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Lymph nodes (LNs) are highly organized secondary lymphoid organs, and reflective of
immune responses to infection, injuries, or the presence of cancer. Extensive molecular
and morphological analyses of immune and stromal features in tumors and LNs of
breast cancer patients have revealed novel patterns indicative of disease progression.
Within LNs, there are dynamic structures called germinal centers (GCs), that act as the
immunological hubs for B cell development and generation of affinity matured memory
B and antibody-producing plasma cells. Acting as a bridge between systemic and
local immunity, associations are observed between the frequency of GCs within cancer-
free LNs, the levels of stromal tumor infiltrating lymphocytes, and cancer progression.
Scattered throughout the tumor microenvironment (TME) or aggregated in clusters
forming tertiary lymphoid structures (TLS), the occurrence of tumor infiltrating B cells
(TIL-Bs) has been linked mostly to superior disease trajectories in solid cancers. Recent
TIL-Bs profiling studies have revealed a plethora of different TIL-B populations, their
functional roles, and whether they are derived from GC reactions in the LN, and/or locally
from GC-like structures within the TME remains to be investigated. However, parallels
between the immunogenic nature of LNs as a pre-metastatic niche, TIL-B populations
within the TME, and the presence of TLS will help to decipher local and widespread TIL-
Bs responses and their influence on cancer progression to the lymphatics. Therapies
that enhance TIL-Bs responses in the LN GC and/or in GC-like structures in the TME
are thus emerging management strategies for breast and other cancer patients.
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HIGHLIGHTS

- Morphological alterations in cancer-free and cancer-involved axillary lymph nodes hold
predictive prognostic information for breast cancer patients.

- Tumor infiltrating B cells (TIL-Bs) can form tertiary lymphoid structures that bear
morphological and cellular similarities to germinal centers in lymph nodes.

- TIL-Bs at the primary tumor site and the formation of tertiary lymphoid structures are mostly
associated with superior disease trajectories in breast and other solid cancers.
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- Deep single-cell profiling has revealed a plethora of markers
and new TIL-B populations, and for many their functional role
remains to be determined.

- Exploring the responses of TIL-Bs at the primary tumor,
in peritumoral germinal center-like structures and in lymph
nodes will inform the development of novel therapies.

INTRODUCTION

Lymph nodes (LNs) are secondary lymphoid organs that act
as a platform to facilitate antigen dispersal and promote
interactions between immune cell subsets. In response to disease,
inflammatory chemokines and cytokines mediate the recruitment
of lymphocytes and antigen-presenting cells that access the LNs
via lymphatic vessel-mediated lymph drainage. Passing through
the subcapsular sinus, these lymph-borne solutes disseminate
into the cortex where B cells, intrafollicular T cells, and dendritic
cells are arranged in a highly size-restricted manner, before
moving through conduits to reach the T cell zone of the
LN paracortex. Depending on the nature of the stimuli, these
compartments can expand or diminish to generate an optimal B
cell response. Eventually, lymphocytes exit the LNs via efferent
lymphatic vessels, and the LNs return to a naïve, resting state
(Willard-Mack, 2006).

Despite serving as transportation channels essential to an
effective immune response, the lymphatics also act as corridors
for cancerous cells to pass through into the LNs (Stacker et al.,
2014; Ji, 2016). Typically presenting as the initial seeding site
outside of the primary tumor, the presence of metastatic growth
within LNs has been associated with both shortened disease-
free survival and a heightened risk of developing metastases in
distant organs. Therefore, the incidence of cancer cells within
the LNs, the number of metastatic LNs, and the occurrence
of extra nodal extension have formed essential assessment
parameters for routine pathological diagnosis of several cancers,
including breast cancer.

Historically, axillary LN clearance was undertaken for all
patients with invasive breast cancer. Today, the standard
treatment of care for patients with clinically and radiologically
negative nodes prior to surgery is surgical resection of only the
nodes adjacent to and draining from the tumor bed, the so-
called sentinel LNs. It is also becoming more common for breast
cancer patients to receive neoadjuvant chemotherapy (NACT),
which presents new challenges for the assessment of the LNs.
Treatment-induced fibrosis and reactive changes can obscure
the local environment and prevent an accurate diagnosis of LN
metastasis. Thus, exploring the spatial, cellular, and molecular
alterations in LNs occurring due to immune surveillance of
nearby tumor growth, as well as from NACT or immunotherapy
will expand our understanding of the immune crosstalk between
LNs and breast carcinomas.

Germinal centers (GC) are immunological sites in the LN
within which B cell receptor (BCR) affinity maturation occurs
to generate long-lived memory B and plasma cells (Victora and
Nussenzweig, 2012; Nakagawa et al., 2021). Tightly regulated
mechanisms within the GC promote targeted responses to

pathogens whilst ensuring the elimination of autoreactive clones.
B cells retrieve antigen via their BCR from follicular dendritic
cells (FDCs) and present that antigen to follicular T helper (Tfh)
cells (Victora and Nussenzweig, 2012). GC B cells compete for Tfh
derived signals critical for positive selection, which culminates
in the upregulation of the transcription factor MYC (Calado
et al., 2012; Dominguez-Sola et al., 2012). BCR affinity maturation
in GC B cells occurs through iterative rounds of clonal
expansion, somatic hypermutation and selection to generate
fine-tuned humoral responses (Victora and Nussenzweig, 2012).
Owing to their highly organized structures, morphological
alterations in GCs indicates fluctuations in their molecular
mechanisms and polarization, which ultimately has an impact
on the quality and quantity of the resulting memory B and
plasma cell populations (Victora et al., 2010; Bannard et al.,
2013; Toboso-Navasa et al., 2020). Early autochthonous models
of breast cancer showed enlarged GCs in regional LNs with
increased levels of lymphoblasts, a sign of active lymphopoieses,
and clusters of dividing plasma cells in the vicinity of the GC
(Ciocca, 1980).

Based on extensive H&E assessment of immune and stromal
features at primary breast carcinomas and patient-matched
axillary LNs, we were the first to report on histological changes
in cancer-free LNs carrying additive risk predictive value for
developing distant metastasis (Grigoriadis et al., 2018). By
incorporating the number and size of GCs in cancer-free
LNs, combined with the level of stromal tumor-infiltrating
lymphocytes (sTILs) at the primary tumor, the presence of
lymphocytic lobulitis, and location of GCs in the involved LN, an
immune-stroma-histological (ISH)-risk score was implemented
indicative for the risk of developing distant metastasis for
breast cancer patients (Figure 1). Amongst the 309 breast
cancer patients enriched of triple-negative phenotype and of
high histological grade, a group of LN-positive patients with
the lowest quartile ISH scores showed a superior outcome
even when compared to LN-negative breast cancer patients. In
particular, the number of GC formations in cancer-free LNs
added valuable information to TILs in triple-negative breast
cancer prognostication (Liu et al., 2021). Multiple questions
emerge from this clinically relevant association, and further
investigations are needed to dissect the mechanisms driving
the formation of LN GCs in breast cancer patients and to
understand the function of GC derived memory B and plasma
cells in this context.

TUMOR INFILTRATING B CELL
RESPONSES AT THE PRIMARY BREAST
CARCINOMAS

Triple-negative breast cancers (TNBCs), defined by their lack
of expression of estrogen receptor, progesterone receptor,
and human epidermal growth factor receptor 2 (HER2), are
associated with a poorer prognosis and higher rates of distant
recurrence compared to receptor-positive breast cancers (Reddy
et al., 2018; Yin et al., 2020). Crucially, lymphatic involvement
is more prevalent in TNBC and contributes to both local and
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FIGURE 1 | Immune-stroma-histological (ISH) score is risk-predictive of developing distant metastasis in breast cancer patients. Cox proportional hazards regression
analysis of LN-positive breast cancer patients (n:143) separated based on their immune and stromal histomorphological features. We developed an ISH-risk score
capturing several different immune and stromal features at the primary tumor side, in cancer-free and metastatic lymph nodes. Patients with high scores had shorter
time to distant metastasis (red line in Kaplan–Meier graph). Their cancer-free LNs had fewer and larger germinal centers (GCs; blue circles) located toward the center
of the node. Cancer-free LN with smaller and more GCs were (blue circles) found in patients with longer time to metastasis (green line in Kaplan–Meier graph). These
patients had a better prognosis than LN-negative patients (black lines in Kaplan–Meier). Hazard ratio (HR) and confidence interval (CI) are shown below the graph,
modified from Grigoriadis et al. (2018).

distant metastasis (Shen et al., 2014; van Roozendaal et al.,
2016; Yao et al., 2019). Both TNBC and HER2-positive breast
cancers often present with more immune infiltrated tumors
compared to other subtypes, and sTIL assessment of these breast
carcinomas have been shown to be superior to classical TNM
staging when predicting outcome and response to anti-HER2
therapy, chemotherapy, and immunotherapy (Salgado et al.,
2015; Ignatiadis et al., 2019; Loi et al., 2019, 2020). In contrast
to the longstanding characterization and manipulation of tumor
infiltrating T cells (TIL-Ts) for clinical research, the potential of
tumor infiltrating B cells, denoted (TIL-Bs), has only recently
sparked interest amongst breast cancer researchers. The majority
of breast carcinomas present with relatively low levels of TIL-
Bs (∼2–3%), yet this is heightened compared to healthy breast
tissue (Garaud et al., 2019). A variety of TIL-Bs at multiple stages
of differentiation, including naïve, GC-like, memory-like, and
plasma cells (Chung et al., 2017; Garaud et al., 2019) have been
reported within and around the tumor microenvironment (TME)
of breast tumors, with a high percentage of TIL-B exhibiting
a memory-like phenotype (Buisseret et al., 2017). Notably,
the occurrence of GC-like B cells consistently correlates with
numbers of Tfh cells, signifying an active and constantly evolving
humoral response (Garaud et al., 2019). Using multiplexed ion
beam imaging to analyze spatial information, TIL-B populations
were found to be consistently depleted along the tumor border
of TNBCs (Keren et al., 2018), however the cause of this relative
reduction is unknown. The spatial patterns and colocalizations
with other cell types further indicate the involvement of TIL-Bs

in humoral immunity, with possible roles in antigen presentation
and modulation of other immune populations with relevance
to tumor progression. Particularly in TNBC patients, increased
levels of TIL in residual disease post-NACT has been associated
with a better prognosis (Dieci et al., 2014). Specifically, the
presence of TIL-B at primary tumor lesions is shown to be
an independent predictor of NACT response (García-Martínez
et al., 2014), and the coexistence of TIL-B and PD-L1-positive
carcinoma cells is significantly associated with a high pathological
complete response rate and overall survival (Arias-Pulido et al.,
2018). Treatment-induced B cell lymphopenia, often seen to
predominantly deplete class-switched memory B cells, may
impact B cell orientated protection against tumor progression
(Mellios et al., 2010; Verma et al., 2016; Gustafson et al., 2020). It
is important to consider that TIL-Bs are shown to re-populate at
a much slower rate than other immune cells after chemotherapy
(Verma et al., 2016; Gustafson et al., 2020), as post-treatment
profiles of patients with high TIL-B levels identifies a highly
responsive group of breast cancer patients (Song et al., 2017).

TUMOR INFILTRATING B CELLS IN
TERTIARY LYMPHOID STRUCTURES

In addition to antibody production and antigen presentation, B
cells may contribute to peritumoral immunity by associating with
T cells to form organized structures known as tertiary lymphoid
structures (TLS) (Germain et al., 2015; Shen et al., 2018). In
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comparison with GCs in LNs, TLSs are non-encapsulated,
transient structures induced and maintained in chronically
inflamed tissues. The presence of TLS has been correlated
with higher TIL-B levels in the peritumoral area and is
frequently associated with superior disease free and overall
survival (Figenschau et al., 2015; Lee et al., 2016; Sautès-
Fridman et al., 2019). Mature TLS bear similar morphological
and molecular characteristics to secondary lymphoid follicles,
forming a definitive marginal zone, mantle zone and a central
GC-like structure in which B cell centroblast, centrocyte subsets,
and Tfh cells are found (Garaud et al., 2019). Somatic mutations
of the Ig variable domains of TIL-Bs isolated from T/B clusters
in ductal carcinomas revealed evidence of local oligoclonal
expansion of cells that have previously undergone antigen-driven
hypermutation, proliferation, and affinity maturation, much like
within a GC (Nzula et al., 2003). To facilitate recruitment,
positioning and interactions within GCs, Tfh cells can express the
checkpoint molecules ICOS and PD-1 that engage with cognate
ICOSL+PD-L1+ centrocytes (Shi et al., 2018). Although the
proportion of PD-1+ and PD-L1+ TILs is low in breast cancers,
much of the PD-1 is primarily expressed on T cells that can also
localize within the TLS. This brings to light the impact of PD-1
as a marker of immune activation in contrast to its connotations
with immune exhaustion in the context of cancer. Moreover,
expression of PD-1 and PD-L1 in TILs is significantly associated
with improved clinical outcomes in TNBC and HER2-enriched
breast cancers (Solinas et al., 2017; Schmid et al., 2018).

Yet to be explored in breast cancer, detailed phenotypic
characterizations of TLS within other solid cancers such as
hepatocellular carcinoma or colorectal cancers identified those
of an “early stage” and “immature” phenotype lacking a central
GC-like structure (Meylan et al., 2020). In patients with non-
metastatic colorectal cancer, tumors presenting with more
than one mature TLS that harbors active GC-like interactions
were associated with a significantly reduced risk of recurrence
compared to patients with solely immature TLS (Posch et al.,
2017). In contrast, in oral squamous cell carcinoma patients, no
differences in overall or recurrence free survival was observed
when the density of immature to mature TLS was compared
(Li et al., 2020). In lung squamous cell carcinoma, the existence
of TLS was the strongest independent factor when patients
were untreated, whilst in patients treated with NACT and
corticosteroid therapy, the development of mature TLS seemed
to be impaired and were not informative of disease progression
(Siliòa et al., 2018). In immature TLS, TIL-B might interact more
with cancerous cells than with T cells, and one hypothesis is that
those TIL-B release factors that dampen the response of other
immune cells, in turn hindering the targeting and destruction
of tumor cells. Three recent studies provide indirect evidence
that immature TLS are associated with low activity of T cells in
tumors, whilst mature TLS nurture B cell development (Cabrita
et al., 2020; Helmink et al., 2020; Petitprez et al., 2020). The above-
listed disease-specific findings highlight the need to explore in
depth the formation and the development of immature and
mature TLS responses within the context of breast carcinomas,
to establish their drivers, their pro/anti-tumor properties, and the
potential impact of neoadjuvant treatment on their formation.

TRANSCRIPTIONAL PROFILING OF THE
GC REACTION AND OF GC B CELL
DERIVED SUBSETS

Tightly controlled transcriptional profiles govern the formation
and development of GCs, and potentially by extension TLS. In
the LN, GC B cells transit between two functionally distinct
compartments, the dark zone (DZ) and light zone (LZ) which
represent polarized areas in which gene expression patterns drive
somatic hypermutation and selection, respectively (Calado et al.,
2012; Dominguez-Sola et al., 2012; Victora and Nussenzweig,
2012). By utilizing single-cell RNA-sequencing (scRNA-seq)
on tissue derived from human and mouse, a plethora of
transcriptional changes occurring in GCs has been revealed, and
with it novel cell populations have been defined (McHeyzer-
Williams et al., 2015; Holmes et al., 2020; Kennedy et al., 2020;
King et al., 2021; Nakagawa et al., 2021). Whilst the functional
roles for some of these populations remain to be determined,
the identification of defining markers provides the opportunity
to determine their spatial distribution and possible isolation
for further study. scRNA-seq experiments have also tentatively
identified the gene expression profiles of memory B and plasma
cell precursors in the LZ of GCs. The differentiation of LZ B
cells toward the plasma cell fate is associated with increased Tfh
help that enhances NF-κB signaling, IRF4, XBP1, FKBP11, and
PRDM1 (BLIMP1) expression (Klein et al., 2006; Heise et al.,
2014; Nutt et al., 2015; Ruer-Laventie et al., 2015; Ise et al., 2018;
Holmes et al., 2020). In contrast, memory B cell differentiation
from LZ B cells is restricted to positively selected cells, seemingly
requires minimal Tfh help and associates with increased BACH2
and HHEX1 expression levels (Sidwell and Kallies, 2016; Laidlaw
and Cyster, 2020; Laidlaw et al., 2020; Toboso-Navasa et al., 2020;
Nakagawa et al., 2021). The transposition of these datasets to TLS
in breast cancer, together with the ability to record the temporal,
spatial and transcriptional profiles of GCs and TLS may further
our understanding of the TIL-B populations within the TME and
provide a rationale for their contribution to disease progression.

ANTITUMOR AND AUTOANTIBODY
PRODUCTION IN BREAST CANCER

As a product of the GC response, plasma cells that have
undergone somatic hypermutation and affinity maturation
are typically long lived and capable of evoking a humoral
response for many years (Brynjolfsson et al., 2018). By contrast,
those that develop in extrafollicular foci do not undergo
somatic hypermutation, are typically short-lived, and secrete
a combination of switched or unswitched antibodies (Paus
et al., 2006). Comprehensive gene expression studies of TIL-
B populations in breast cancer identified IgG-associated gene
sets in primary carcinomas indicative of pathological complete
response to trastuzumab combination therapies and superior
overall survival in TNBC (Perou et al., 1999; Carey et al., 2014;
Iglesia et al., 2014). Spatial analysis of such antibody responses
revealed that breast lesions with high levels of tumor infiltrating
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FIGURE 2 | Graphical depiction of GC regulation. Within the lymph nodes (LNs), B cells primed by T cells at the T/B border move into the GC and proliferate rapidly
in the dark zone (DZ), before transitioning into the light zone. Here, engagement with T follicular helper cells through checkpoint inhibitor mechanism and cytokines
such as IL-21 ensures affinity-based maturation of GC B cells. Upon upregulation of transcriptionally distinct profiles, the B cells differentiate into either a memory B
cell, antibody secreting plasma cell or return to the DZ for additional proliferative rounds and hypermutation. Within the context of breast cancer, antibody production
has been linked to both the inhibition and promotion of tumor progression. Regulatory B cell subsets can regulate this mechanism by suppressing Tfh mediated
activation of B cells and promote an immune tolerant environment through secretion of IL-10. The transition of cancerous cells from the primary tumor to the
lymphatics may be accompanied by a multitude of immune cell subsets, including antigen presenting cells. Further communication between LN and tumor and
potential migration of B cell subsets, cytokines, and chemokines may be informative of how the GC responses can influence the tumor microenvironment. As the
morphology of tertiary lymphoid structures is comparable to that of a B cell follicle, there may be mechanistic parallels that can be drawn between the two structures
(created with BioRender.com).

plasma cells present with antibodies in their tumor core, at
the invasive margin and within the stromal compartments
(Seow et al., 2020). Some of these antibodies bind tumor cells
and display a clonal relationship with those present in the
axillary LNs, indicative of a systemic response beyond the local
TME (Novinger et al., 2015). Supporting a functional role
for antibodies in breast cancer, mice deficient for antibody
production display a more aggressive disease progression, and the
adoptive transfer of IgG secreting plasma cells present in tumor
draining LNs limits metastatic spread (Li et al., 2011; Tao et al.,
2013; Brynjolfsson et al., 2018; Hollern et al., 2019). However, the
antigen specificity of these functionally relevant antibodies is not
completely understood. Conversely, the analysis of the IgG and
IgA autoantibody repertoire in breast cancer patients revealed
that autoantibodies to one or more tumor-associated antigens
occurred in most patients. Notably, patients with a higher
level of IgG reactivity to breast cancer-associated antigens have
significantly shorter recurrence free survival (Garaud et al., 2018).
These findings align with studies of spontaneous LN metastasis
breast cancer mouse models. Here, the presence of IgG antibodies
to a breast cancer antigen promoted tumor progression through
the lymphatics (Gu et al., 2019). It remains unclear whether GC
reactions contribute to the production of protective and/or tumor
promoting antibodies, and the extent to which GC reactions in
the context of breast cancer follow the canonical checkpoints that
curb self-reactivity in physiology. This knowledge is clinically

relevant as it may provide insight for strategies that selectively
inhibit the development of tumor promoting antibodies and
enhance cancer-protective humoral immunity.

IMMUNE TOLERANCE AND
REGULATION

An appropriate immune response relies on a “goldilocks window”
of immune checkpoint control; too little regulation promotes the
expansion of autoreactive cells, whereas exacerbated expression
leads to anergy and exhaustion. Tolerance of GC responses is in
part maintained by T follicular regulatory (Tfr) cells, that dampen
immune responses by preventing CD28-B7 co-stimulatory
interactions through CTLA-4 engagement (Miles and Connick,
2018). Circulating Tfr and Treg cells are enriched in breast cancer
patients, particularly in more aggressive cancers (Kohrt et al.,
2005; Song et al., 2019; Núñez et al., 2020). This may correlate
with the knowledge that Tfr cells potently inhibit antigen-
specific antibody responses (Linterman et al., 2011). Tfr and
Treg cells can induce an immunosuppressive microenvironment,
often through IL-10 production, and promote the expansion of
immunosuppressive B cells, so-called Bregs. In a cyclical fashion,
IL-10 secreting Bregs support the Treg pool and impede Tfh
responses within the GC (Liu et al., 2016; Achour et al., 2017;
Song et al., 2019). The number and localization of Bregs in breast
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carcinomas strongly fluctuates with levels of Tregs, notably in and
around B and T cell TIL aggregates (Guan et al., 2016; Ishigami
et al., 2019). Supporting a relationship between Bregs and Tregs,
a B cell deficient breast cancer model displayed a reduced
fraction of Tregs in tumor draining LNs and peritumoral areas
(Tadmor et al., 2011). Accumulation of Tregs and Bregs within
the cancer-free LNs of breast cancer patients correlates with fewer
class-switched B cells in adjacent LNs with cancerous growth,
indicative of a possible role in GC suppression (Mehdipour et al.,
2016). This synergistic relationship between Bregs and Tregs,
their ability to promote a tolerant environment and suppress
Tfh cells may influence the efficacy of GC reactions within
breast cancer patients (Figure 2). Supporting this hypothesis,
IL-10 blockade in vivo stimulates IgG production and enhances
immune infiltration within the primary breast carcinoma (Zheng
et al., 2012; Li and Xia, 2015; Tao et al., 2015).

Bregs express the immune checkpoint molecules PD-1
and PD-L1 which have immunomodulatory functions (Sun
et al., 2019). The emerging role of Bregs in promoting
immunosuppression in breast cancer may indicate these cells as
candidate targets in immune-checkpoint (ICP) blockade therapy.
ICP blockades have been shown to promote the proliferation of
class-switched memory B cells and enhance antibody production
in vitro and within the context of chronic infection (Pioli
et al., 2000; Velu et al., 2009; Intlekofer and Thompson, 2013).
However, a potential effect of immune checkpoint inhibitors
on the GC reactions must be considered given that GC B cells
themselves express PD-L1, and Tfh cells require many of these
immune checkpoint interactions including the PD-1/PD-L1 axis
and CTLA-4 for B cell affinity maturation (Good-Jacobson et al.,
2010; Hams et al., 2011).

CONCLUSION AND FUTURE
DIRECTIONS

During the past decade, molecular and cellular parallels between
GCs in LNs and TLS formation at the primary tumor suggest

a degree of communication via the lymphatics between the
sites and revealed a key role for B cells in breast and other
cancers. However, we do not understand the processes that
render B cell activation able to eradicate neoplastic cells
through immunoglobulin-mediated mechanisms versus those
leading to chronic B cell activation that potentiates tumor
progression. By facilitating an immune crosstalk between LNs,
TLS and primary carcinomas, B cells may modulate the dynamic
interplay between immune responses and tumor progression.
Uncovering the mechanistic drivers that influence specific B
cell environments at the tumor side, peritumoral and in the
LNs may provide attractive targets, many of which could be
incorporated into current immunotherapies to treat both breast
and other cancers.
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