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Developing technologies havemade significant progress towards linking the brainwith brain-machine interfaces (BMIs)which have
the potential to aid damaged brains to perform their originalmotor and cognitive functions.We consider the viability of suchdevices
for mitigating the deleterious effects of memory loss that is induced by neurodegenerative diseases and/or traumatic brain injury
(TBI). Our computational study considers the widely used Hopfield network, an autoassociative memory model in which neurons
converge to a stable state pattern after receiving an input resembling the given memory. In this study, we connect an auxiliary
network of neurons, which models the BMI device, to the original Hopfield network and train it to converge to its own auxiliary
memory patterns. Injuries to the original Hopfieldmemory network, induced through neurodegeneration, for instance, can then be
analyzedwith the goal of evaluating the ability of the BMI to aid inmemory retrieval tasks. Dense connectivity between the auxiliary
and Hopfield networks is shown to promote robustness of memory retrieval tasks for both optimal and nonoptimal memory sets.
Our computations estimate damage levels and parameter ranges for which full or partial memory recovery is achievable, providing
a starting point for novel therapeutic strategies.

1. Introduction

In the past few years, we have witnessed the emergence of
several staggering technologies in regenerative neurobiology,
including hybrid systems of neurons and semiconductor
microelectronics [1, 2], brain-machine interfaces [3, 4], and
the manipulation of induced pluripotent stem cells, which
develop into recognizable miniature cerebral organoids [5–
9]. Such advancements are likely to play a key role in
futuremedical and rehabilitation research due to the growing
numbers of traumatic brain injury incidents and the overall
aging of the population, which increases the risk of dementia
and neurodegenerative diseases. Even the most complex and
sophisticated neuronal networks, such as the ones present in
the human brain, are exposed to pathological effects that may
culminate in functional losses such as motor and cognitive
deficits, worse decision-making capabilities, and memory
impairments. With approximately one new Alzheimer’s case

diagnosed every 68 seconds in the US alone, it is impor-
tant to investigate in theoretical and computational settings
whether minibrains, organoids, and external devices could
help mitigate its most prevalent symptom: memory loss.
To this end, we examine memory degradation in Hopfield
neuronal networks that retrieve stored patterns from partial
or noisy queues and evaluate to which extent an external
auxiliary network can help restore its original functionality.

Traumatic brain injuries (TBI) and neurodegenerative
diseases are among the main causes of cognitive dysfunction
in humans [10–15]. Both sources of dysfunction exhibit
significant presence of focal axonal swellings [16–22]. Axonal
injuries hinder the information encoded in spike trains [23–
25], thus leading to potentially severe functional deficits [26–
32]. Challenging our understanding of the impact of axonal
swellings is our inability to access small-scale injuries with
noninvasive methods, the overall complexity of neuronal
pathologies, and our limited knowledge of how networks
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process biological signals [33].While it is difficult to diagnose
and treat pathological effects on small spatial scales in
vivo, recent developments in stem cell technologies might
revolutionize current therapeutics [9]. Structures resembling
whole organs, termed organoids, have been generated from
stem cells for the intestine, the kidney, and,most impressively,
the brain [9]. In fact, the groundbreakingwork of Lancaster et
al. [8] openednew routes for studying developmental diseases
and degenerative conditions in minibrains [5–7]. In some
cases, the tissues derived in vitro from patient cells may be
used in organ replacement strategies.

Due to the complexity of the brain, however, it is not clear
that the addition of a small network of external neurons or
a hybrid bioelectronic system could restore the information
processing capabilities required for higher cognitive func-
tions. Moreover, there is currently a significant lack of bio-
physical evidence or experimental studies capable of directly
addressing this issue. This motivates our development of
a computational framework, using the Hopfield model for
associative memory, which can provide a platform to study
the conditions in which an auxiliary external network may
prevent and/or reverse TBI and neurodegenerative impair-
ments. The purpose of this study is to simulate healthy and
damaged memory networks during memory retrieval tasks.
In our model, we can explicitly allow an auxiliary network
to communicate with the original and then delineate its
effect on memory retrieval. We demonstrate that an auxiliary
network can indeed mitigate the effects of memory loss due
to progressive neurodegeneration of the Hopfield network.

Minibrains, or cerebral organoids, will likely play a critical
role in our understanding of human brain development and
modeling of neurodevelopmental disorders [6]. An organoid
is an organized group of organ-specific cells that form
an undeveloped organ in vitro [9]. Stem cells or organ
progenitors are treated with growth factors and placed in
conditions that allow a 3D organoid to form. Researchers
treat an embryonic stem cell medium with low levels of basic
fibroblast growth factor, and once a 3D aggregate of cells
forms, they are transferred to a neural induction medium
[5, 8]. The cerebral organoids display distinct brain regions;
however, they were randomly organized and lacked the same
structure as a developing human brain (Figure 1(e)) [5, 8]. In
a later study, researchers formed organoids from pluripotent
stem cells (PSCs) or induced PSCs (iPSCs) [9]. The organoid
develops through cell sorting and spatially restricting lineage
commitment in a similar manner to how the human brain
develops [9]. Although cerebral organoids are currently
small, they have characteristics of normal brain development
and show discrete brain regions [7]. This brings hope that
cerebral organoids can be useful for disease modeling, drug
testing, and organ replacement. For example, Lancaster et al.
used a cerebral organoid to create a more accurate model of
human microcephaly [8]. Currently, cerebral organoids have
some drawbacks: they can only be grown to a diameter of
4mm due to a lack of vascularization [9], and researchers do
not know to what extent electrical potential and connectivity
are the same in the developing human brain and a cerebral
organoid [7].

Several strategies are enabling functional interfaces
between neuronal networks and electronics at various res-
olutions. Some of these systems are intended to interface
with individual neurons. Fromherz created a hybrid system
of neurons and semiconductor microelectronics by using a
chip to excite and record neuronal activity (Figure 1(b)) [1].
Theneurons interfacedwith siliconmicrostructures, allowing
information transfer between ion-conducting neurons and
electroconducting silicon [2]. Researchers have also grown
cells on graphene solution-gated field effect transistors which
were able to stimulate the cells [37], and used microscale
gold electrodes to communicate with rat brain neurons (Fig-
ure 1(f)) [36]. Fine-resolution stimulation has been achieved
with vertical silicon nanowire probes which, with an intracel-
lular interface, can measure a neuron’s action potential [38].

Other systems are intended to interface with an entire
brain region. Nanowires were successfully integrated into
hippocampal regions (Figures 1(c) and 1(d)) [35]. Micro-
electrode array (MEA) technology can record and stimulate
at the neuronal network level by sending and retrieving
information at multiple network sites with a noninvasive
interface [39]. This allowed stem cells that grew into neural
networks to be interfaced; digital signals fed to the network
via the MEAs created distinct neural output patterns (Fig-
ure 1(a)) [34]. In a later experiment, Pizzi et al. stimulated
a neural network with MEAs and read the output with an
artificial neuronal network [40]. Using this interface, they
were able to train the neuronal network to control a robotic
arm given different inputs. Current MEA directions include
creating higher density MEAs, flexible electrodes, and tactics
to monitor subthreshold activity [39].

In addition to interfacing with organically grown neural
networks, researchers are also creating artificial neurons [41].
These artificial neurons are made with chalcogenide-based
materials that change states when a current is applied; this
allows them to represent a neuron’s membrane potential
while also being stochastic. Future studies aim to link these
synthetic neurons into a network.

Brain-machine interfaces (BMIs) interpret motor intent
from cortical signals and then stimulate muscles or the spinal
cord. These devices have the potential to allow people with
spinal cord injury to regain motor function [3]. Signals from
the brain can be used to control more than just the limbs;
researchers have trained monkeys to navigate a wheelchair
using a BMI [42]. BMIs can also help reverse the effects of
TBI by first processing neural intent from the brain and then
generating targeted feedback that will help the brain execute
a function, whether it is retrieving a memory or performing
a motor task [4]. Connecting technology to the brain may
be achieved by a recently developed microfabricated neural
probe [43]. This probe is stiff for insertion into the brain
but later dissolves leaving a polymeric structure, creating a
suitable interface between the probe and the brain [43].

2. Materials and Methods

Hopfield networks of artificial neurons are the most used
class of models for memory retrieval tasks [44–47]. More
advanced models of memory encoding and retrieval have
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Figure 1: Recent technologies are enablingmore sophisticated interfaces between brains and auxiliary networks which could take the form of
an organoid, external electronic device, or artificial neuronal network. (a) Cultured neural cells adhere directly to a glass Petri dish with small
electrodes inserted. Microelectrode array (MEA) technology is an essential component to hybrid biological-electronic systems of neuronal
networks grown in vitro. Image adapted from Pizzi et al. [34]. (b) Neurons grown on a semiconductor chip, adapted from [1]. (c-d) Neuron
wrapping a silicon nanowire and hippocampal neurons coupled with germanium nanowires, adapted from [35]. (e) Cerebral organoid grown
in vitro from stem cells. Image adapted from Lancaster et al. [8]. (f) Microbioelectrodes implanted into a rat cortex, adapted from [36]. In all
cases, the devices could advance neural prosthetics and aid damaged or aging brains to perform their original motor and cognitive functions.

been developed since the pioneering work of Hopfield [48–
53]. However, we focus here on a Hopfield associate memory
model in order to illustrate the concepts of how an auxiliary
network can be trained with the Hopfield network. Damage
to axons and neuronal connections typically impairs the
network’s collective functionality after a critical threshold
value [54]. In the worst-case scenarios, focal axonal swellings,
axotomies, or cell death could block the information encoded
in spike trains and effectively zero out weights in the con-
nectivity matrix [23–25]. In this study, we couple a smaller
auxiliary network to an injured Hopfield network to improve
memory retrieval (Figures 3 and 4). Auxiliary neurons are
connected to the original network in a sparse manner to
mimic experimental constraints and trained to converge to
auxiliary memory patterns. We then randomly induce injury
across the original network and analyze its ability to retrieve
memories with the appended external network.

2.1. HopfieldModel. In our autoassociativememory network,
coupled artificial neurons respond to meaningful external

queues with stable, collective activity patterns𝑚𝜇 (where 1 ≤𝜇 ≤ 20). The memory collection M = [𝑚1 𝑚2 ⋅ ⋅ ⋅ 𝑚20]
is composed of all of the attractors of the high-dimensional
dynamical system (Figure 2). In Hopfield’s original formula-
tion [44, 47], a neuron is either “on,” with state 𝑆𝑖 = +1, or
“off,” with state 𝑆𝑖 = −1. The connectivity strength (weight)
between neurons 𝑖 and 𝑗 is given by 𝑤𝑖𝑗 and stored in the
matrixW = (𝑤𝑖𝑗) = MM𝑇. The temporal dynamical equation
for the neuronal state is given by

𝑆𝑖 (𝑡 + 1) = 𝑔 (ℎ𝑖 (𝑡)) , (1)

with input potential ℎ𝑖(𝑡) = ∑𝑗 ̸=𝑖 𝑤𝑖𝑗𝑆𝑗(𝑡) and gain function

𝑔 (𝑥) = {{{
+1, 𝑥 ≥ 0,
−1, 𝑥 < 0. (2)

At a given damage level, we randomly eliminate 𝑝 (%)
connections, which interferes with the network’s ability to
properly recover a stored memory.



4 Computational and Mathematical Methods in Medicine

Figure 2: The memory sets encoded in the Hopfield networks are composed of 20 black and white pictures (40 × 25 pixels) drawn
from a larger collection of Unicode symbols. The upper set (in solid green) contains an optimal set of characters that are collectively less
correlated (orthogonal) to each other. The lower set (in dashed pink) shares 15 memories with the optimal set but displays a noticeably worse
performance. Eachmemory is pairedwith its corresponding, calibrated auxiliarymemory pattern, encoded by the external network. Auxiliary
memories are significantly smaller than the original ones (40×5 pixels) and do not resemble the original patterns or form interpretable shapes.

2.2. Simulation Procedure: Hopfield Model with Auxiliary
Network. To simulate a damaged brain retrieving memories,
we select a memory set, encode it in a Hopfield network,
induce network damage, and measure memory retrieval.
Each memory is a unique binary pattern generated from a
Unicode symbol (dimensions: 40 × 25 pixels), and each of
the 1000 pixels represents an artificial neuron’s state with
value −1 (black/off) or +1 (white/on). Memory sets contain
20 symbols (see Figure 2) selected from a 30-symbol dataset.
As pointed out by Gerstner et al. [47], numerical digits
and alphabetical characters can be highly correlated, making
it difficult for a Hopfield network to retrieve them from
partial or noisy queues without some degree of confusion.
To circumvent this, we optimize the 20-item memory set by

choosing the most orthogonal subset (i.e., the characters that
are collectively less correlated to each other). We will refer to
it as the optimal network and compare it with a nonoptimal
memory set that shares 15 out of 20 with it. This suffices for
observing noticeable difference in performance.

2.3. TrainAuxiliaryNetwork. In order to incorporate the aux-
iliary network, we extended each activity pattern to include
the activity exhibited in the auxiliary network during the
retrieval of a particular memory. Figures 3 and 4 and Table 1
summarize our methodology and simulation parameters. In
our new model, each activity pattern is now the old memory
pattern, 𝑚𝜇𝑜 , augmented with an auxiliary memory pattern,
𝑚𝜇𝑎 . Hence, 𝑚̃𝜇 = [𝑚𝜇𝑜

𝑚𝜇
𝑎

] (1 ≤ 𝜇 ≤ 20).
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Figure 3: Training auxiliary network. (a)The original Hopfield network can reliably retrieve 20 stored memories. Connectivity matrix = W̃1.
(b) An auxiliary network is sparsely connected to the original network. Connectivity matrix = W̃2. (c) The auxiliary network is calibrated to
generate auxiliary patterns for the original memories for prevention purposes. The connectivity matrix moves from state W̃3 to W̃4. (d) The
auxiliary network connects back to the original network. Connectivity matrix = W̃5.

Table 1: Parameters for numerical simulations.
Number of stored memories 20 (see Figure 2)
Neurons in the original network 1000
Neurons in the auxiliary network 200 or 400
Density in C (connectivity to the auxiliary network) 5%
Density in B (connectivity to the original network) 0%–50% (5% increments)
Noise level 0%–50% (5% increments)
Sparsity in Ainj (damage level) 0%–80% (10% increments)

Thememory collection is composed of these new activity
patterns M̃ = [𝑚̃1 𝑚̃2 ⋅ ⋅ ⋅ 𝑚̃20] (Figure 2).The connectivity
matrix describing the connectivity weights between neurons
is W̃ = (̃𝑤𝑖𝑗) = M̃M̃𝑇 = [ A B

C D ].
The healthy original Hopfield network encodes all 20

storedmemories (Figure 3(a)); connections between neurons
in this network are represented by A, the original network
connectivity matrix. The original network is sparsely con-
nected to a small set of auxiliary neurons represented by C,
the original-auxiliary connectivity matrix. After calibration,
the auxiliary network converges to auxiliarymemory patterns
(Figure 3(b)). Interconnections between neurons in this
network, which now stores a set of patterns, are represented
byD, the auxiliary network connectivity matrix. We generate
the auxiliary network connectivity matrix (Figure 3(c))

with random interfacing to the original network before any
damage, for prevention purposes. The auxiliary-original
connectivity matrix, B, holds connectivity weights between
auxiliary and original neurons (Figure 3(d)).The connectivity
degree of the interface, that is, the fraction of novel, random
connections between the two networks, may vary (5%–50%).

Just as before, the temporal dynamical equation for the
neuronal state is given by

𝑆𝑖 (𝑡 + 1) = 𝑔 (ℎ𝑖 (𝑡)) , (3)

with input potential ℎ𝑖(𝑡) = ∑𝑗 ̸=𝑖 𝑤𝑖𝑗𝑛𝑆𝑗(𝑡) and gain function

𝑔 (𝑥) = {+1, 𝑥 ≥ 0,
−1, 𝑥 < 0, (4)

where 1 ≤ 𝑛 ≤ 5.
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Figure 4: Execute memory recovery. (a) Damage in the original network severs connections and causes memory loss. Connectivity matrix
= W̃1inj. (b) Connections from the original to the auxiliary network are activated. Connectivity matrix = W̃2inj. (c) Connections between nodes
in the auxiliary network are activated and the auxiliary memory is retrieved. The connectivity matrix moves from state W̃3inj to W̃4inj. (d)
Connections from the auxiliary to the original network are activated after original-auxiliary connections are severed. Connectivity matrix
= W̃1inj. The original memory is retrieved.

The connectivity matrix used to compute the input
potential, W̃n, transitions to different states to simulate
the emergence and attenuation of connections within and
among neurons in the original and auxiliary network. When
submatrix C is inserted into the connectivity matrix, each
original network pattern generates an auxiliary network
pattern. These auxiliary patterns are recorded and then
used to construct the auxiliary network connectivity matrix
(submatrixD) via the Hopfield model.

Network Training. One has

W̃1

[A 0
0 0

] 󳨀→
W̃2

[A 0
C 0

] 󳨀→
W̃3

[A 0
C D

] 󳨀→
W̃4

[A 0
0 D

]

󳨀→
W̃5

[A B
0 D

] .
(5)

2.4. Execute Memory Recovery. Virtual lesions to the orig-
inal network are represented by a sparsified connectivity
matrix Ainj and lead to deficits in memory retrieval tasks

(Figure 4(a)). But since the auxiliary network was calibrated
and trained, it still retrieves its auxiliary patterns once the
sparse interface C is activated (Figures 4(b)-4(c)), allowing
for a significantly more robust system (Figure 4(d)). As a
consequence, the failure rate, that is, the percent of times in
which the original network fails to fully retrieve memories,
decreases significantly. In what follows, we will discuss the
impact of different parameters on performance: noise level
(0%–50%), connectivity between the auxiliary and original
networks (0%–50%), percent damage in the original network
(0%–80%), and size of the auxiliary network (𝑁 = 200 or𝑁 = 400).
Memory Recovery. One has

W̃1inj

[Ainj 0
0 0

] 󳨀→
W̃2inj

[Ainj 0
C 0

] 󳨀→
W̃3inj

[Ainj 0
C D

]

󳨀→
W̃4inj

[Ainj 0
0 D

] 󳨀→
W̃5inj

[Ainj B
0 D

] .
(6)
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Figure 5: Failure rates for Hopfield networks encoded with an optimal memory set. Plots show the times (%) for which the original network
fails to retrieve a memory as a function of the density of connections in B linking the auxiliary to the original network and the amount of
initial noise in the memory cue. At higher damage levels in Ainj, the auxiliary network pays off and helps decrease the failure rate. The larger
auxiliary network (𝑁 = 400 nodes) also outperforms the smaller one (𝑁 = 200 nodes) at high damage levels. At low damage levels in Ainj
(0%–20% damage), the auxiliary networks have little effect on original memory retrieval.

3. Results

3.1. Failure Rates and Network Performance. At all damage
levels, failure rate increases with noise as expected (see
Figure 5). For damage levels 𝑝 ≤ 40% in Ainj, the optimal
network performs well and the auxiliary network has a
negligible effect on failure rate. However, once 𝑝 is beyond
this value, the failure rate decreases with a denser interface in
B, indicating that the auxiliary network, C, in fact prevents
memory loss in the original network. As shown in Figure 5,
this trend is common for both small (200 neurons) and large
(400 neurons) auxiliary networks, although at 𝑝 = 60%

and 80% in Ainj the larger auxiliary network outperforms the
smaller one.

Performance declines with increased damage as expected
(see Figure 8); however, a denser interface in B improves
network functionality at low noise levels 𝜀. The smaller
auxiliary network (200 neurons) improves performance 𝜀 ≤30% but worsens performance at larger values. The larger
auxiliary network (400 neurons) also improved performance
for 𝜀 ≤ 30% but only worsens for 𝜀 ≥ 40%. The shift from
enhancing to undermining memory recovery may be due to
the fact that, at high noise levels, the auxiliary memorymight
not be retrieved, therefore not feeding correct information
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back to the original network. Finally, Figure 6 shows how
performance decreases with both damage and noise levels.
Again, denser interfacing in B between auxiliary and original
networks counteracts the detrimental effects that damage has
on performance. The larger auxiliary network (𝑁 = 400)
also enhances memory retrieval more than the smaller one
(𝑁 = 200).
3.2. Comparison with Nonoptimal Memory Sets. As previ-
ously mentioned, Unicode symbols may be highly correlated
making it difficult for the Hopfield model to retrieve them,
without confusion, from noisy or partial queues. Figures 5,
8, and 6 refer to networks that encoded an optimal memory
subset. For contrasting purposes, we discuss nonoptimal
memory sets which only share 15 out of 20 memories with
the optimal set; the remaining elements are randomly chosen
from the Unicode list of characters. As a consequence, the
nonoptimal network has higher failure rates than the optimal
network across all noise and connectivity levels (Figure 7).
Still, the nonoptimal network shows similar trends to the
optimal network; at low damage levels, the auxiliary network
does not affect memory retrieval while at higher damage

levels (𝑝 = 60% and 𝑝 = 80% in Ainj), failure rate decreases
with increased connectivity. The performance trends are also
analogous to the optimal network (see Figure 8), though
with lower values. Again, the performance decreases with
both increased damage and noise (see Figure 9) with denser
interfaces and larger auxiliary networks better counteracting
the detrimental effects of damage.

4. Discussion

In this work, we introduce a computational framework
to evaluate potential enhancements in memory retrieval
within a damaged Hopfield network. Axonal damage and
connectivity impairments cause memory loss while commu-
nication with an auxiliary network may help prevent the
loss of functionality. In our setup, the Hopfield network can
tolerate significant amounts of damage before memory loss
ensues, although this may vary according to the specific
parameters in simulations. The beneficial/therapeutic effects
of the auxiliary network aremore noticeable at higher damage
levels, for both optimal and nonoptimal memory sets. As
a consequence, the auxiliary networks can be expected to
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compensate for severe deficits but not aid healthy individuals
in retrieving memories.

The density of the interface between the original and
external networks is a key factor for improving performance.
Since there are several biological and experimental difficulties
that may constrain the number of connections between the
systems, it is somewhat promising that sparse connectivity
suffices to calibrate complementarymemories. But even if the
auxiliary network needs to read activity from only a few brain
regions, it must still stimulate the damaged brain in many
areas.

In our setup, we interpret the original network as the
human brain or one of its components and the auxiliary
network taking potentially different forms such as a cerebral
organoid, an artificial neuronal network, or a semiconductor
chip. In order for an organoid to be useful as an auxiliary

network, it must follow the same Hopfield plasticity rules
that the original network follows so that connectivity will
restructure during calibration. Researchers have recently
grown cerebral organoids that display discrete brain regions
[8, 9]. However, it is unknown whether the connectivity
in these organoids can be controlled. This organic neural
network must be trainable for it to be useful as an auxiliary
network. Another obstacle to overcome is the size of the
organoid. In our computational study, the larger auxiliary
network aids in memory retrieval more than the small
auxiliary network; the auxiliary networks were 40% and 20%
the size of the original network, respectively. Current cerebral
organoids have a maximum diameter of 4mm, making them
less than 2% of the size of a human hippocampus, the brain
region associatedwithmemory storage. An auxiliary network
much smaller than the original networkmay not be capable of
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Figure 8: Performance for Hopfield networks encoded with optimal memory sets (dashed lines) and nonoptimal memory sets (solid lines).
Original network performance increases with more auxiliary network feedback at low noise levels. For small initial noise levels (10%–30%),
the original networks receivingmore feedback from their auxiliary network show higher performance across all damage levels. For large noise
levels (40%), the input from the auxiliary network impedes performance. The large auxiliary network increases performance at a given noise
and damage level more than the small auxiliary network. The nonoptimal network performs worse than the optimal network at all damage
levels and displays the same trends as the optimal network.

enhancing memory retrieval; cerebral organoids must grow
larger in order to be useful auxiliary devices.

A semiconductor chip does not have the same connectiv-
ity and size constraints as a cerebral organoid.However, while
a chip can reliably store and send information according to its
initial programming, it is not adaptable like an organic neural
network. A cerebral organoid is capable of changing over time
as the human brain changes. This ability to adapt with the
changing brain will perhaps allow it to consistently store and
retrieve information despite memory changes in the brain.

Future work could simulate more specific or more bio-
logically sophisticated neuronal network models and hybrid
bioelectronic systems. Neurons display more complex activ-
ity than simply being “on” or “off,” although Hopfield’s
formulation still provides important insight into how the
brain stores and retrieves memories. Additionally, novel
methodologies might allow the auxiliary network to prevent
memory loss with sparser auxiliary-original connectivity.
This is important since experimental constraints may only

allow for few connections to be made between a device and
the human brain.

5. Conclusion

Recent technologies showpromisingways to engineer biolog-
ical and artificial external networks and connect them to the
brain [2, 8, 9, 35, 39]. This computational study investigates
whether such auxiliary apparatus could theoretically amelio-
rate damage in a network and improve memory retrieval.
A sparse interface was sufficient to generate stable auxiliary
network patterns (auxiliary memories). After the original
network becomes damaged, the auxiliary network can be
connected back to the original network, aiding in memory
retrieval. The auxiliary network’s influence is proportional to
its size and connectivity to the original network, although
its beneficial effects might be noticeable only at substantial
injury levels.
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Figure 9: Performance for Hopfield networks encoded with a nonoptimal memory set. Performance is now presented as a function of both
damage and noise. Trends are similar to the optimal network. Additionally, as connectivity increases, performance at high damage levels also
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These results imply that an auxiliary network could help
a severely damaged network recover some functionality if it
is calibrated before damage occurs. An auxiliary device may
be able to store memories for individuals who are forecasted
to suffer from Alzheimer’s disease and allow them to retrieve
memories despite severe neurodegeneration. An auxiliary
device may also be useful to people whose lifestyle puts them
at risk for TBI. Prior to getting injured, individuals could store
memories in an auxiliary network and then use their device
if brain damage occurs. In conclusion, auxiliary networks
might be a promising road to improve brain functionality
after injury or neurodegeneration.
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