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ABSTRACT
Background Despite treatment advancements with 
immunotherapy, our understanding of response relies 
on tissue- based, static tumor features such as tumor 
mutation burden (TMB) and programmed death- ligand 
1 (PD- L1) expression. These approaches are limited 
in capturing the plasticity of tumor–immune system 
interactions under selective pressure of immune 
checkpoint blockade and predicting therapeutic response 
and long- term outcomes. Here, we investigate the 
relationship between serial assessment of peripheral blood 
cell counts and tumor burden dynamics in the context of 
an evolving tumor ecosystem during immune checkpoint 
blockade.
Methods Using machine learning, we integrated 
dynamics in peripheral blood immune cell subsets, 
including neutrophil- lymphocyte ratio (NLR), from 239 
patients with metastatic non- small cell lung cancer 
(NSCLC) and predicted clinical outcome with immune 
checkpoint blockade. We then sought to interpret NLR 
dynamics in the context of transcriptomic and T cell 
repertoire trajectories for 26 patients with early stage 
NSCLC who received neoadjuvant immune checkpoint 
blockade. We further determined the relationship between 
NLR dynamics, pathologic response and circulating tumor 
DNA (ctDNA) clearance.
Results Integrated dynamics of peripheral blood cell 
counts, predominantly NLR dynamics and changes 
in eosinophil levels, predicted clinical outcome, 
outperforming both TMB and PD-L1 expression. As 
early changes in NLR were a key predictor of response, 
we linked NLR dynamics with serial RNA sequencing 
deconvolution and T cell receptor sequencing to 
investigate differential tumor microenvironment reshaping 
during therapy for patients with reduction in peripheral 
NLR. Reductions in NLR were associated with induction of 
interferon-γ responses driving the expression of antigen 
presentation and proinflammatory gene sets coupled with 
reshaping of the intratumoral T cell repertoire. In addition, 
NLR dynamics reflected tumor regression assessed by 

pathological responses and complemented ctDNA kinetics 
in predicting long- term outcome. Elevated peripheral 
eosinophil levels during immune checkpoint blockade were 
correlated with therapeutic response in both metastatic 
and early stage cohorts.
Conclusions Our findings suggest that early dynamics in 
peripheral blood immune cell subsets reflect changes in 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Snapshot tissue- based determinants of response to 
immune checkpoint blockade may not capture the 
plasticity of antitumor immune responses during 
therapy and are therefore not accurately reflecting 
clinical outcomes.

WHAT THIS STUDY ADDS
 ⇒ We studied dynamic changes in peripheral immune 
cell subsets in patients with both metastatic and 
early stage non- small cell lung cancer (NSCLC) re-
ceiving immune checkpoint inhibitors.

 ⇒ Longitudinal assessment of the neutrophil–lym-
phocyte ratio (NLR) and eosinophil levels captured 
induction of inflammatory responses in the tumor 
microenvironment, as well as intratumoral T cell 
repertoire reshaping in peripheral blood and ulti-
mately reflected therapeutic response.

 ⇒ Non- invasive measurement of immune cell subsets 
during immune checkpoint blockade may com-
plement circulating cell- free tumor DNA (ctDNA)- 
derived molecular responses and may be particularly 
informative in cases where ctDNA is undetectable.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

 ⇒ Our findings provide insights into why NLR dy-
namics are correlated with clinical outcomes with 
immune checkpoint blockade and may allow for 
non- invasive early adaptive changes in therapeutic 
strategies.
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the tumor microenvironment and capture antitumor immune responses, 
ultimately reflecting clinical outcomes with immune checkpoint blockade.

BACKGROUND
Advancements in immunotherapy have dramatically 
changed the clinical outcomes of patients with non- 
small cell lung cancer (NSCLC), and immune check-
point inhibitors (ICIs) have significantly expanded the 
treatment landscape.1 2 Despite the significant progress, 
current approaches to predict therapeutic response with 
static, predominantly tissue- based biomarkers, are subject 
to limitations, related to technical challenges and poor 
reflection of the dynamic nature of antitumor immune 
responses with ICI. High tumor PD- L1 expression and 
tumor mutational burden (TMB) have been linked with 
responses to ICI, but not all patients with PD- L1 or TMB 
high tumors attain long- term responses.3 4 Tumor hetero-
geneity and purity impact the measurement of PD- L1 and 
TMB, rendering these features insufficient to accurately 
predict which tumors will respond to therapy.5 Impor-
tantly, the dynamic nature and plasticity of the tumor- 
immune system interplay in the context of immune 
checkpoint blockade cannot be adequately captured by 
static single feature analyses. Recent integrative analyses 
of tumor- intrinsic and immune cell- focused features,5–9 
as well as multiomic meta- analyses,10 have identified 
nuanced characteristics of the tumor genomic land-
scape that together with proinflammatory signatures in 
the tumor microenvironment (TME) better distinguish 
responding from non- responding tumors.

The plasticity of tumor and immune cell dynamics 
during immunotherapy may be more accurately captured 
by circulating cell- free tumor DNA (ctDNA) kinetics via 
liquid biopsy analyses11 12 and by tracking the neutrophil- 
lymphocyte ratio (NLR) in peripheral blood.13 14 High 
NLR values may represent a higher density of tumor- 
associated neutrophils (TANs) in peripheral blood; these 
can promote tumor cell proliferation and ultimately 
immune escape.15 High pretreatment NLR has been 
found to be associated with worse prognosis in early and 
late stage lung cancer16 17 as well as with inferior outcomes 
with ICI.18–21 Despite the intuitive value of NLR as a prog-
nostic or predictive biomarker, most prior studies have 
focused on pretreatment measurements of NLR without 
clear evidence that these reflect distinct immune surveil-
lance states in the TME. NLR changes after immuno-
therapy initiation have been reported to correlate with 
treatment response in small cohorts of cancer patients 
receiving ICIs.13 14

Here, we used machine learning to model longitu-
dinal dynamics of immune cell subsets in peripheral 
blood during ICI and predict therapeutic response for 
patients with metastatic NSCLC. We then linked periph-
eral blood immune cell dynamics and NLR changes with 
transcriptomic profiles of innate and adaptive immunity 
in the TME as well as with reshaping of the intratumoral 
T cell repertoire during ICI. Ultimately, we linked NLR 

dynamics with therapeutic responses at both a cellular 
level (evaluated by pathological response) and a molec-
ular level (assessed by ctDNA kinetics).

METHODS
Cohorts
Patients enrolled in the Thoracic Oncology Biorepos-
itory Protocol at the Johns Hopkins Sidney Kimmel 
Comprehensive Cancer Center were reviewed, and 239 
serial patients were identified; these had a diagnosis of 
metastatic NSCLC and received ICI- containing regimens 
between February 2011 and March 2020 (online supple-
mental table S1). Clinical data including age, histology, 
smoking status, and peripheral complete blood counts 
(CBCs) with differential were retrieved from the medical 
records. Response to immunotherapy was evaluated by 
durable clinical benefit (DCB), which was defined as 
confirmed absence of progressive disease or death within 
6 months from therapy initiation. An early stage cohort 
consisted of 26 patients with stage I to IIIA surgically 
resectable NSCLC that received neoadjuvant nivolumab 
3 mg/kg every 2 weeks for two doses, or neoadjuvant 
nivolumab 3 mg/kg every 2 weeks for three doses with 
one dose of ipilumumab 1 mg/kg as part of a clinical 
trial between August 2015 and May 2019 (online supple-
mental table S2).22–24 Therapeutic response was assessed 
pathologically using immune- related pathologic response 
criteria25 and percent tumor regression and radiograph-
ically using RECIST V.1.1. Major pathologic response 
(MPR) was defined as ≤10% residual tumor (RT) and 
occurred in 11 patients (42%). Disease burden was calcu-
lated as the sum of the longest diameters of target lesions 
defined by RECIST V.1.1 criteria before and after neoad-
juvant ICI. RECIST defined stable disease occurred in 
21 patients (81%). Progression- free survival (PFS) and 
overall survival (OS) were defined as the time elapsed 
between the date of treatment initiation and the date of 
disease progression or death from disease, or the date of 
death, respectively.

Peripheral immune cell subset assessments
For the metastatic NSCLC cohort, peripheral blood 
values of absolute neutrophil count (ANC), absolute 
lymphocyte count (ALC), eosinophil fraction, neutrophil 
fraction and lymphocyte fraction were retrieved from the 
medical records at baseline (day of first treatment), at 4 
weeks and at first radiographic follow- up. For the early- 
stage NSCLC cohort, blood cell counts, obtained as stan-
dard of care CBC with differential, were longitudinally 
measured at baseline (day of first treatment) and every 2 
weeks until time of resection, as well as postoperatively at 
routine follow- up visits. NLR was calculated as the ratio of 
ANC to ALC, and relative change in NLR at subsequent 
time points was defined as the ratio of the NLR at the 
respective time point to the baseline NLR value. For the 
early stage NSCLC cohort, this was categorized into three 
groups: those with >10% decrease, unchanged (−10% 
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to +10% change, inclusive), and >10% increase. Relative 
eosinophil percentages at 4 weeks were dichotomized as 
high or low using the median value at 4 weeks of 2.9%.

Machine learning
We employed XGBoost, a decision- tree based ensemble 
machine learning algorithm derived from a gradient- 
boosting framework,26 to integrate a total of 25 variables, 
including patient features, tumor characteristics, treat-
ment history, peripheral blood cell values, and derived 
features of relative changes in immune cell subsets into a 
predictive model of DCB, defined as confirmed absence 
of progressive disease or death within 6 months. The 
cohort was split into two groups, 171 patients in a training 
set and 68 in an unseen testing set (online supplemental 
table S1). We employed XGBoost’s embedded feature 
selection within 10- fold cross validation loops for 100 iter-
ations to reduce overfitting. The final model generated 
was an ensemble of 100 models. Performance was assessed 
using the area under the receiver operating characteristic 
(ROC) curve (AUC). A separate feature importance anal-
ysis through Shapley Additive Explanations (SHAP) was 
also performed to estimate each feature’s importance.27

RNA sequencing
Patients in the early- stage NSCLC cohort underwent a 
baseline tumor biopsy prior to therapy initiation and had 
tumor samples obtained at time of resection. Total RNA 
was extracted from fresh frozen tumors with the RNeasy 
Mini kit (Qiagen). The quality of total RNA was assessed 
using the RNA Integration Number measured with the 
RNA 6000 Nano Kit (Agilent Technologies). RNA- seq 
libraries for next- generation sequencing were generated 
by poly(A)- selection (NEBNext Poly(A) mRNA Magnetic 
Isolation Module) followed by reverse transcription 
into strand- specific cDNA libraries (NEBNext Ultra 
directional RNA library kit for Illumina). The gener-
ated libraries were sequenced at 100 bp paired- end on 
a HiSeq 2500 High Output instrument generating on 
average 200M total reads (online supplemental table S3). 
Sequence data per sample were inspected for outliers 
using principal component analysis (PCA); blinded vari-
ance stabilizing transformed values were used as inputs 
for PCA, and quality control metadata (sequencing batch 
and universal human reference RNA add- in batch) were 
visualized on the principal components. Outliers were 
removed based on all quality control metrics previously 
calculated.

Gene set enrichment analysis
DESeq2 was used to perform differential expression using 
a negative binomial model with a Wald test to determine 
significance.28 Default DESeq2 metrics were used to filter 
genes based on expression levels and calculate normal-
ization factors. All visualizations of gene expression used 
values derived from a blind variance stabilizing trans-
formation of raw counts. Volcano plots of results were 
generated using EnhancedVolcano29 with an adjusted p 

value threshold of 0.05 to indicate statistical significance 
and a fold change threshold of ±2. Results were subse-
quently processed by gene set enrichment analysis using 
fgseaMultilevel from the fgsea package30 with all Hall-
mark gene sets and a selection of gene sets relevant to 
cancer hallmarks and immune responses (online supple-
mental tables S4 and S5). Summary visualizations of gene 
set enrichment results were generated by unsupervised 
selection of the 10 most significant gene sets in the posi-
tive and negative direction. Gene sets fold changes were 
calculated in patients with samples at both baseline and 
post- therapy. After calculating fold changes per patient, 
genes were ranked by p value derived from a t- test 
between patients who were NLR responders, defined as 
those with decreased NLR of >10% at 4 weeks, and NLR 
non- responders, defined as those with unchanged or 
increased NLR >10% at 4 weeks. For a given gene set, the 
30 most significant genes from the gene set were selected 
for inclusion in the heat map. Fold changes were thresh-
olded to ±2.5 for visualization (online supplemental 
figure S1, tables S6–S8).

TCR sequencing
T cell receptor (TCR) sequencing data from tumor 
tissue and peripheral blood of patients in the early- stage 
NSCLC cohort was retrieved from an earlier publica-
tion.31 For each patient, T cell clones found in that indi-
vidual’s post- treatment tumor sample were identified 
in the matched pretreatment and post- treatment blood 
samples and deemed to be tumor- specific clones for that 
patient. Productive TCR frequencies, calculated as the 
normalized count of unique productive TCR rearrange-
ments among the total number of productive TCR rear-
rangements detected in any given sample, were further 
analyzed and are shown in online supplemental table S9. 
For each sample, a clonality metric was estimated to quan-
titate the extent of monoclonal or oligoclonal expansion 
by measuring the shape of the clone frequency distri-
bution. Clonality values range from 0 to 1, where values 
approaching 1 indicate a nearly monoclonal population. 
An intersection analysis of all TCR clonotypes identi-
fied in tumor and peripheral blood among patients was 
performed to identify public versus private clonotypes. 
For each patient, differential abundance analysis using 
Fisher’s exact test with false discovery rate (FDR) correc-
tion was performed to determine significant changes in 
TCR clone relative abundance during treatment. Aggre-
gation of significantly increasing or decreasing clone 
counts per patient, including tumor- specific clones, was 
performed for comparisons of patients according to NLR 
dynamics (online supplemental table S9). To examine 
variability in signal for clone dynamics, clones were char-
acterized as increasing or decreasing during therapy by: 
(1) maximum relative abundance pre- ICI, (2) minimum 
relative abundance in post- ICI, and (3) maximum FDR 
adjusted p value, with or without normalization to the 
total unique productive clones. Statistical comparisons of 
the aggregated TCR clone metrics across patients were 
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performed using the Mann- Whitney U test with FDR 
correction.

Next-generation sequencing analyses
Tumor samples were processed for whole exome 
sequencing as previously described.5 Serial blood 
samples were collected prior to treatment, every 2 
weeks until the time of resection and postoperatively at 
routine follow- up visits and processed for targeted error- 
correction sequencing (TEC- Seq) as previously described 
(online supplemental tables S10–S12).11 Briefly, cell- 
free DNA (cfDNA) was isolated from plasma using the 
Qiagen Circulating Nucleic Acids Kit (Qiagen GmbH). 
TEC- Seq cell- free DNA libraries were prepared, followed 
by targeted capture using a custom set of hybridization 
probes (online supplemental table S10) and sequenced 
using 100 bp paired end runs on the Illumina HiSeq 
2000/2500 (Personal Genome Diagnostics, Baltimore, 
Maryland, USA).32 For a subset of samples, matched white 
blood cell sequencing was also performed to filter out 
variants related to clonal hematopoiesis (online supple-
mental table S12). TEC- Seq characteristics are described 
in online supplemental table S13. Genomic alterations 
identified in plasma cfDNA were cross- referenced against 
tumor and white blood cell sequencing to determine 
variant origin (online supplemental table S14). Molec-
ular response was defined as clearance of tumor- derived 
variants prior to surgery. Patients with no tumor- derived 
variants at any time point were considered to have non- 
detectable ctDNA.

Statistical analyses
Features associated with major pathological response 
were compared using the χ2 exact test for categorical vari-
ables. Spearman rank- order correlation coefficient was 
used to assess correlations between continuous variables 
and residual tumor at the time of resection. The Mann- 
Whitney U- test was used to assess differences in residual 
tumor. Fisher’s exact test was used to assess differences 
in NLR and ctDNA dynamics in patients with differential 
pathological responses. Survival analysis was completed 
through log- rank test. ROC calculations were performed 
using the pROC package in R.33 Statistical analyses were 
performed using STATA (release 16) and R (V.4.0.2).

RESULTS
Machine learning links early immune cell subset dynamics 
with response to immunotherapy
We investigated the value of peripheral immune cell 
dynamics in predicting DCB (see Methods) for a cohort 
of 239 patients with metastatic NSCLC treated with ICI 
containing regimens (figure 1A, online supplemental 
table S1). We employed XGBoost, a decision- tree- based 
ensemble machine learning algorithm, to integrate base-
line and longitudinal values, as well as relative changes 
of immune cell subsets with clinical characteristics and 
predict clinical benefit from ICI (see Methods). Following 

splitting of the cohort into a training (n=171) and unseen 
testing set (n=68), we trained an ensemble of 100 models, 
incorporating feature selection within 10- fold cross vali-
dation loops. The resulting model predicted DCB with an 
area under the ROC curve (AUC) of 0.96 for the training 
(95% CI 0.96 to 0.96), 0.72 for cross- validation testing 
(95% CI 0.68 to 0.75) and 0.74 for the unseen dataset 
(95% CI 0.74 to 0.74; figure 1B,C). In contrast, the AUCs 
for PD- L1 and TMB were 0.54 (95% CI 0.44 to 0.64) and 
0.61 (95% CI 0.50 to 0.73), respectively, for the training 
dataset, and 0.61 (95% CI 0.45 to 0.76) and 0.49 (95% CI 
0.25 to 0.73), respectively, for the unseen dataset (online 
supplemental figure S2A–D). Feature importance anal-
ysis revealed that peripheral blood NLR and eosinophil 
fraction at first radiographic follow- up, NLR at 4 weeks, as 
well as relative change in NLR at these time points were 
the strongest predictors of clinical benefit (figure 1D, 
online supplemental figure S2E). Specifically, a low NLR 
value, decrease in NLR at first radiographic follow- up, or 
high eosinophil percentage all favored clinical benefit 
from ICI (figure 1D).

Peripheral blood NLR dynamics reflect distinct transcriptional 
profiles in the TME
As TANs can suppress innate and adaptive immune 
responses,34 we next sought to investigate whether 
peripheral NLR dynamics were associated with distinct 
transcriptional signatures in the context of ICI therapy. 
We evaluated 41 serial tumor samples from an indepen-
dent cohort of 26 patients with early- stage NSCLC treated 
with neoadjuvant ICI prior to definitive surgical resection 
(Methods; online supplemental figure S3 and table S2) 
and performed serial RNA sequencing of baseline and 
post- ICI tumors coupled with sequence data deconvo-
lution (online supplemental table S3). Dichotomizing 
based on a decrease of >10% in NLR at 4 weeks, which was 
identified in the metastatic NSCLC cohort as associated 
with clinical benefit from immunotherapy, we performed 
differential enrichment analyses for pre- ICI and post- ICI 
treated tumors and further evaluated relative changes in 
proinflammatory profiles during therapy (online supple-
mental figure S1A,B and tables S4,S5). These analyses 
revealed an enrichment in E2F targets (adjusted p=4.4e- 
29) and G2M checkpoint cell cycle progression (adjusted 
p=4.4e- 29) as well as MYC targets (adjusted p=1.1e- 15) in 
pre- ICI tumors from patients without a decrease in NLR 
(figure 2A–C), suggesting a proliferation advantage of 
these tumors in an immunosuppressive TME.35 Impor-
tantly, after induction with ICI, an upregulation of IFN-γ 
and antigen processing and presentation expression 
programs (adjusted p=7.3e- 07 and p=6.3e- 09, respec-
tively) alongside with activation of conserved immune 
rejection signatures (adjusted p=8.7e- 16), differentiated 
the TME of patients with a peripheral blood decrease in 
NLR (figure 2D–F). We then focused on paired analyses 
of pre- ICI and post- ICI tumors, which similarly showed an 
induction of IFN-γ and antigen presentation programs for 
patients with a decrease in NLR, suggesting an effective 
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adaptive immune response and subsequent T cell cyto-
toxicity (figure 2G–H) in conjunction with upregulation 
of genes involved in innate immune responses (figure 2I; 
online supplemental tables S6–S8).

NLR dynamics in peripheral blood capture T cell repertoire 
reshaping post-ICI
Building on the differential gene expression data and 
under the premise that NLR dynamics may identify 

Figure 1 Machine learning integration of peripheral immune cell subsets predicts durable clinical benefit to ICI. (A) Sample 
collection schema for 239 patients with advanced metastatic NSCLC treated with ICI- containing regimens. We employed an 
XGBoost machine learning approach to integrate 25 variables, including clinical characteristics and peripheral immune cell 
dynamics to predict clinical outcome through training an ensemble of 100 models and incorporating feature selection within 
10- fold cross validation loops. (B) Receiver operator curve (ROC) for model prediction of durable clinical benefit (DCB) in the 
training cohort of 171 patients. (C) ROC for model prediction of DCB in an unseen testing cohort of 68 patients. (D) Shapley 
feature importance analysis; on the left, feature importance is listed in descending order of mean absolute SHAP value, while 
on the right, the directional value of features are color- coded in association with SHAP value where negative SHAP value 
is associated with DCB and positive SHAP values are associated with no durable benefit (NDB). AUC, area under receiver 
operator curve; ICIs, immune checkpoint inhibitors; NSCLC, non- small cell lung cancer; SHAP, Shapley Additive Explanations; 
XGBoost, eXtreme gradient boosting.

https://dx.doi.org/10.1136/jitc-2022-004688
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Figure 2 NLR dynamics point to distinct transcriptomic profiles in the tumor microenvironment. (A–C) Gene set enrichment 
analysis in baseline (pre- ICI treatment) tumor samples with (A) gene sets ranked by p value. Leading edge analyses are shown 
for (B) E2F targets and (C) MYC targets, which are enriched in patients who do not manifest a decrease in NLR. (D–F) Gene 
set enrichment analysis in post- ICI tumor samples with (D) gene sets ranked by p value. Leading edge analysis are shown for 
(E) IFN-γ and (F) antigen processing and presentation gene expression programs, which are significantly upregulated in the TME 
of patients with a peripheral blood decrease in NLR. (G–I) Fold change paired analysis between pre- ICI and post- ICI tumors for 
(G) IFN-γ, (H) antigen presentation, and (I) innate immune response gene signatures, suggesting peripheral NLR dynamics reflect 
an ICI- associated antitumor adaptive immune response. Dn, Down; ICI, immune checkpoint inhibition; IFN, interferon; NES, 
normalized enrichment score; NLR, neutrophil–lymphocyte ratio; TME, tumor microenvironment.
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patients with effective T cell adaptive immune responses 
resulting in clinical responses with ICI, we sought to 
further investigate the relationship between changes 
in NLR and intratumoral T cell clonal dynamics in the 
peripheral blood during immune checkpoint therapy. 
We analyzed TCR Vb sequencing data in paired pre- ICI 
and post- ICI PBMC samples and post- ICI tumor samples 
from 16 patients with NSCLC treated with neoadjuvant 
ICI (online supplemental table S9).31 Examining the 
intersection of intratumoral repertoires, we found that 
the majority of productive intratumoral TCR clonotypes 
were private (96.7%, online supplemental figure S4). In 
looking at pretreatment peripheral T cell repertoires, 

with a focus on clones also found in the tumor (see 
Methods), we did not identify any statistically signifi-
cant differences in aggregate T cell repertoire features 
among patients with differential NLR dynamics. 
However, patients with a decrease in NLR showed 
significant expansions in peripheral blood of matched 
intratumoral TCR clones 4 weeks after ICI initiation 
(Mann- Whitney FDR- adjusted p=0.018; figure 3A–D). 
The majority of intratumoral clones with significant 
clonotypic reshaping in peripheral blood during ICI 
were largely private (92.2%; online supplemental figure 
S4). Taken together, these findings may suggest that 
decreases in the peripheral neutrophil populations 

Figure 3 T cell repertoire dynamics are reflected in peripheral blood NLR dynamics. (A and B) Representative examples 
of TCR reshaping, signified by clonotypic expansions (red), notably of TCR clones also found in the tumor (diamond), or 
retractions (blue), notably of TCR clones not found in the tumor (circle), in peripheral blood, for (A) a patient with a decrease in 
NLR, compared with limited TCR repertoire changes in (B) a patient without a decrease in NLR, highlighting more clonotypic 
expansion in patients with a decrease in NLR in both overall clones and tumor- infiltrating clones. (C and D) Proportion of 
clonotypic expansion relative to baseline, defined as a statistically significant increase in clonotypic abundance in the on- 
therapy samples compared with pretreatment abundance. Compared with patients with unchanged or increased NLR, patients 
with decreased NLR had greater amounts of clonotypic expansion in both (C) clones identified in tumor and (D) overall clones. 
MPR, major pathologic response; NLR, neutrophil–lymphocyte ratio; PFS, progression- free survival; TCR, T cell receptor.
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during immunotherapy may be linked with emergent T 
cell responses that may mediate DCB.

Peripheral blood immune cell dynamics are reflective of 
pathologic response to ICI
Ultimately, we hypothesized that peripheral immune 
cell dynamics, being reflective of tumor rejection, would 
predict the depth of response to ICI. Using the cohort 
of patients with NSCLC treated with neoadjuvant ICI, we 
determined tumor regression post- ICI at a cellular level 
by immune- related pathological response criteria (see 
Methods; online supplemental figure S2 and table S2).25 
Consistent with our hypothesis, we found that peripheral 
blood immune cell dynamics during immunotherapy, 
determined by NLR dynamics but not based on differ-
ences in the absolute number of neutrophils, were predic-
tive of pathologic response. An early decrease of >10% 
in NLR at 4 weeks after ICI initiation was associated 
with tumor regression (Mann- Whitney test, p=0.0032) 
and MPR (χ2, p=0.007) at time of resection. Notably, an 
elevated eosinophil count at 4 weeks (see Methods) was 
also predictive of tumor regression (Mann- Whitney test, 
p=0.0086) and MPR (χ2 p=0.005), which was consistent 
with our findings in the metastatic NSCLC cohort. In line 
with previous studies highlighting the challenges with 
radiographic imaging and PD- L1 expression to capture 
therapeutic responses,36 baseline PD- L1 status and 
radiographic RECIST response failed to predict patho-
logical response in this cohort (χ2 p=0.21 and p=0.06 
respectively; figure 4). Patients with a decrease in NLR 
at 4 weeks had a significantly longer recurrence- free (log- 
rank p=0.0097) and a trend towards longer OS (log- rank 
p=0.070; figure 5A,B).

Peripheral NLR dynamics complement ctDNA molecular 
responses
We further hypothesized that dynamic assessment of NLR 
would be complementary to ctDNA- based measurements 
of circulating tumor burden and molecular response. 
To evaluate the association between NLR dynamics and 
clinical responses by an orthogonal molecular method, 
we performed longitudinal targeted error- correction 
sequencing of 82 serial plasma and matched leukocyte 
DNA samples as well as whole exome sequencing for 
24 tumor samples from patients in the neoadjuvant ICI 
cohort (online supplemental tables S10–S14). As illustra-
tive examples, graphical representation of change over 
time in NLR, ctDNA variant allele frequency, RECIST 
assessment of tumor, and pathologic assessment of tumor 
for four patients are shown (figure 5C–F). Non- invasive 
assessment by either NLR change at 4 weeks or ctDNA 
kinetics were associated with lack of clinical progression 
or recurrence (Fisher’s exact p=0.014). For the subgroup 
of patients with detectable ctDNA (n=13 of 24, 54%), 
response by ctDNA clearance or decrease in NLR was asso-
ciated with long- term outcome (seven of eight patients 
with a decreased NLR or ctDNA response had no disease 
progression or recurrence, while three of five patients 

without a decrease in NLR or ctDNA response had disease 
progression or recurrence). For the subgroup of patients 
that did not have detectable ctDNA (n=11 of 24, 46%), 
NLR dynamics were concordant with MPR (three of four 
patients with a decrease in NLR had MPR, while five of 
seven patients without a decrease in NLR did not have 
MPR) and clinical progression or recurrence (three of 
four patients with a decrease in NLR did not have progres-
sion or recurrence, while five of seven patients without a 
decreased NLR did). Despite the small sample size, these 
findings suggest that NLR dynamics complement ctDNA 
dynamics in reflecting long- term clinical response to 
immunotherapy treatment and may be informative when 
ctDNA is undetectable.

DISCUSSION
Immunotherapy has revolutionized the treatment 
options for patients with NSCLC, but our current static, 
pretreatment tissue- based predictive biomarkers, such 
as PD- L1 and TMB, do not reflect the plasticity of anti-
tumor immune responses during ICI therapy. Here we 
have examined dynamic changes in peripheral immune 
cell subsets in patients with both metastatic and early- 
stage NSCLC receiving ICIs. Using transcriptomic anal-
ysis along with T cell repertoire trajectories, we showed 
that decreases in NLR are associated with an induction 
of innate and adaptive immune responses in the TME, as 
well as expansion of individual intratumoral T cell clones 
in the periphery. Taken together, this suggests that NLR 
dynamics may be an indirect peripheral measurement of 
an emerging antitumor immune response during immu-
notherapy and ultimately, favorable clinical outcomes. 
Furthermore, we showed that NLR dynamics may be 
complementary to ctDNA kinetics and informative in 
cases where ctDNA is undetectable.

NLR reflects a broad interaction between systemic 
inflammation and overall immune function, and in the 
context of cancer, may serve as a proxy for the equilib-
rium between tumor- mediated inflammation and anti-
tumor immunity. An elevated pretreatment NLR has 
been associated with poor outcomes and has also been 
associated with lack of immunotherapy response.20 These 
observations have been attributed to both circulating and 
TANs and their roles in tumorigenesis, angiogenesis, and 
moderation of the tumor immune microenvironment 
through T cell suppression, contributing to immuno-
therapy resistance.6–8 10 15 Tumors produce IL- 8, a chemo-
kine that attracts neutrophils and is strongly associated 
with a tolerogenic TME and poor response to ICI.37 
Neutrophils, in turn, secrete chemokines that promote 
tumor proliferation, invasion, and angiogenesis, such 
as neutrophil elastase, matrix metallopeptidase- 9 and 
vascular endothelial growth factor.34 Within circulation, 
neutrophil extracellular traps are believed to play a key 
role facilitating the concentration of cancer effectors 
resulting in metastasis formation.34 Additionally, there is 
evidence that neutrophils can associate with circulating 

https://dx.doi.org/10.1136/jitc-2022-004688
https://dx.doi.org/10.1136/jitc-2022-004688
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Figure 4 Peripheral immune cell subset dynamics are associated with response to ICI. (A) Representation of each patient in 
the early- stage NSCLC as a column, showing change in NLR along with clinical features, molecular and cellular features, and 
tumor and treatment features. Decreases in NLR and elevated on treatment eosinophil fractions were associated with major 
pathologic response and longer progression free survival. NLR dynamics did not appear to be associated with radiographic 
response, PD- L1 status, or type of immunotherapy received. Majority of patients showed stable disease by RECIST, highlighting 
difficulties of traditional radiography in capturing response to immunotherapy. (B) Early changes in NLR and on treatment 
eosinophil fraction are statistically associated with MPR, while PD- L1 and RECIST are not. χ2 test are based on two- sided 
testing for on treatment eosinophil fraction, RECIST, and PD- L1. Early changes in NLR was based on one- sided χ2 testing. 
ICI, immune checkpoint inhibitor; MPR, major pathologic response; Nivo, nivolumab; Nivo+Ipi, nivolumab+ipilimumab; NLR, 
neutrophil–lymphocyte ratio; NR, no response; NSCLC, non- small cell lung cancer; PD, progressive disease; PR, partial 
response; R, response; SD, stable disease.
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tumor cells, enabling establishment of metastatic sites 
of disease.38 In contrast, lymphocytes, particularly CD8+ 
T cells, play a key role in antitumor response by inhib-
iting tumor cell proliferation and migration as well as 
inducing cytotoxic cell death.39 40 Notably, lymphocyto-
penia has been associated with poor survival in numerous 
settings, as tumors may induce lymphocyte apoptosis 
both within the TME and in peripheral circulation as a 
means of avoiding immune recognition.41–43 In line with 
this notion, we showed that peripheral expansion of T 
cell clones found in the TME may be reflected in NLR 
dynamics and in particular a decrease in NLR values 
during immunotherapy.

Furthermore, we identified a correlation between 
increased peripheral eosinophils during ICI and clin-
ical response. Previous studies have demonstrated 
that elevated blood eosinophil content correlates with 

intratumoral eosinophil concentration and activation 
and may predict response to ICI.44 Eosinophils are known 
to be present in the TME, but their role is not fully under-
stood, and there is conflicting evidence regarding the 
prognostic impact of tumor eosinophilia in different 
tumor types.44 45 Immune cell subsets such as lymphoid 
cells, natural killer T cells, and mast cells, as well as cancer 
cells, can release interleukin- 5, an important cytokine 
for eosinophil growth, differentiation, and activation, 
resulting in eosinophilic infiltration of tumor.46 Eosin-
ophils in turn may exert direct cytotoxic effect against 
cancer cells, particularly when activated by IFN-γ, and can 
promote recruitment of CD8+ T cells through secretion of 
chemokines CCL5, CCL9, and CXCL10, which combined 
with alteration of the TME vasculature may lead to tumor 
regression.47 48 The interaction of intratumoral CD8+ 
T cells and eosinophils has been shown to induce M1- like 

Figure 5 NLR dynamics predict survival and complement ctDNA molecular responses. (A and B) Progression- free survival 
(A) and overall survival (B) stratified by NLR dynamics in the early- stage NSCLC cohort, demonstrating that a decreased NLR 
was significantly associated with longer PFS (log- rank p=0.0097) and OS (log- rank p=0.07). Survival curves were compared 
by using non- parametric log- rank test. (C–F) Comparison of ctDNA and NLR dynamics with tumor evaluation by RECIST and 
pathologic response at resection in representative examples. Variant allele frequency is shown on the left axis for variants 
confirmed to be tumor derived. Percent tumor burden and NLR value relative to baseline are shown on the right axis. For a 
patient with MPR (C), an early decrease in NLR captured therapeutic effect and was consistent ctDNA molecular clearance 
(KRAS G12C mutation) compared with RECIST tumor burden, which showed partial response. In contrast, for a patient with 
no tumor regression post- ICI (D), an early increase in NLR was consistent with ctDNA molecular persistence (KRAS Q61H 
mutation) and radiographic progressive disease. (E) In a patient where an early increase in NLR was discordant with ctDNA 
molecular clearance (TP53 R248L mutation), pathologic evaluation of his primary tumor and a satellite nodule revealed two 
separate histologies, suggesting ctDNA molecular clearance reflecting one tumor’s response and increasing NLR reflecting 
the other tumor’s lack of response. In a patient with undetectable ctDNA (F), early decrease in NLR accurately captured 
the therapeutic effect and MPR compared with RECIST tumor burden. ctDNA, circulating tumor DNA; Dec, decreased; Inc, 
increased; MPR, major pathologic response; NLR, neutrophil–lymphocyte ratio; NSCLC, non- small cell lung cancer; OS, overall 
survival; PFS, progression free survival; Unc, unchanged.
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activated macrophage polarization.48 Furthermore, hista-
mine may induce the immunosuppressive M2 macro-
phage phenotype and addition of H1- antihistamine can 
enhance immunotherapy response.49 Eosinophils have 
bidirectional interaction with mast cells50; therefore, this 
may represent another pathway through which eosino-
phils influence ICI response.

Our study has several limitations; given its retrospec-
tive nature, there may be uncaptured sources of bias or 
confounding factors. Additionally, the number of patients 
included in the early- stage NSCLC cohort was limited, 
as was necessitated by the large number of samples 
analyzed from each patient. However, our findings are 
strengthened by the concordance with the larger meta-
static NSCLC cohort. Furthermore, though we did not 
assess tumor- associated and mutation- associated epitope 
TCR reactivity, our analyses identified largely private 
intratumoral TCR clonotypic expansions in peripheral 
blood during immune checkpoint blockade, suggesting 
that these may be involved in the antitumor immune 
responses in the context of therapy.

In summary, our findings support the notion that NLR 
dynamics are associated with underlying changes in the 
quality of the antitumor immune response in the TME 
as well as with reshaping of the T cell repertoire in the 
periphery, providing the biological basis as to why NLR 
dynamics are associated with therapeutic response with 
immune checkpoint blockade. As an indirect reflec-
tion of immunologic changes in the TME with immu-
notherapy, NLR dynamics complement assessment of 
molecular response with ctDNA, particularly for early 
stage patients with undetectable ctDNA, a finding that has 
not been previously reported, to the best of our knowl-
edge. Moving forward, we envision integrative predictive 
models of response that incorporate these non- invasive, 
readily available, and dynamic biomarkers. Capturing 
the tumor- immune cell equilibrium may allow for early 
identification of patients less likely to attain a long- term 
survival on immunotherapy, allowing for rapid adaptive 
changes in therapy.
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