et al. (2020), PeerJ, DOI 10.7717/peerj.10548 4/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.10548


and Research Center (BCRC). HaCaT and THP-1 cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) and RPMI 1640, respectively, supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin. Cells were seeded to antibiotics
free and low/no FBS (0% in HaCaT cells, and 2% in THP-1 cells) culture medium for the
experiments.

In vitro cell experiments
HaCaT cells (7× 104 cells/mL, 300µL/well) andTHP-1 cells (1× 106 cells/mL, 300µL/well)
were either left untreated (control) or stimulated with LL-37 (5 µM) in the absence
or the presence of CB1 (1, 10, and 20 µM) for 24 h in 48-well plates. After 24 h co-
incubation, supernatants were collected for cytokine/chemokine measurements by ELISA
(R&D Systems, Minneapolis, MN, USA) as recommended by the manufacturer. The cells
were harvested for cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay following the protocol from a previous study (Cheng et al., 2017).

For Western blotting, HaCaT cell (1×105 cells/mL, 10 mL/10cm dish) and THP-1 cell
(1×106 cells/mL, 10 mL/10cm dish) were either untreated (NA) or stimulated with 5 µM
LL-37 and CB1 (0, 1, 10 µM). Briefly, the cells were lysed by radioimmunoprecipitation
assay buffer (RIPA, 20 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA, 1 mM ethylene glycol
tetra-acetic acid, 1% Triton X-100, and 1 mM phenylmethylsulfonyl fluoride, pH 7.4)
and heated with 4X sodium dodecyl sulfate (SDS) sample buffer (8% SDS, 0.2 M Tris
(pH 6.8), 0.4 M dithiothreitol, 0.4% coomassie brilliant blue R-250, and 40% glycerol)
at 95◦C for 5 min. The lysates were resolved by 10% SDS-PAGE and transferred to
polyvinylidene fluoride membrane (Millipore, Bedford, MA, USA, 0.45 µM). The
membraneswere blockedwith 5% skimmilk inTris buffer saline containing 0.1%Tween-20
(TBST) under 60 rpm rocking at room temperature for 1 h. Membranes were blotted with
the primary antibodies in sequence: Phosphorylation protein (Phospho-ERK or Phospho-
p38), total protein (total-ERK or total-p38), and internal control protein (GAPDH). The
primary antibodies were diluted in TBST supplemented with 5% bovine serum albumin
(BSA) or 5% skim milk. The membranes were washed three times with TBST under 120
rpm rocking at room temperature after overnight incubation with a primary antibody
under 60 rpm rocking at 4◦C. After blotting with the secondary antibody conjugated with
horseradish peroxidase (HRP) in TBST with 5% skimmilk for 1 h at room temperature, the
activity of HRP was developed and detected using enhanced chemiluminescence (Thermo
Fisher Scientific, Waltham, MA, USA). Images were captured by using Chemi-Doc Gel
Imaging System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The antibodies were all
purchased from Cell Signaling Technology (Danvers, MA, USA). The phospho-antibodies
phospho-ERK and phospho-p38 recognize residues surrounding Thr202/Tyr204 of human
p44 MAPK and Thr180/Tyr182 of human p38 MAPK, respectively.

Statistical analysis
The statistical differences between the CB1 treatment group and the LL-37-only group
were analyzed by parametric analysis of variance (ANOVA) with Dunnett’s test by Prism
5.0 (GraphPad Software Inc., USA). P <0.05 was defined as statistical significance.
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Figure 1 CB1 attenuated the signs of the rosacea-like lesions in the LL-37-induced rosacea-like mouse
model. (A–C) skin signs; (D–F) immune cell recruitment.The rosacea-like lesions were induced by intra-
dermal LL-37 (320 µM) injections twice daily for 2 days. Cinnamtannin B1 (20 mg/kg) or its solvent, PBS,
were intraperitoneally administered to mice daily for two days. The photos and skin sections were taken
one day after the last LL-37 induction from three independent experiments. The inset boxes indicate the
main area of the cell necrosis (incomplete cells) and the immune cell infiltration (bright purple signals).

Full-size DOI: 10.7717/peerj.10548/fig-1

RESULTS
CB1 attenuated LL-37-induced skin redness and local inflammation
responses in vivo
LL-37 induced rosacea-like signs, characterized by cutaneous erythema with central
necrosis, at the sites of injection, while the CB1 treatment reduced the LL-37-induced
rosacea-like signs (Figs. 1A–1C). Histological sections of the lesions showed that LL-37
induced neutrophil infiltration, hemorrhage, thickening and cell necrosis in the epidermal
tissues, and these observations appeared to be reduced in the CB1 group (Figs. 1D–1F).
Immunohistochemistry staining of the skin sections with Gr-1 for polymorphonuclear
neutrophils indicated that LL-37 induced neutrophil recruitment to the skin, and the CB1
treatment decreased the neutrophil recruitment (Figs. 2A–2F). The number of GR-1+

cells was significantly higher than the controls after LL-37 induction and the number was
decreased by CB1 (Fig. 2G).

CB1 suppressed MPO and MIP-2 production in vivo
The skin sections were homogenized for further examination of inflammatory responses.
MPO, a biomarker for overall inflammation, was elevated in the LL-37-induced lesion,
and the CB1 treatment reduced the LL-37-induced MPO level (Fig. 3A). MIP-2 and KC
are functional homologs of neutrophil chemoattractant IL-8 in mice. The elevated levels
of MIP-2 in the LL-37-induced lesions were also attenuated by CB1 treatment (Fig. 3B).
MIP-2 and KC gene expression profiles although were not significantly decreased by CB1,
they showed similar trends as the MIP-2 levels (Figs. 3C & 3D).
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Figure 2 CB1 reduced neutrophils recruitment to the rosacea-like skin lesions. (A–F) Immunohis-
tochemistry with Gr-1+ antibody and (G) quantitative results of the Gr-1+-cells in the sections. (A–F)
Staining of the normal control skin (Control), LL-37-injected skin (LL-37) and LL-37-injected skin with
CB1 for treatment (LL-37 + CB1). The skin sections were stained with anti-mouse Gr-1 antibody for ex-
amining polymorphonuclear neutrophils as described in the methods. The micrographs were shown at
200X magnification, and the arrows indicated the Gr-1 positive cells. (G) The number of Gr-1+ cells was
counted manually. Scale bars represented 50 µm at histology. Data are expressed as the mean±standard
error of the mean from three independent experiments (Control n= 4, LL-37 n= 6, LL-37 + CB1 n= 6).
#p < 0.05, the LL-37-induced group compared to the control group. ∗p < 0.05, the CB1 treatment group
compared to the LL-37-induced group.

Full-size DOI: 10.7717/peerj.10548/fig-2

CB1 reversed LL-37-induced IL-8 production by HaCaT and THP-1
cells in vitro
Since the recruitment of neutrophils and production ofMIP-2 (mouse functional homologs
of IL-8) were both significantly attenuated by administration of CB1 in vivo, the effects
of CB1 on human cells were further studied in human keratinocyte HaCaT and human
monocyte THP-1 cells in vitro.

LL-37 significantly decreased the viability of HaCaT cells at 5 µM (Fig. 4A), and CB1 at
the concentration of 10 µM reversed the LL-37-induced cytotoxicity. By contrast, LL-37
did not affect the viability of THP-1 at 5 µM (Fig. 4C). LL-37 significantly induced IL-8
production both in HaCaT and THP-1 cells, and CB1 reversed the LL-37-induced IL-8
secretion (Fig. 4B and Fig. 4D).

CB1 inhibited LL-37-induced IL-8 production through extracellular
signal-regulated kinase (ERK) mitogen-activated protein kinase
(MAPK) pathway
LL-37 up-regulated the phosphorylation of ERK and p38 both in HaCaT and THP-1 cells.
CB1 at 10 µM reversed the LL-37-induced phosphorylation of ERK but not p38 (Figs. 5B
and 5E).

DISCUSSION
In this study, we demonstratedCB1 can reverse LL-37-induced pro-inflammatory responses
both in vitro and in vivo. CB1 was able to attenuate the severity and the inflammation
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Figure 3 CB1 attenuated LL-37-induced inflammatory and neutrophil chemoattractant MIP-2 at both
protein and gene levels in the rosacea-like mouse model. (A) Myeloperoxidase (MPO) (B) MIP-2 pro-
tein (C) MIP-2 mRNA expression (D) KC mRNA expression. The protein levels of MPO and MIP-2 were
measured by MPO activity assay and ELISA, respectively. The gene expression levels were detected by
qPCR analysis. Data are expressed as the mean± standard error of the mean from three independent ex-
periments (Control n = 4, LL-37 n = 6, LL-37 + CB1 n = 6). #p < 0.05, the LL-37-induced group com-
pared to the control group. ∗p< 0.05, the CB1 treatment group compared to the LL-37-induced group.

Full-size DOI: 10.7717/peerj.10548/fig-3

of rosacea-like lesions in the mouse model. CB1 decreased the expression of MIP-2, the
cytokine functionally similar to human IL-8, and may therefore result in fewer neutrophils
at the lesions. CB1 was also shown to decrease the production of IL-8 induced by LL-37 in
human keratinocytes and monocytes in vitro. The anti-inflammatory effect of CB1 was in
part due to the decreased phosphorylation of ERK, but not p38, in the MAPK pathway.

Rosacea is a multifaceted inflammatory disease. The pathophysiology of rosacea is
not fully understood. Various inflammatory factors, factors causing vascular changes,
and certain neuropeptides which can mediate dysregulation of inflammation are also
found enhanced locally. Infiltration of a mixed population of macrophages, mast cells,
and neutrophils has commonly been described in biopsies taken from rosacea patients
(Gerber et al., 2011; Buhl et al., 2015). In the papulopustular stage of rosacea, neutrophils
often become dominant (Gerber et al., 2011; Buhl et al., 2015). LL-37 was one of the factors
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Figure 4 CB1 reversed LL-37-induced interleukin-8 (IL-8) production by HaCaT and THP-1 cells in
vitro. (A) HaCaT cell viability (B) HaCaT IL-8 production (C) THP-1 cell viability (D) THP-1 IL-8 pro-
duction. HaCaT cells and THP-1 cells were either left untreated (control) or stimulated with LL-37 (5
µM) in the absence or the presence of CB1 (1, 10, 20 µM) for 24 h. The experiments were performed at
least 3 times in independent experiments. The bar graph presented results from a representative experi-
ment (n= 4). Data are expressed as mean± standard error of the mean. #p< 0.05, LL-37-stimulated cells
compared to the cell alone (control group). ∗p < 0.05, different concentrations of CB1 in the presence of
LL-37 compared to the LL-37-stimulated cells.

Full-size DOI: 10.7717/peerj.10548/fig-4

Figure 5 CB1 down-regulated the phosphorylation of ERK but not p38 of the mitogen-activated pro-
tein kinase (MAPK) pathway induced by LL-37 in vitro in THP-1 cells (A–C) and HaCaT cells (D–F).
HaCaT cells and THP-1 cells were pretreated with CB1 (1 and 10 µM) for 30 min followed by LL-37 (5
µM) stimulation for 15 min. The Western blotting showed the results from a representative experiment.
The bar figures presented the mean and standard error of the mean from three independent experiments.
#p < 0.05, LL-37-induced cells compared to the control group. ∗p < 0.05, CB1 and LL-37 treated cells
compared to the LL-37-induced cells only.

Full-size DOI: 10.7717/peerj.10548/fig-5

shown to play important roles in the inflammation in rosacea (Yamasaki et al., 2011; Chen
et al., 2017). Yamasaki and colleagues (Yamasaki et al., 2007) reported that the cathelicidin
levels in lesional skin of rosacea patients were significantly higher than normal skin (∼1100
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[800-1500] µM vs. 100 µM). The intradermal injections of LL-37 at 320 µM, although
lower than the LL-37 levels observed in human rosacea lesions, induced rosacea-like
inflammatory reactions in the mouse model. The model has been successfully utilized to
show the involvement of mast cells in the LL-37-induced inflammation (Kim et al., 2017;
Chen et al., 2017). In this study, CB1 attenuated the severity of redness, inflammation, and
neutrophil infiltration at the lesions in the LL-37-induced rosacea-like inflammation in the
mice, indicating the effects of CB1 on LL-37-induced inflammation. Topical administration
would be expected to achieve higher concentration at the epidermis and cause less systemic
adverse effects. Given the effectiveness of CB1 in the mice model, future development in
topical formulations of CB1 may be warranted.

LL-37 at 5–10 µM was shown to induce IL-8 production in keratinocyte cells (Boink
et al., 2017), neutrophils and monocytes (Yang et al., 2000; Yang et al., 2020a; Yamasaki
et al., 2007; Bucki et al., 2010). In addition, LL-37 was shown to be a direct leukocyte
chemoattractant for neutrophils and monocytes (Hemshekhar, Choi & Mookherjee, 2018).
We hypothesized that elevated levels of LL-37 may exaggerate the inflammatory in rosacea
through inducing inflammation and attracting neutrophils and other immune cells to the
lesions. The in vitro data in our study revealed that CB1 can directly decrease LL-37-induced
IL-8 production by keratinocytes. This attenuation of local inflammation by CB1 may be
one of the mechanisms by which CB1 attenuated the LL-37-induced rosacea-like signs.

LL-37 at 10 µM is known to activate neutrophils, monocytes, and epithelial cells
similarly via interacting with the formyl peptide receptor-like 1 (FPRL1) receptor (Yang et
al., 2000). LL-37 has been known to induce inflammatory responses in epithelial cells and
monocytes by activation of mitogen-activated protein kinase (MAPK) pathway through
phosphorylation of ERK1/2 andp38 kinases but not JNK (Niyonsaba et al., 2005). Inhibition
of either one of the kinases could reduce LL-37-induced IL-8 production and downregulate
the transcription of various chemokine genes (Bowdish et al., 2004). In addition, LL-37
has been suggested to suppress neutrophil apoptosis through ERK1/2 phosphorylation
(Nagaoka, Tamura & Hirata, 2006). This inhibition of neutrophil apoptosis may worsen
tissue inflammation and damage. Our data showed that CB1 significantly suppressed
LL-37-induced phosphorylation of ERK but not p38 both in keratinocytes and monocytes
indicating the differential effects of CB1 on LL-37-induced activation of downstream
signaling pathways. Therefore, CB1 may also limit the inflammation by reversing the
LL-37-induced neutrophil apoptosis inhibition.

Several genes downstream of MAPK signaling pathways, including AP1, MYC-MAX,
NFKB1, SP1, ElK1, were identified to be activated by LL-37 stimulation in monocytes
(Bowdish et al., 2004; Mookherjee et al., 2009). An active form of nuclear factor kappa
B (NF-κB) was found to be elevated in rosacea patients, implying the involvement of
NF-κB in the pathogenesis of rosacea (Wladis, Lau & Adam, 2019). The activation of
AP-1 and MYC-MAX has also been indicated to play roles in epithelial proliferation and
differentiation, which may result in impairment of the stratum corneum barrier function
(Gebhardt et al., 2006; Addor, 2016). These genes may be used to further elucidate the
therapeutic effects of CB1 and for the development of other therapy for rosacea.
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Due to the multifactorial nature of rosacea, the mechanisms of action of many effective
rosacea therapies are not fully clear. Inflammation appears to play a central role in rosacea.
Many agents proven to be effective in rosacea symptoms, for instance azelaic acid, retinoids,
metronidazole, tetracyclines, and ivermectin, all have certain levels of anti-inflammatory
activity (Pelle, Crawford & James, 2004; Jones, 2009; Fallen & Gooderham, 2012; Cardwell
et al., 2016). A few phytochemicals with anti-inflammatory activity such as licochalcone
A, silymarin, Chrysanthellum indicum extract, and Quassia wood extract have also been
shown to relieve rosacea symptoms (Rigopoulos et al., 2005; Sulzberger et al., 2016; Saric et
al., 2017).

CB1 as well as botulinum toxin and artemisinin were shown to reduce LL-37-induced
inflammation (Choi et al., 2019; Yuan et al., 2019) in the animal model but not yet been
evaluated in humans. Although the LL-37-induced inflammation may not represent all
factors causing rosacea, the association between LL-37 and rosacea-like symptoms makes
the effectiveness of these agents in patients with rosacea worth further evaluation. The
development of alternative therapeutic agents with diverse mechanisms for reducing
inflammation in rosacea could benefit patients not suitable for certain treatments or
not tolerant to certain adverse effects. The development of newer agents for these skin
diseases could also reduce the use of antibiotics for these skin diseases and thereby reduce
drug-resistant problems associated with overuse of antibiotics for their anti-inflammatory
effects.

Furthermore, many of the agents used to manage rosacea symptoms also show effects
in acne. This may be due to the shared characteristics in inflammation by these two skin
diseases. Given CB1 also has some anti-bacterial activities against P. acnes in addition to
its anti-inflammatory activity, CB1 may also be effective in acne. Our preliminary data
also support this theory (Yang et al., 2020b). In addition, LL-37 was also suggested to play
roles in psoriasis, atopic dermatitis and nickel allergy (Chen et al., 2006). Ong et al. (2002)
reported that the level of LL-37 concentration in the psoriatic lesions ranged widely from
0 to 1605 µM (median 304 µM), and the mRNA levels of LL-37 in atopic lesions were
significantly lower than psoriatic lesions. Although it is not clear whether the elevated
levels of LL-37 were the causation or the result of these skin conditions, these observations
indicated that LL-37 may play some roles in lesion inflammation in all these diseases.
Therefore, CB1 may also have potential as a therapy for these diseases. Further evaluations
should be warranted.

CONCLUSION
CB1 showed potential as a therapy for rosacea. CB1 attenuated LL-37 induced redness, local
inflammation, and neutrophil infiltration in the LL-37-induced rosacea-like mouse model.
CB1 appeared to achieve the effect by inhibiting IL-8 production and the phosphorylation
of the ERK/MAPK pathway in human cell lines of keratinocytes and monocytes.
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Abbreviations

ANOVA analysis of variance
BCRC Bioresource Collection and Research Center
BSA bovine serum albumin
CB1 cinnamtannin B1
COX-2 cyclooxygenase-2
DMEM Dulbecco’s Modified Eagle Medium
ELISA enzyme-linked immunosorbent assay
ERK extracellular signal-regulated kinase
FBS fetal bovine serum
FPRL1 formyl peptide receptor-like 1
HRP horseradish peroxidase
HTAB hexadecyltrimethylammonium bromide
IACUC Institutional Animal Care and Use Committee
IL-8 interleukin-8
MAPK mitogen-activated protein kinase
MIP-2 macrophage inflammatory protein 2
MPO myeloperoxidase
NA naïve
PBS phosphate-buffered saline
PT-PCR reverse transcription-polymerase chain reactions
RIPA radioimmunoprecipitation assay buffer
ROS reactive oxygen species
SDS sodium dodecyl sulfate
TBST tris buffer saline containing 0.1% Tween-20
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