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Abstract

Vocal expression is essential for conveying the emotion during social interaction. Although vocal emotion has been explored
in previous studies, little is known about how perception of different vocal emotional expressions modulates the functional
brain network topology. In this study, we aimed to investigate the functional brain networks under different attributes of
vocal emotion by graph-theoretical network analysis. Functional magnetic resonance imaging (fMRI) experiments were
performed on 36 healthy participants. We utilized the Power-264 functional brain atlas to calculate the interregional
functional connectivity (FC) from fMRI data under resting state and vocal stimuli at different arousal and valence levels. The
orthogonal minimal spanning trees method was used for topological filtering. The paired-sample t-test with Bonferroni
correction across all regions and arousal-valence levels were used for statistical comparisons. Our results show that brain
network exhibits significantly altered network attributes at FC, nodal and global levels, especially under high-arousal or
negative-valence vocal emotional stimuli. The alterations within/between well-known large-scale functional networks were
also investigated. Through the present study, we have gained more insights into how comprehending emotional speech
modulates brain networks. These findings may shed light on how the human brain processes emotional speech and how it
distinguishes different emotional conditions.
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mechanism foremotional processing; however, most of them
have studied emotion based on facial expressions and visual
stimuli (Lane et al, 1997; Phan et al., 2002). Of late, sev-
eral neuroimaging studies have focused on vocal emotion.
Functional magnetic resonance imaging (fMRI) studies have

Introduction

Emotion is one of the crucial cognitive factors that affect
our daily life and social interaction. Various facial and vocal
expressions convey the emotion during social interaction.

Thus, comprehending these emotional expressions and their
underlying neural mechanism is essential to modern society
and to build new communication technologies. Several prior
neuroimaging studies have aimed to elucidate the neural

shown that emotional prosody (especially emotions such as
anger) consistently activates amygdala as well as numerous
brain regions in the lateral temporal lobe and frontal lobe
(Mitchell et al, 2003; Grandjean et al., 2005; Sander et al.,
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2005; Liebenthal et al., 2016). Additionally, electrophysiological
[electroencephalography (EEG) and magnetoencephalography
(MEG)] studies using event-related potentials have strived to
delineate the neural dynamics related to the effects of vocal
emotions. For example, Paulmann et al. (2013) suggested that
valence information is decoded during early processing, while
arousal effects occur at a later stage of processing.

In addition to changes in regional brain activity, emo-
tional perception may also alter the interregional functional
connectivity (FC) as well as the brain network topology.
At the connectivity level, studies have employed FC analy-
sis and investigated reorganized FC induced by emotional
processing (Anticevic et al., 2011; Kim et al., 2011; Klapwijk
et al., 2013; Eckstrand et al, 2018; Ewbank et al, 2018). At
the network level, the recent advancement in computational
approaches, especially graph-theoretical analysis, has pro-
vided the means to characterize the brain network topology
(Rubinov and Sporns, 2010). Several studies have used graph-
theoretical analysis to investigate the alteration of brain
networks when interpreting facial emotional expressions
that have shown significant changes of global efficiency
and clustering coefficient (CC) compared with the resting
state (Di and Biswal, 2018; Zuo et al., 2018). Compared with
regional functional activation, connectivity-based and network-
based studies may help us gain more insights into the
neural mechanism of emotion and learn how emotion may
modulate the cognition states. Currently, a growing body
of evidence supports the affective workspace hypothesis,
suggesting that either positive or negative affective state is not
necessarily associated with activating a specific set of regions
(Barrett and Bliss-Moreau, 2009; Lindquist et al., 2015).
Alternatively, it can emerge as ‘brain state’ at the population
level. Therefore, to strengthen the validity of this hypothesis, it
is essential to understand how emotion-related cortical regions
interact during processing of emotional information.

Several studies have explored the alteration of network
topology due to facial emotional expressions, but not much is
known about the effects of vocal emotional stimuli on brain net-
works at connectivity and network topological levels. Therefore,
to explore the vocal emotion and its underlying neural
mechanism, this study has the following three objectives.
First, we sought to examine the feasibility of graph-theoretical
analysis on fMRI data with vocal emotional stimuli. Second,
we sought to explore whether vocal emotional stimuli induce
any alteration of brain networks—at both network topological
and connectivity levels. We also investigated the differences
within/between well-known large-scale functional networks.
Third, we sought to investigate whether there is any difference
in network topology between the resting state and the ones
induced by vocal emotional stimuli.

Materials and methods
Participants

A total of 36 healthy volunteers (27 male and 9 female)
participated in our study. Furthermore, to reduce the risk of
possible confounding factors, the participants were recruited
based on several criteria: being free of any brain disease or
major brain injury, age ranging between 20 and 35 years and a
college or higher-level education to understand the vocal
emotion stimuli pronounced in English. Furthermore, we
only recruited right-handed subjects to exclude any potential
variability due to handedness. The Institutional Review Board at

National Health Research Institutes approved this study, and all
volunteers provided informed consent.

Experimental stimuli

The vocal emotion stimuli were generated from part of the USC
IEMOCAP database (Busso et al.,, 2008). The audio data from
IEMOCAP database consist of recordings of scripted or spon-
taneous speech during dyadic interaction between a pair of
voice actors. Naive raters rated each recording with attributes
including valence, arousal and dominance with the continuous
rank from 1 to 5. For our study, we used the scripted dialogs by
a chosen male voice actor whose recordings yielded the highest
variability in the speech attributes among all voice actors. From
639 segments spoken by the selected voice actor, we selected 251
voice segments as the stimuli for our experiments.

We categorized the stimuli into two types of emotional
attributes, namely, arousal and valence, and designed three
conditions for each feature. Each experiment comprised six
5 min vocal emotion stimuli and a 1 min break between any
two stimuli. For the arousal attribute, the conditions were
categorized into low (value <2.5), medium (2.5 <value <3.5)
and high (3.5 <value) levels. For the valence attribute, the
conditions were negative (value <2.5), neutral (2.5 < value < 3.5)
and positive (3.5 <value) levels. For each condition, the speech
segments with the given attribute and level were shuffled to
remove any contextual information and were then concatenated
to form a 5 min continuous vocal emotional stimulus. The
participants were asked to pay attention to the speech-based
stimuli without being informed of the purpose or the details of
the experiment.

Image acquisition

MR experiments were performed on a 3T MRI scanner (Prisma,
Siemens, Erlangen, Germany) at National Taiwan University.
Each scanning session included T1-weighted imaging (T1WI),
resting-state fMRI (rs-fMRI) and task-evoked fMRI (t-fMRI) of
all vocal emotional stimuli. The T1WI protocol was employed
using a magnetization-prepared rapid gradient-echo sequence
with repetition time (TR) of 2000 ms, echo time (TE) of 2.3 ms,
inversion time (TI) of 900 ms, flip angle () of 8, voxel size of
1x1x 1 mm?, matrix size of 256 x 256 and 192 slices. Each fMRI
scan with blood oxygen level-dependent (BOLD) contrast was
acquired using gradient-echo echo-planar imaging sequence
with TR/TE of 3000/32 ms, « of 90°, voxel size of 2.5 x 2.5 x 3 mm?,
matrix size of 96 x 96, 40 slices and 100 repetitions.

Data pre-processing

Before network analyses, all rs-fMRI and t-fMRI data sets were
pre-processed using DPARSF toolbox (Chao-Gan and Yu-Feng,
2010). The pre-processing procedures included the removal of
the first 10 volumes, slice-timing correction, co-registration to
T1WI, covariate regression of head motion, white matter signals
and cerebrospinal fluid signals, nonlinear spatial normalization
using T1WI, linear detrending and band-pass filtering (0.01-
0.1 Hz). To estimate the FC over the whole brain, brain
regions were parcellated using the Power-264 functional atlas
(Power et al., 2011), which comprises 264 putative functional
regions-of-interest (ROIs) associated to 13 large-scale functional
networks and a group of unlabeled regions (Table 1). We also
provide the region definitions used in Automated Anatomical
Labeling (AAL) atlas (Supplementary Table S2) and reported
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Table 1. Abbreviations of the large-scale functional networks defined
in Power-264 functional atlas

Abbreviations Functional networks

SM.H Sensory/somatomotor hand
SM.M Sensory/somatomotor mouth
co Cingulo-opercular task control
Aud Auditory

DMN Default mode

MR Memory retrieval

Vis Visual

FP Fronto-parietal task control
Sal Salience

Sub Subcortical

VA Ventral attention

DA Dorsal attention

CB Cerebellum

Unlabeled All unlabeled regions

the corresponding anatomical locations of functional ROIs
using the definitions by the AAL atlas. The averaged time
series of each putative functional ROI defined in Power-264
functional atlas was derived by averaging the pre-processed
rs-fMRI signals within the ROI. The pairwise between ROI
FC was derived by quantifying the temporal dependency
between two extracted averaged time series. We computed
two types of FC measures—Pearson’s correlation (PC) and
covariance (COV). It should be noted that the negative FCs
were excluded in the following analysis, i.e. only positive FCs
were used. Subsequently, we employed the orthogonal minimal
spanning trees (OMSTs) method on constructed FC matrices
to filter out spurious connections (Dimitriadis et al., 2017a;
Dimitriadis et al., 2017b). Briefly, the OMSTs iteratively extract
the minimal spanning trees from a given graph, and the filtered
graph is the aggregate of OMSTs that maximizes the global
efficiency subtracted by the wiring cost of the brain network.
Compared with the conventional sparsity thresholding method
based on either a given FC value or a network sparsity, the OMSTs
method is parameter-free and more reproducible in group-wise
or even individual-level brain network (Dimitriadis et al., 2017a;
Dimitriadis et al., 2017b).

Graph-theoretical analysis

After applying OMSTs, the graph-theoretical analysis was
employed to derive both nodal and global graph-theoretical
network measures from the filtered FC matrices. The nodal
network measures used in this study are degree centrality
(DC), CC (Saramaki et al.,, 2007), local efficiency (Ei) (Latora
and Marchiori, 2001) and PageRank centrality (PR) (Rubinov and
Sporns, 2010). In addition to investigating the network attributes
at nodal scale, we also examined the network attributes at the
global scale—the whole brain—using a set of global graph-
theoretical network measures. The global network measures
in our study includes characteristic path length (L), global

efficiency (Eqop), mean local efficiency (Ei), mean clustering
coefficient (CC), transitivity (T) (Newman, 2003), modularity
(M) and assortativity coefficient (AC) (Humphries and Gurney,
2008), in addition to the network wiring cost (S). We provided the
detailed definitions of network measures in the Supplementary
Section S1. One can also refer to a previous review article for

more details (Rubinov and Sporns, 2010). We also performed an
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analysis of complementarity among different network measures
and provided the discussion in the Supplementary Section S2.

Statistical analysis

In this study, we sought to explore the topological reconfigu-
ration of t-fMRI networks with vocal emotional stimuli and rs-
fMRI networks. By categorizing these vocal emotional stimuli
into multiple arousal and valence levels, we further investigated
the relationship within and between these levels, as well as their
differences with the resting-state condition. The comparisons
were performed at nodal network, global network and FC levels.
As for each well-known large-scale functional network, we cal-
culated the averaged nodal measures across its member ROIs,
the averaged intra-network FC and inter-network FC connecting
to other functional networks. Except the above analyses, we also
performed the analysis of common connections across all sub-
jects for each specific arousal, valence or resting-state condition
and discussed in the Supplementary Section S3. All statistical
analyses of the FC and graph-theoretical network measures were
performed using the paired-sample t-test. All significant levels
were subsequently adjusted for multiple comparisons jointly
across 264 ROIs and 6 pairs of conditions (either resting-state
and 3 arousal levels or resting-state and 3 valence levels) using
Bonferroni correction.

Results
Investigation on nodal network measures

Table 2 shows the statistical comparisons of the nodal network
measures among different t-fMRI and resting-state conditions.
Note that we denoted the type of FC in superscripts for a given
network metric in the following sections. For example, DC®®
denotes the DC calculated using PC as definition of FC. For t-fMRI
with arousal stimuli, significantly reduced PR*® of low-arousal
condition was found in an ROI (in STG.R) within the auditory
network by comparing with resting-state condition. However, no
significant differences among those arousal and resting-state
conditions were found by using all nodal network measures
derived from COV. For t-fMRI with valence stimuli, significant
differences of nodal network measures were only found between
neutral- and negative-valence conditions. Compared to neutral-
valence condition, our results show decreased CC*® in one ROI
(located between MOG.L and I0G.L) within the visual network,
CC“®Y in one ROI (between DCG and SMA.L) within the hand
sensory/somatomotor network and Ej,.‘“®” in three ROIs (one
in IOG.R, one between ITG.R and IOG.R and one between
CUN.R an PCUN.R) in visual network of negative-valence
condition.

Investigation on global network measures

Table 3 shows the statistical comparisons of the global network
measures among different t-fMRI and resting-state conditions.
For t-fMRI with arousal stimuli, the high-arousal condition
showed increased Ej0", EOV oV and €C°°” compared to
mid-arousal condition. The decreased LY was also found
in high-arousal condition compared to mid-arousal condition.
s . —=(COV)
Compared to low-arousal condition, increased CC was
found in high-arousal condition. However, no significant
between-condition difference of global network measures
was found by utilizingPC as definition of FC. For t-fMRI

with valence stimuli, significant between-group differences
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Table 2. The statistical comparisons of nodal network measures
among different task-evoked, (a) arousal stimuli and (b) valence
stimuli and resting-state conditions. All P-values were corrected
for multiple comparison across the arousal-valence levels by Bon-
ferroni correction (*P <0.01; **P < 0.001). For each ROI, both of the
corresponding network in Power-264 atlas and the correspond-
ing regions in Automated Anatomical Labeling atlas were shown.
Please see Supplementary Table S1 for abbreviations of AAL region

Table 3. The statistical comparisons of global network measures
among different task-evoked, (a) arousal stimuli and (b) valence
stimuli and resting-state conditions. All P-values were corrected for
multiple comparison across the arousal-valence levels by Bonfer-
roni correction (*P <0.01; **P <0.001)

(a) Arousal stimuli

cov
(a) Arousal stimuli Low < high Mid < high
No. of ROI in Network PC Eglob *
Power-264 atlas (AAL region) Rest > Low Ejoc * sk
cc *
63 Auditory PR T N
(STG.R)
cov
L Mid > high
(b) Valence stimuli
#ROI in Network PC cov - *
Power-264 (AAL regions) Neutral > Neutral >
atlas negative negative (b) Valence stimuli
168 Visual CC, Ejoe PC cov
(MOG.L, IOG.L) Neutral > Rest > Neutral > Positive >
15 Sensory/somatomotor CC, Ejoc negative negative negative negative
hand (DCG.R, DCG.L,
SMA.L) EQIOb * ok Hokeok *
153 Visual (IOG.R) Ejoc Eloc * o ok
161 Visual Ejoc cc * **
(ITG.R, IOG.R) T * * o
163 Visual Eloc PC cov
(CUN.R, PCUN.R) Neutral < Rest < Neutral < Positive <
negative negative negative negative
L * * s,k *

of global network measures were found mainly in negative-
valence condition compared to other valence or resting-
state conditions. For utilizing COV as FC definition, the
altered global network measures includes increased LV

and decreased E;fo?,\” (compared to all other conditions),

decreased E{:COV), cc“” and TCV (compared to resting-state
and neutral-valence conditions). For utilizing PC as FC definition,
decreased Ej), ErY, TCO and increased L*O (compared to
neutral-valence condition) were found. No significant between-
condition difference of M, AC nor S was found among all

comparisons.

Investigation on interregional FC

In addition to network metrics—either nodal or global—we also
performed the between-condition comparisons of interregional
FC (PC based and COV based). For arousal stimuli, significant
between-condition differences were found by using PC-based
FC, while no significant between-condition differences were
found by using COV-based FC. Compared with resting-state
condition, significantly reduced PC-based FC were found in
either low- or high-arousal condition for Aud, SM.M, SM.H,
DA, VA and Vis networks, as shown in Figure 1. For valence
stimuli, significant between-condition differences were found
by using both PC-based and COV-based FC. By comparing the
resting-state and positive-valence conditions, the significantly
different connection with PC-based FC was found between DA
and DMN. Most of the significant between-condition differences
were found to associated with reduced FC in negative-
valence condition, including Vis-FP (resting-state > negative-

valence; neutral-valence > negative-valence), Vis-DMN (resting-
state > negative-valence), SM.H-Vis (neutral-valence > negative-
valence), SM.M-CO (neutral-valence > negative-valence) and
DA-Vis (neutral-valence > negative-valence). Two significantly
different connections with increased FC in negative-valence
condition were found in intra-DMN (resting-state < negative-
valence) and SM.H-CO (positive-valence < negative-valence).
For COV-based FC, a significantly different connection was
found between DMN and Vis (negative-valence <neutral
valence; Figure 2).

Investigation on large-scale functional networks

Table 4 shows the statistical comparisons of averaged nodal
network measures within well-known large-scale functional
networks among different conditions. No significant difference
was found in the arousal condition. In contrast, significant dif-
ferences of averaged nodal network measures were found to be
mostly associated with negative-valence condition. Compared
with the neutral-valence condition, decreased averaged nodal
network measures were found in negative-valence condition,
including CC“®” and E;,.‘“®” in SM.H, E;,.‘“®” in DMN and
DC, CC and Ej in Vis for both FC definitions. Additionally,
increased PR““Y in MR and decreased Ej,.“°" in Vis were found
in negative-valence condition by comparing with the neutral-
valence and resting-state conditions, respectively. Figure 3
shows the inter-network and intra-network comparisons of
FCs. The alterations of FCs were only found in t-fMRI with
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Fig. 1. Significant changes of FC associated with arousal stimuli and resting state. Blue and red lines signify decrease and increase of connectivity in the latter condition
compared with the former condition, respectively. For having a better visualization, the ROIs are reordered and colored according to their correspondence to the large-
scale functional networks. Please see Table 1 for the abbreviations of the functional networks. Note that we excluded CB in the illustration. All FCs are corrected for

multiple comparisons across arousal levels using Bonferroni correction.
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Fig. 2. Significant changes of FC associated with valence stimuli and resting state. Blue and red lines signify decrease and increase of connectivity in the latter condition
compared with the former condition, respectively. For having a better visualization, the ROIs are reordered and colored according to their correspondence to the large-
scale functional networks. Please see Table 1 for the abbreviations of the functional networks. Note that we excluded CB in the illustration. All FCs are corrected for

multiple comparisons across valence levels using Bonferroni correction.

valence stimuli, and most of them were associated with
the negative-valence condition. A total of five inter-network
alternations of PC-based FC were found, including VA-Sub
(resting-state < positive-valence), CO-DA (positive-valence <
negative-valence), Sub-FP (positive-valence < negative-valence),
Aud-SM.M (neutral-valence > negative-valence) and Vis-DA
(neutral-valence > negative-valence). In contrast, the only intra-
network alteration was found in Vis (neutral-valence > negative-
valence) by using COV-based FC.

Discussion

Our study demonstrates that perception of emotional speech
could modulate brain network topology in several cortical
regions associated with emotion processing. We also found
the altered global network topology among different task-
based and resting-state conditions. Beyond regional level, we
further investigated the alterations of network metrics and FCs
within/between large-scale functional networks and reported
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Fig. 3. Significant changes of averaged intra-network or inter-network FCs with respect to the 12 large-scale functional networks (without CB and unlabeled) associated
with the valence stimuli and resting state. Both PC- and COV-based FCs were investigated. Blue and red lines signify decrease and increase of connectivity in the latter
condition compared with the former condition, respectively. For having a better visualization, the ROIs are reordered and colored according to their correspondence to
the large-scale functional networks. Please see Table 1 for the abbreviations of the functional networks. All FCs are corrected for multiple comparisons across valence

levels using Bonferroni correction.

Table 4. The statistical comparisons of averaged nodal network
measures within large-scale functional networks among different
task-evoked and resting-state conditions. All P-values were cor-
rected for multiple comparison across the arousal-valence levels
by Bonferroni correction (*P < 0.01; **P < 0.001).

(a) Arousal experiment
(None)
(b) Valence experiment

PC cov
Network Neutral > Rest> Neutral > Neutral <
negative negative negative  negative
Sensory/somato- CG, Ejpc
motor mouth
Default mode Eloc
network
Memory retrieval PR
Visual DC, CC, Eloc Eloc DC, CC, EIOC

our findings. To our knowledge, this is the first study that
investigates the effects of vocal emotional stimuli on brain
network topology using graph-theoretical analysis of fMRI
data. These findings may shed light on how the human brain
processes emotional speech and how it distinguishes different
emotions. In the following sections, the results from our analysis
and their interpretations are elaborated. Also, the limitations of
the experimental design and data interpretation are discussed.

Task-related alterations in nodal network measures

Results for valence stimuli revealed a tendency that the network
topology was significantly altered under the negative-valence
condition compared with that of neutral valence or resting state,
suggesting that the negative-valence stimuli may modulate or
reorganize the brain network. In addition, we should note that
alterations of averaged network measures in the large-scale
functional networks are highly consistent with that by inves-
tigating individual ROIs, further supporting our findings. One
interesting finding from the experiments with valence stimuli
was that the reductions of functional segregation (CC°°Y and
E.'®Y) were observed in the visual network. These alterations

were observed in several individual ROIs in visual network and
from investigating the averaged measures in visual network.
A meta-analytic review by Kober et al. (2008) has reported that
a group of visual sub-regions would be activated under visual
emotional stimuli. Furthermore, we hypothesized that these
visual sub-regions could be stimulated by not only visual stimuli
but also other modalities. A similar hypothesis has been intro-
duced in an fMRI study by Sander et al. (2005) in which activation
in CUN was observed under attended anger prosody compared
with neutral or unattended anger prosody. Therefore, we spec-
ulated that the alteration of network topology may be resulted
from the complex cross-modal interactions during emotional
processing. One possible explanation about cross-modal inter-
actions in our case is the visual mental imagery triggered by
the speech stimuli. A previous fMRI study showed that the
mental imagery evokes greater emotional response than verbal
representation (Holmes and Mathews, 2005). Another fMRI study
by Just et al. (2004) also revealed that the visual imagery is crucial
for sentence comprehension. Essentially, the theory of multi-
modal mental imagery has been supported by a growing body
of evidence. For instance, an fMRI study by Pekkola et al. (2005)
showed that using silent visual speech stimulus (facial videos
during speech overlaid with written pronunciation) could acti-
vate primary auditory cortex. Other than visual mental imagery,
a few studies have also reported different kinds of cross-modal
interactions during emotional processing. Brosch et al. (2008,
2009) have reported that visual attention could be modulated
by anger prosody. Another EEG study by Jessen et al. (2013) also
showed that the cross-modal prediction of emotion exists in the
multimodal processing of audiovisual emotion. Based on these
previous studies, we could suggest that a similar cross-modal
interaction mechanism to alter the network topology might also
be revealed in visual sub-regions. However, a more sophisticated
experimental design in further study would be needed to verify
our speculation.

We also observed significantly reduced nodal functional
segregation (CC“®Y and Ej,.‘“®") in the sensorimotor network
by comparing negative-valence and neutral-valence conditions.
These alterations were found in one ROI in the hand sensorimo-
tor network and by investigating the averaged network measure
of the mouth sensorimotor network. Consistently, previous
studies have also reported the association of sensorimotor
network with speech, language and emotional processing



(Oliveri et al., 2003; Nummenmaa et al.,, 2014b; Hertrich et al.,
2016). A study using transcranial magnetic stimulation sug-
gested the role of supplementary motor area in movement
control triggered by emotional stimuli (Oliveri et al., 2003). An
fMRI study showed that the vocal emotion was associated with
the BOLD responses in emotion, attention and sensorimotor
circuits, in addition to the inter-subject synchronization
within somatosensory and supplementary motor cortices
(Nummenmaa et al., 2014b). Intense emotion can trigger
corresponding physiological and bodily response through
sensorimotor and visceral nervous systems (Vrana and Lang,
1990; Costa et al., 2010; Nummenmaa et al., 2014a). Therefore, it
is reasonable to speculate that the alterations in sensorimotor
network were likely due to the increased demand for physiolog-
ical and bodily emotion response.

Task-related alterations in global network measures

Our results showed that vocal emotional stimuli altered not
only nodal network measures but also global network measures.
For arousal stimuli, significant increases of functional integra-
tion (increased Eg, and decreased L) and segregation (increased
Ee, CC, and T) were found in high-arousal condition compared
with low- and mid-arousal conditions. For valence stimuli, sig-
nificantly reduced functional integration and segregation were
found in negative-valence condition compared with all the other
conditions (neutral valence, positive valence and resting state).
We hypothesized that the brain network for processing emo-
tional speech with high-arousal condition might intrinsically
exhibit distinct level of functional integration and segregation as
compared with other conditions or resting state. In this case, the
brain network under high-arousal condition may show higher
degree of integration and segregation, while the task-negative
resting-state network is being suppressed. However, the brain
network under low- or mid-arousal condition may be presented
as a mixed pattern of task-positive and resting-state networks.
Having different combinations of task-positive and resting-state
networks may contribute to our speculation about the altered
global network topology between high-arousal and the other two
arousal levels.

Similarly, the brain network to process the negative-valence
vocal emotion stimuli may be characterized by reduction in
network integration and segregation. Our results generally
showed reduced network integration and segregation in
negative-valence conditions compared with the resting state.
Previous studies have attempted to understand the underlying
mechanism and investigate the relationship between task-
specific and resting-state networks further. Di etal. (2013)
compared the global network measures of a task-general
and meta-analytic coactivation network to a group-averaged
resting-state network and reported reduced clustering, reduced
modularity and increased efficiency. Recently, Zuo et al. (2018)
used binarized PC matrix for studying the change of brain
network topology under seven different kinds of functional
tasks, which showed significant increases in global efficiency
in all functional tasks compared with resting state. Another
specific study by Wang et al. (2012) investigated the network
topology during the semantic matching task and resting state
using binarized correlation matrices. Their results showed
reduced global efficiency, reduced normalized global efficiency,
increased Ei. and increased nodal centrality. Taya et al. (2014)
used alphabet recognition tasks and discovered reduced
normalized CC compared with that of resting state. Although
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the experimental designs and targeted network measures of
these previous studies do not converge in details, a general
tendency that we could summarize from these studies is that
most task-related networks would exhibit increased efficiency—
in contrast to our findings. This controversy may arise from
experimental designs, pre-processing of graph theoretical
analysis, computation of network measures and statistical
comparison approaches. A further study is needed to clarify
these effects of data processing.

Task-related alterations in FC

Our results also showed altered interregional FC in several con-
nections. For arousal stimuli, reduced FC was mostly found in
those connections associated with the auditory network, mostly
involving superior temporal gyrus (STG). This finding may sug-
gest that the reduced FC centered to these regions could be
a result of configuration switching between resting-state and
task-positive networks. Several sub-regions within STG, e.g. pri-
mary auditory cortex and Wernicke’s area, are known to be
responsible for processing auditory and language information.
Functionally, STG is responsible for language processing, which
may also contribute to the altered FC under task-related condi-
tions (Damasio and Geschwind, 1984; Poeppel et al., 2008). In our
current results, the altered FC related to STG may reflect that the
patterns of network topology are different between vocal emo-
tion modulation and resting state. However, our results cannot
fully explain the association between STG and vocal emotional
processing. Other than STG, we also observed that the CC and
Eloc in TPOmid.R under high-arousal condition were significantly
lower than those under mid-arousal condition. Interestingly,
previous studies have suggested the temporal pole was associ-
ated with the social and emotional processing, including face
recognition and theory of mind (Beauregard et al., 2001; Olson
et al., 2007). Although the association between the temporal pole
and vocal emotional processing is not clear yet, we could spec-
ulate that the arousal levels of vocal emotion stimuli may alter
the network topology and result in altered nodal network char-
acteristics in temporal pole. For valence stimuli, significantly
reduced COV-based interregional FC and mean intra-network
FC was found in several connections within the visual network
by comparing negative-valence to neutral-valence conditions—
consistent with our findings in the nodal network topology, fur-
ther supporting our hypothesis of cross-modal mental imagery
altering the network topology in visual-associated regions. We
should note that the alterations of averaged network measures
in the well-known large-scale functional networks and mean
inter-network/intra-network FCs were highly consistent with
those observed by investigating individual ROIs, especially in
the visual and sensorimotor networks. The observations among
large-scale functional networks further solidified our findings in
FCs, nodal and global network metrics.

Investigation on complementarity of network measures

Since we incorporated a series of nodal and global network
metrics that may be used to quantify similar network topolog-
ical characteristics in theory, it was of great interest to explore
the complementarity between these network metrics. How they
complement each other to form a more concrete delineation of
the overall brain network topology would be beneficial for our
current study. Thus, we also analyzed the similarity between dif-
ferent nodal network metrics using correlation analysis and also
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compared these between-metric similarities from two different
pre-processing procedures, i.e. OMSTs and sparsity thresholding
(see Supplementary Section S2 for details). Our results gener-
ally showed that the network metrics used to characterize the
same topological attribute could be highly correlated even if
they have different theoretical definitions. For example, Ej,. was
calculated based on the shortest path length and CC was based
on triangles; however, these two metrics were highly correlated
in our case. Although these metrics were highly correlated, Ejoc
revealed more between-condition differences than other metrics
that also measured the functional segregation in this study. We
could summarize that, in our study, the network metrics for
characterizing the same topological attribute could still pro-
vide complementary information, e.g. sensitivity to differentiate
subtle alterations between conditions, even if they were highly
similar in their quantities. It would be beneficial if all metrics
were calculated and included in providing more insights into the
complex brain network architectures.

A comparison between PC- and COV-based FC

We also investigated the influence of two kinds of FCs—PC
and COV—on brain network topology. Interestingly, it was
revealed that the analyses using these two FCs could provide
non-redundant information for depicting the brain networks
under different task-related and resting-state conditions. For
nodal network measures, PC and COV reflected the influences
of arousal and valence stimuli on brain network topology,
respectively. For global network measures, the influences of
both arousal and valence stimuli were only revealed by COV.
For FC, PC revealed most of the alterations induced by arousal
stimuli, whereas COV revealed most of the alterations induced
by valence stimuli. By definition, assuming two independent
variables X and Y, PC(X,Y) is equivalent to COV(X,Y) divided by
the products of the variances of those two variables (§xdy). In
other words, the calculation of COV considers both the signal
amplitudes and variations, while PC is a dimensionless measure
that decouples the effect of the signal variations. Therefore,
PC and COV could reflect different aspects of functional
dependency in principle and then result in non-redundant
observations.

Here, we give two scenarios where the observations of PC and
COV may not converge. In some cases where the alteration of
signal variances is irrelevant to the stimulation, COV may show
a lower significance level than PC due to the inclusion of signal
variances. In other cases where the alteration of signal variances
is highly relevant to the stimulation, COV may show a higher sig-
nificance level than PC. Considering the nature of definitions, we
speculate that the network modulation under arousal stimuli is
less relevant to the alteration of signal variations, while network
modulation under valence stimuli is mostly contributed by the
alteration of the amplitude of signal fluctuations. To date, choos-
ing optimal FC measures for graph-theoretical analysis remains
challenging. Our study demonstrates that the use of multiple
FC measures may be a better approach to address the complex
network and could provide complementary perspectives on the
task-related reconfiguration of a network.

Limitations

In this investigative study, we have shown that the different
levels of emotional speech stimuli may alter or modulate the
brain networks on either a nodal or global scale. Although we

suggest that brain network analysis could have the potential to
resolve the vocal-emotion-induced topological changes, several
limitations must be carefully discussed. The first limitation
may come from the cultural difference between the volunteers
who rated the emotional scales in the IEMOCAP data set and
the participants involved in this study. The cultural difference
arising from native languages and environmental factors may
play a major role in comprehending the emotional speech,
which might be the major confounding factor in this exploratory
study. The second limitation is the design of vocal emotional
stimuli, in which we tried to mimic the real-world scenarios.
However, this experimental design might be too complicated to
rule out some other mental confounding factors. Considering
both limitations, one should use the speech database with
the same native language as that of the participants involved
in the experiments to investigate better the effects of vocal
emotional stimuli on brain network topology. Furthermore,
the scenarios of the functional stimuli should be divided
into several simplified sections so one could investigate each
phenomenon separately. Additionally, it is also worth noting
that the method used in this study assumes a static topology
under a given type of stimuli. However, it is highly likely that
such an assumption does not hold—for brains are dynamic
systems. Notably, several studies have also investigated how
functional networks change and evolve with time using
dynamic FC (Glerean et al., 2012; Hutchison et al, 2013).
Nummenmaa et al. (2014b) also performed whole-brain dynamic
connectivity analysis for studying the effects of emotional
speech on dynamic changes of brain networks. It is highly likely
that considering the dynamic nature of the brain network would
provide a more valid analysis and allow for studying dynamic
changes in brain states. However, some careful analysis design
is required to apply high-level network analysis to a dynamic
network. Furthermore, the emotional stimuli used in our study
were attributed to a simple two-dimensional model (i.e. arousal
and valence). However, it is also possible to extract emotion-
related features directly from the stimuli (El Ayadi et al., 2011).
In fact, it has been shown that emotion recognition using EEG
signals can be facilitated by incorporating features extracted
from the stimuli (Zhu et al., 2014; Gao and Wang, 2015; Wang
etal., 2015). Therefore, we postulated that by incorporating sound
features extracted from the speech stimuli, we could achieve a
more comprehensive analysis of various aspects of emotions
during the speech.

Conclusions

In this study, we investigated the modulation of brain networks
under emotional speech perception using high-level graph-
theoretical network measures. With the use of OMSTs approach
and Power-264 functional atlas, we discovered that brain
network exhibits significantly altered network attributes
at global, nodal and connectivity levels, especially under
emotional speech with high arousal or negative valence. We
also investigated the alterations of network metrics and FCs
within/between large-scale functional networks and found that
most of alterations were associated with negative valence. To the
best of our knowledge, this is the first study employing a graph-
theoretical analysis of emotional speech perception. Although
this is predominantly an investigative study, we have gained
crucial insights into how comprehending emotional speech
modulates brain networks. Additionally, this study provides
directions for high-level network analysis on emotional speech
comprehension or possibly other types of brain functions.
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