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A B S T R A C T

Background

Antibody to capsular polysaccharide has been the basis of several vaccines that offer
protection against invasive disease from Streptococcus pneumoniae. The success of such
vaccines has led to the inference that natural protection against invasive pneumococcal disease
is largely conferred by anticapsular antibody. If this is so, one would expect that the decline in
disease from different serotypes would vary significantly, and that the appearance of
substantial concentrations of anticapsular antibodies would coincide temporally with the
decline in age-specific incidence.

Methods and Findings

Using incidence data from the United States, we show that, on the contrary, the decline in
incidence with age is quite similar for the seven most important serogroups, despite large
differences in exposure in the population. Moreover, only modest increases in antibody
concentration occur over the second and third years of life, a period in which serotype-specific
incidence declines to less than 25% of its peak. We also present detailed data on the
distribution of antibody concentrations in Israeli toddlers, which are consistent with the United
States findings. The same conclusion is supported by new data on age-specific incidence in
Finland, which is compared with published data on antibody acquisition in Finnish toddlers.

Conclusion

We suggest some additional studies of the mechanisms of protection that could distinguish
among potential alternative mechanisms, including acquired immunity to noncapsular
antigens, maturation of nonspecific immune responses, or changes in anatomy or exposure.
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Introduction

The protective effects of antibody to pneumococcal
capsular polysaccharides have been appreciated since the
development of serum therapy, in which passively trans-
ferred, serotype-specific antipneumococcal serum reduced
mortality from pneumococcal pneumonia by half [1]. The
development of pneumococcal polysaccharide vaccines for
adults [2] and the efficacy of pneumococcal polysaccharide–
protein conjugate vaccines in infants and children [3,4] have
confirmed that active immunity to the polysaccharide can
provide excellent protection against invasive disease from
pneumococci of the same serotype, and in some cases
protection against cross-reacting serotypes within the same
serogroup.

While the ability of passive or vaccine-induced anticapsular
antibodies to protect against pneumococcal disease is clear,
less is known about the natural development of immunity to
pneumococcal disease in unimmunized persons. In unimmu-
nized populations, the incidence of invasive disease follows a
well-known age distribution, peaking in the first 2 y of life,
declining by more than an order of magnitude by the second
and third decades of life, and then rising at an accelerating
pace, with incidence in persons over 70 y approaching that in
infants [5]. The reason for the decline in incidence has not
been conclusively determined, yet it is often suggested that
the acquisition of anticapsular antibodies plays a critical role
in this decline [6,7]. Indeed, it has been proposed that the
human immune system sees each serotype of Streptococcus
pneumoniae as a distinct, independent pathogen [8].

The hypothesis that protection from invasive pneumo-
coccal disease is caused by the acquisition of anticapsular
antibodies directed against each of the pneumococcal
serotypes yields two simple predictions about the age-specific
epidemiology of pneumococcal disease. First, it predicts that
the age-specific timing of the decline in invasive disease
should be different for different serotypes: those that are
rare, poorly immunogenic, or both should decline later in life
than those that are common and immunogenic. Second, it
predicts that protection against invasive disease from a given
serotype should coincide temporally with the acquisition of
anticapsular antibody to that serotype, both at an individual
level and at a population level. We tested these predictions
using data from the United States, Finland, and Israel.

Methods

United States Dataset
Incidence of invasive pneumococcal disease was measured

in eight sites around the United States participating in the
Centers for Disease Control and Prevention’s Active Bacterial
Core Surveillance between 1994 and 1999. The data used here
are restricted to those periods during which serotyping was
routinely performed: 1994–1999 for the Georgia site, 1995–
1999 for the Minnesota site, and 1998–1999 for all other sites
[5]. Data were not available on the timing of anticapsular
antibody acquisition in these same populations, but we
compared the timing of the decline in pneumococcal disease
against previously published data on age-specific prevalence
of anticapsular antibody levels greater than 0.2 mcg/ml [9].

Israel Dataset
Antibody concentrations were measured by enzyme-linked

immunosorbent assay (ELISA) (with absorption by cell wall
polysaccharide but not by 22F polysaccharide) in blood
samples that were obtained from 130 toddlers at enrollment
and at approximately 12 and 24 mo after enrollment in a
double-blind, controlled trial of a nine-valent pneumococcal
conjugate vaccine. The toddlers analyzed for this study were
those in the control group, which received meningococcal C
conjugate vaccine; the details of the trial [10] were previously
described. Preliminary analyses of these data confirmed
previous findings [11] that ELISA measurements were highly
correlated (and therefore likely revealed cross-reactions) for
all pairs of serotypes, except for type 14, for which
correlations were minimal, consistent with previous findings
of little cross-reaction. For this reason, we chose to analyze
age trends only in serotype 14 antibodies.

Finland Dataset
Mandatory reporting from all microbiological laboratories

in Finland to the National Register of Infectious Disease
(http://www3.ktl.fi/stat/) identified all blood and cerebrospinal
fluid isolates of S. pneumoniae obtained in the years 1995–2001.
Incidence within 6-mo age groups was calculated using
population denominators obtained from Statistics Finland
(Helsinki, Finland). Since the primary purpose of examining
incidence in Finland was to compare age-specific rates
against published distributions of antibody concentrations
for the same age groups [12], we restricted our attention to
serotype 14 and serogroup 6, for which subsequent inves-
tigations suggested antibody measurements in Finland were
relatively unaffected by cross-reactions [13] (ELISA measure-
ments for published data from Finland used a special type 6B
polysaccharide that was found to minimize cross-reactions
[13]).

Results

United States Findings
Figure 1 shows the age-specific incidence of invasive

pneumococcal disease, by capsular serogroup, obtained from
population-based active surveillance in the United States
prior to the introduction of the conjugate vaccine. Figure 2
shows age-specific incidence by type of infection, for the
same age range.
Incidence peaks between the ages of 9 and 15 mo, and falls

in an approximately parallel fashion thereafter, for each of
the seven most important serogroups (which are those
included in the seven-valent conjugate vaccine) and for the
remaining serogroups put together. The same pattern is
observed for both pneumonia and bacteremia. For each
serogroup, incidence by age 24 mo is approximately half that
in the peak age group, and by 36 mo, incidence for each
serogroup has fallen to 10%–25% of its peak.
The consistent timing of the pattern across multiple

serogroups argues for a common mechanism, rather than
for independent acquisition of immunity to each serogroup
as a separate event. Since most individuals do not suffer from
invasive pneumococcal disease in this age range, carriage or
mucosal disease (otitis media) from pneumococci may be the
immunizing event for anticapsular antibodies in the general
population [12] (although in principle immunity to some
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serogroups could be generated in response to cross-reacting
antigens from other bacterial species or other sources [14]).
Different serogroups have vastly different frequencies among
pneumococci isolated from carriage [12,15,16,17] and otitis
media [12,18]; for example, serogroups 4 and 18 and the non-

vaccine serogroups are isolated far less commonly than
several of the other pneumococcal types identified in Figure
1. One could postulate that these differences in frequency of
carriage are offset by differences in immunogenicity; how-
ever, there is little evidence that serotypes 4 or 18C are more

Figure 1. Age-Specific Incidence of Invasive Pneumococcal Disease in the United States by Serogroup, Based on Data from Active Bacterial Core

Surveillance

Serogroups 4 and 23 are shown only up to 48 mo, after which incidence is less than 1/100,000 person-years. All serogroups besides those in the
heptavalent vaccine are shown combined as non-vaccine serogroups (NVG).
DOI: 10.1371/journal.pmed.0020015.g001

Figure 2. Age-Specific Incidence of Invasive Pneumococcal Disease in the United States by Disease Type, Based on Data from Active Bacterial Core

Surveillance

Meningitis incidence is plotted only up to 30 mo, after which it remains at or below 1/100,000 person-years. ‘‘Pneumonia’’ indicates bacteremic
pneumonia, while ‘‘bacteremia’’ indicates nonfocal bacteremia. ‘‘Total’’ includes other invasive diagnoses.
DOI: 10.1371/journal.pmed.0020015.g002
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immunogenic than other, far more common serotypes [4,15].
One could also postulate that the frequency of isolation of
serotypes from carriage depends on duration as well as
incidence, so that the serotypes for which carriage appears
rare are simply carried for a shorter duration. While the data
to address this speculation are limited, the duration of
carriage of types 4 and 18C seems to be comparable to that of
other, more frequently carried serotypes [15,16]. Thus, the
most parsimonious interpretation of the data on the timing
of the decline in age-specific susceptibility is that one or more
common mechanisms are responsible for the decline in
disease from all serotypes.

Testing the second prediction against data is hampered by
the fact that, to our knowledge, no study has characterized
the age-specific distribution of antibody concentration in a
large population using the currently accepted methodology,
which includes absorption with both cell wall polysaccharide
and serotype 22F polysaccharide [13,19]. Analyses by Soini-
nen and colleagues have found that antibodies measured by
standard ELISA in unimmunized children are highly cross-
reactive between different serotypes, and that cross-reactive
antibodies lack opsonophagocytic function and often appear
in the absence of any documented exposure to a given
capsular serotype. As a result, age-specific antibody concen-
tration data for any given serotype are ‘‘contaminated,’’ to a
greater or lesser degree, by cross-reactive antibodies with
other specificties.

The most important exception to this problem occurs for
antibodies to serotype 14, for which cross-reaction is minimal
[11]. A recent publication describes the age-specific propor-
tion of children in the United States with anti-type-14
polysaccharide antibody concentration exceeding the puta-
tive protective concentration of 0.2 lg/ml (Figure 3 of [9]). At
12 mo, 90%–95% of the population falls below this level, and
at 24 mo, 80%–85% remains below it—despite a 40%–50%

drop in disease incidence from 12 mo to 24 mo. At 36 mo,
75% of children remain below the putative protective level,
although by this age incidence has fallen more than 80% from
its 12-mo peak. In summary, if the 0.2-lg/ml concentration
were truly the threshold for ‘‘protection,’’ the 20%–30%
reduction in the unprotected population between ages 12
and 36 mo would be inadequate to explain the 90% decline in
disease incidence. Clearly, 0.2 lg/ml is not a precise dividing
line between being ‘‘protected’’ and ‘‘unprotected,’’ a thresh-
old that (if it exists) may vary by serotype, but given the
available data, there is reason to doubt that anti-type-14
antibody alone is responsible for the decline in disease in this
age range.

Israel Findings
To assess whether the limitations of the United States

antibody described above—i.e., the availability of only one
cutoff point for antibody concentrations—might be provid-
ing an incomplete picture of the distribution of antibody
levels by age, we examined an additional dataset from Israeli
toddlers. For the reasons described above, we examined only
antibodies to serotype 14, for which the distribution of
concentrations by age is shown in Figure 3. These data
indicate that between the ages of 12–17 and 36–41 mo, the
median antibody concentration increases by about 2-fold.
These data are broadly consistent with those published for
the United States; antibody levels rise very gradually, though
detectably, during the second and third years of life. It is
difficult to believe—albeit not impossible—that the dramatic
declines in disease incidence over these years are explained
simply by this small rise in antibody concentrations.

Finland Findings
Incidence of serogroup 6 and serotype 14 invasive

pneumococcal disease by 6-mo age groups in Finland, shown
in Figure 4, is broadly similar to that found in the United

Figure 3. Box-Whisker Plot of Anti-Type-14 Polysaccharide Antibodies in Israeli Toddlers, by 6-Mo Age Groups

Central boxes indicate median and 25th and 75th percentiles; whiskers indicate upper and lower adjacent values.
DOI: 10.1371/journal.pmed.0020015.g003
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States, albeit with lower absolute incidence for both
serogroups. Peak incidence occurs in the 12–17-mo age
group, and incidence declines to 25%–30% of its peak rate by
24–29 mo of age. This decline in incidence may be compared
against the cumulative distributions of antibody concentra-
tions in Finnish toddlers shown in Figure 2 of [12]. Between
ages 12 and 24 mo, there is a discernible increase in the
concentration of antibodies in the population, but the
median concentration increases by only about 2-fold in this
period. Moreover, the proportion of the population with
antibody concentration below any particular threshold that
may indicate protection changes little in this period. For
example, the proportion of the population with anti-type-14
antibody concentrations less than 0.2 lg/ml declines from
approximately 55% to approximately 40%, and the propor-
tion with less than 0.5 lg/ml is reduced from about 95% to
about 80%. Similar patterns are seen in the Finnish antibody
data for type 6B [12]. Thus, as in the Israeli data, only a very
small shift in the distribution of type-specific anti-polysac-
charide antibody concentration is observed during the
second year of life, yet incidence of invasive disease from
the serotypes in question declines substantially.

Discussion

We have assessed two lines of epidemiological evidence,
analyzed ecologically, that bear on the role of anticapsular
polysaccharide antibody as the determinant of protection
against invasive disease that develops during the second and
third year of life. The simultaneous and approximately
parallel nature of the decline in disease incidence for the
seven most important serogroups in the United States
suggests that one mechanism, rather than seven independent
mechanisms, account for the declines in invasive disease from
these serogroups. Moreover, only a slight increase in
anticapsular antibody concentration is measurable in Fin-
nish, United States, and Israeli toddlers during the same age
range. As we discuss below, each of these lines of evidence is
subject to caveats, but we believe that, taken together, these

observations make a strong case for the importance of one or
more factors other than acquisition of anticapsular anti-
bodies in the development of protection against pneumo-
coccal disease.
There are several possible candidates for mechanisms that

could explain this age-related decline in pneumococcal
disease. These include the following: acquisition of antibodies
or cellular immune responses to noncapsular pneumococcal
‘‘species’’ antigens; age-related changes in host biology that
are not related to acquired immunity, such as maturation of
the innate immune system or changes in anatomy or
receptors for pneumococcal attachment; changes in other
risk factors, such as exposure; or changes related to other
microorganisms, including changes in the resident flora or
changes in the incidence of viral infections.
Systemic antibodies to several pneumococcal protein

antigens, which are conserved across pneumococcal strains
and serotypes, develop following pneumococcal carriage and
otitis media and are present by the beginning of the second
year of life [20,21]. In both Finland [20] and Kenya [21], there
is an increase in the concentration of antibodies to the
pneumococcal proteins pneumolysin and pneumococcal
surface protein A over the first two or more years of life. In
Kenya, antibodies to another conserved protein, pneumo-
coccal surface adhesin A, showed similar distributions in the
first, second, and subsequent years of life, while in Finland,
levels of these antibodies were already high (equivalent to
adult levels) in the first year of life, and increased above these
levels in the second year. In mice, either passively transferred
human serum IgG against pneumococcal surface protein A or
vaccine-induced antibodies to pneumococcal surface protein
A and/or pneumolysin are protective against invasive disease.
Such data are consistent with the hypothesis that antibodies
to these, or perhaps other, conserved pneumococcal proteins
are in part responsible for the decline in invasive disease in
the second and subsequent years of life.
A number of investigators have tested the hypothesis that

antibodies to the pneumococcal teichoic acid, known as cell
wall polysaccharide (CWPS), are capable of protecting
individuals against pneumococcal invasive disease. While
studies in animals [22] and humans [23] have failed to find a
protective effect of antibodies to CWPS or its components, a
recent study showed that passive transfer of human IgG
against phosphorylcholine, a component of CWPS, could
protect mice against invasive pneumococcal infections [24].
Notably, such antibodies might be elicited by a number of
bacteria in addition to pneumococci, such as Haemophilus
influenzae, which also produce phosphorylcholine. We are
unaware of studies on the timing of acquisition of anti-CWPS
antibodies.
We have recently shown that mice that are exposed thrice

at weekly intervals to intranasal colonization with encapsu-
lated pneumococci are protected against subsequent car-
riage, that this protection is effective for heterologous as well
as homologous capsular types, and that it is effective even in
MuMT mice, which lack the ability to produce antibodies
(Malley R, Trzcinski K, Srivastava A, Thompson CM,
Anderson PW, et al., unpublished data). We have also shown
that intranasal immunization with unencapsulated, killed
pneumococci protects against nasopharyngeal colonization,
in a fashion that is independent of antibody but requires
CD4þ T cells at the time of challenge. The relevance of

Figure 4. Age-Specific Incidence of Invasive Pneumococcal Disease

Caused by Serogroups 6 and 14 in Finland, Based on Active Laboratory-

Based Surveillance

DOI: 10.1371/journal.pmed.0020015.g004
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cellular immune mechanisms in protecting humans against
pneumococcal colonization or disease is not known.

Another candidate for a factor that may be changing with
age is susceptibility to viral infections, especially influenza,
which may predispose to pneumococcal colonization [25] or
disease [26,27]. Recent evidence from clinical trials of
pneumococcal conjugate vaccines shows that the vaccines
can reduce the incidence of infections such as bronchiolitis
that are usually associated with viruses [28] and of docu-
mented, virus-associated pneumonia [27]. These findings raise
the possibility that the decline in pneumococcal disease with
age reflects, in part, a decline in the incidence or severity of
viral infections, so that fewer such infections lead to
secondary pneumococcal disease.

Exposure to pneumococci probably changes in some
fashion over the first 5 y of life. However, for changes in
exposure to account for the sharp drop in disease incidence
following the first birthday, it would be necessary for
exposure also to drop severalfold per year over this age
range. Studies of pneumococcal carriage do show gradual
changes in the prevalence and serotype composition of the
nasopharyngeal flora in these years, but the prevalence of
carriage changes much more gradually than the incidence of
invasive disease [29].

We are not aware of data that bear strongly on the
plausibility of other possible mechanisms for the age-related
decline in pneumococcal disease, such as changes in anatomy,
physiology, receptor expression, or resident bacterial flora.
However, factors other than antibody—such as innate or
acquired cellular immune responses, age-related anatomical
changes, or changes in exposure to pneumococci—cannot be
ruled out, and more than one factor may be involved. Indeed,
the peak of pneumococcal meningitis incidence in the 3–6-
mo age group (see Figure 2) suggests that the mechanism of
protection against meningitis may differ from those against
pneumonia and bacteremia.

Although we suggest that anticapsular antibody is not
primarily responsible for the age-specific decline in invasive
pneumococcal disease, there is no question that the capsule is
an important virulence factor that interacts with the innate
and acquired immune system in a number of ways. It is clear
that the pneumococcal capsule interferes with various host
clearance mechanisms [30]. It would be unsurprising if
different capsular types were differentially effective in
permitting pneumococci to evade phagocytosis and other
host defenses [31] (M. Melin, H. Jarva, S. Meri, and H. Käyhty,
unpublished data). If this were the case, then one could
envision that certain capsular types might in fact follow a
different age-specific incidence. In particular, recent analyses
suggest that serotypes 1 and 5 have relatively stable incidence
over a range of age groups (W. P. Hausdorff, D. R. Feikin, and
K. P. Klugman, unpublished data).

The evidence adduced here is subject to several limitations.
With respect to the relative timing of acquisition of
protection against different serotypes, one could postulate
that because some of the most common pneumococcal
serotypes, such as 6B, 19F, and 23F, are also among the least
immunogenic [12], the effective exposure of the immune
system is more consistent across serogroups than it appears
from serogroup frequency alone. However, this pattern is not
general; for example, serotype 14 is both very common and
highly immunogenic [12]. With respect to the absolute timing

of protection relative to the acquisition of antibody, one
could argue that low levels of anticapsular antibody, perhaps
of low affinity, may be present and even active at levels below
those that can be reliably detected by current assays, or that B
cell memory may be present and protective at an earlier age
than that at which high levels of antibody are measurable.
Inferences about protective antibody concentrations from
animal studies and from concentrations achieved by vaccines
suffer from several uncertainties. Making allowances for all of
these limitations, we nonetheless believe the data suggest that
mechanisms other than anticapsular antibody are primarily
responsible for the age-specific decline in pneumococcal
invasive disease that starts at the age of 1 y.
The likelihood that mechanisms other than anticapsular

antibody confer immunity to pneumococcal disease has
important implications with respect to vaccine design. As
experience with conjugate pneumococcal vaccines in chil-
dren unfolds, it is becoming increasingly clear that such a
strategy suffers from several limitations, including the
possibility of serotype replacement (already confirmed in
several clinical trials), a modest effect on nasopharyngeal
colonization, limited serotype coverage, cost, and difficulties
in production that have led to shortages since licensure. A
better understanding of the mechanisms that underlie
natural immunity to pneumococcus could pave the way for
the development of more effective, species-specific pneumo-
coccal vaccines.
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Note Added in Proof

A recent report from McCool and Weiser showed that antibody-deficient
mice clear pneumococcal colonization at rates similar to those of wild-type
mice [32].

Patient Summary

Background Streptococcus pneumoniae is a common bacterium that
lives in the upper respiratory tract of many children, and some adults.
The bacterium generally causes no harm in healthy individuals, but in
some circumstances it can cause mild infections, such as ear infections,
or more severe ones, such as lung infection (pneumonia), bloodstream
infection (bacteremia), or infection of the lining of the brain (meningitis).
These more severe forms, called invasive pneumococcal disease, occur
especially in children, elderly people, and others with weakened immune
systems. The bacterium exists in different versions, or serotypes. The
different versions of the bacterium each have a different outer shell (the
so-called bacterial capsule). Scientists have developed vaccines against
Streptococcus pneumoniae that protect against the most common
serotypes. These vaccines consist of a cocktail made up of material
from the capsules of the most common serotypes. This material causes
the body’s immune system to produce antibodies that can fight
Streptococcus pnemoniae and protect vaccinated individuals against
disease caused by the common serotypes. In many developed countries
vaccination is recommended for all children and elderly people.

Why Was This Study Done? Most people get exposed to many
different versions of the bacterium over the course of their lives. These
encounters cause little or no disease in most people, and the risk of
disease declines sharply and remains low through middle age, before
climbing again in the elderly. Based on experience with vaccines,
scientists have thought that this ‘‘natural’’ protection that develops with
age was also based on antibodies against the bacterial capsule. The
authors of this study wanted to test whether this was actually true.

What Did the Researchers Do? If in the healthy population protection
against invasive disease is in fact due to anticapsular antibodies, one can
make certain predictions about the frequency of invasive disease among
certain age groups. The researchers tested those predictions against
actual disease records from the United States, Israel, and Finland.

What Did They Find? The actual records did not match the predictions
very well, suggesting that natural protection against invasive pneumo-
coccal disease is not based on anticapsular antibodies alone.

What Does This Mean? These results suggest that there are elements
of natural protection against invasive pneumococcal disease that we do
not understand yet. Moreover, these elements seem to involve more
general protection against various forms of the bacterium rather than
individual protection against particular serotypes.

What Next? Given the importance of the disease, we should try to
understand all elements of natural protection. Such understanding
might help researchers develop better vaccines to prevent invasive
pneumococcal disease, and maybe even improve treatment of patients
who have become ill.

More Information Online
World Health Organization information page on pneumococcal vaccines:
http://www.who.int/vaccines/en/pneumococcus.shtml
United States Centers for Disease Control and Prevention factsheet on
pneumococcal vaccine: http://www.cdc.gov/nip/publications/VIS/
vis-PneumoConjugate.pdf
Health Canada information on pneumococcal vaccine: http://www.
hc-sc.gc.ca/english/iyh/medical/pneumococcal.html
Information for health-care providers from the United Kingdom Nation-
al Health Service: http://www.prodigy.nhs.uk/guidance.asp?gt=
Immunizations%20-%20pneumococcal
PneumoADIP Web page on childhood pneumococcal disease: http://
www.pneumoadip.com/
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