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Simple Summary: High-grade serous ovarian cancer is a fatal disease typically detected at an
advanced stage when options for effective treatment are significantly limited. The lack of a screening
modality to identify ovarian cancer in its early stage continues to be a major impediment in the
management of this malignancy. The serum biomarker CA125, a repeating peptide epitope present
in the sialomucin, MUC16, is unsuitable as a screening test. We have demonstrated that immune cells
of ovarian cancer patients capture miniscule amounts of CA125 on their cell surface. Here, we report
an automated, sensitive, alignment-free microscopy platform to qualitatively and quantitatively
assess the low-abundance binding of CA125 to circulating leucocyte subsets. Through a comparison
of the CA125 levels on immune cell subsets of ovarian cancer patients versus healthy donors, we
demonstrate that our new technique can serve as a novel diagnostic platform for detection and
monitoring of ovarian cancer.

Abstract: MUC16, a sialomucin that contains the ovarian cancer biomarker CA125, binds at low
abundance to leucocytes via the immune receptor, Siglec-9. Conventional fluorescence-based imaging
techniques lack the sensitivity to assess this low-abundance event, prompting us to develop a novel
“digital” optical cytometry technique for qualitative and quantitative assessment of CA125 binding
to peripheral blood mononuclear cells (PBMC). Plasmonic nanoparticle labeled detection antibody
allows assessment of CA125 at the near-single molecule level when bound to specific immune
cell lineages that are simultaneously identified using multiparameter fluorescence imaging. Image
analysis and deep learning were used to quantify CA125 per each cell lineage. PBMC from treatment
naïve ovarian cancer patients (N = 14) showed higher cell surface abundance of CA125 on the
aggregate PBMC population as well as on NK (p = 0.013), T (p < 0.001) and B cells (p = 0.024)
compared to circulating lymphocytes of healthy donors (N = 7). Differences in CA125 binding to
monocytes or NK-T cells between the two cohorts were not significant. There was no correlation
between the PBMC-bound and serum levels of CA125, suggesting that these two compartments are
not in stoichiometric equilibrium. Understanding where and how subset-specific cell-bound surface
CA125 takes place may provide guidance towards a new diagnostic biomarker in ovarian cancer.

Keywords: ovarian cancer; CA125; MUC16; Siglec-9; surface plasmon resonance; multiparameter
imaging; deep learning; lymphocyte
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1. Introduction

CA125 is a repeating protein epitope of the >2 million Da MUC16 molecule [1,2].
This sialomucin is overexpressed by high-grade serous ovarian tumors [3,4]. Although a
transmembrane mucin, MUC16 is shed from the cell surface, and as a result, can be detected
in serum using antibodies directed against the CA125 epitope [5]. Quantitative levels of
serum CA125 have proven useful to define progression-free survival of serous ovarian
cancer patients after they have received first-line therapy [6] and in the management of
serous ovarian cancer in patients past their cytoreductive surgery and chemotherapy [7–10].

It has been established that MUC16 binds to peripheral blood mononuclear cells
(PBMC) [11] and, in the case of NK cells, this binding blunts its anti-tumor response [12–14].
Our previous studies showing MUC16 binding to PBMC relied on the use of flow cytometry.
However, successive experiments indicated that it was often difficult to monitor the low
levels of MUC16 bound to PBMC using conventional flow cytometry, hindering further
research on the use of cell-bound CA125 in clinical practice.

It is well-understood that for low levels of cell surface antigens, fluorescent labels are
masked by the self-fluorescence of the cell interior, fluorescence of other surface markers
being investigated in the same experiment and, moreover, they photo bleach. Alternatively,
sub-micron size gold plasmonic nanoparticles (PNP) scatter light 1 million times more
intensely than the emission from their fluorescent counterparts [15]. This intense signal is
caused when the electrons of the gold nanoparticles couple resonantly with the electromag-
netic field of the incident light and reradiate scattered light. When imaged by a darkfield
microscope, PNP are 13 times brighter than the background from the cell interior, and they
do not photo bleach. Sub-micron, antibody-conjugated gold nanoparticles are therefore
excellent candidates for labeling and quantifying low-abundance cell surface antigens by
light microscopy. Furthermore, fluorescent staining and PNP staining do not interfere with
one another [16]; therefore, orthogonal stains can be considered and be used concomitantly
for low-abundance antigen staining and traditional cell lineage estimation [17].

Using PNP conjugated to the anti-CA125 antibody, we recently demonstrated in a
small patient cohort that cell-bound CA125 is more abundant on PBMC of serous invasive
cancer patients than in healthy controls [18]. This proof-of-principle study validated our
initial flow cytometry results by confirming binding of CA125 (MUC16) to PBMC using
our newly developed and highly sensitive imaging protocol. However, the study did not
provide insights into the relative binding of the mucin to specific lineages of the immune
cells. This latter point is important, because MUC16 selectively and preferentially binds
to immune cells that express Siglec-9 and hence is not detected on all the immune cells in
a population.

To explore the distribution and differential binding of CA125 across subsets of PBMC,
we developed a new oil- and calibration-free, fully automated imaging platform that
can acquire a large number of fields of view, performing simultaneous quantitative PNP
detection, as in [18], and qualitative cell lineaging through multiparameter fluorescence
microscopy, as in [17]. Automation was needed to quantify PNP binding in low-abundance
cell populations, and was achieved using X-Y stage movement, autofocusing modules and
automated cell lineaging software.

Using the newly developed system and PBMC from 14 serous invasive ovarian cancer
patients and 7 healthy controls, we, for the first time, obtained quantitative measurements of
the relative abundance of cell-bound CA125 in PBMC subsets. We found clear elevation of
CA125 on NK cells, B cells and T cells of treatment-naive serous ovarian cancer patients, but
not on monocytes or NK-T cells. No correlation was found between the new measurements
and serum CA125, showing that cell-bound CA125 may become a new independent
biomarker with clinical implications for ovarian cancer management.
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2. Materials and Methods
2.1. Samples

Patients (N = 14) with advanced-stage serous ovarian cancer and healthy controls
(N = 7) were recruited and consented under approved Institutional Protocols at the Univer-
sity of Wisconsin (Madison) School of Medicine (protocol 2015-1403) and the Dana Farber
Brigham and Women’s Cancers Center (protocol 16-255 and 2018P001677). Serum CA125
was available for 12 of the 14 serous invasive cancer patients.

2.2. Sample Staining

PBMC from healthy control and serous invasive patients were isolated from fresh
blood samples by density gradient centrifugation (Ficoll-Paque) and cryopreserved in
1 mL vials at a cell density ranging between 3 × 106 and 5 × 106 cells/mL. Cells were
separately stained with fluorescent dyes and anti-CA125 conjugated to gold nanoparticles
(anti-CA125-PNP) in a two-step process with the following reagents and protocol.

Eighty nm gold nanoparticles conjugated with anti-CA125 were purchased from BBI
Solutions (Cardiff, UK) and lyophilized for long-term storage. Fluorescent reagents were
bought from Biolegend (San Diego, CA, USA). They were BV510 anti-human CD45, BV421
anti-human CD19, AF488 anti-human CD14, PE anti-human CD56 NCAM and AF647
anti-human CD3 antibody.

Frozen PBMC were thawed in a 37 ◦C water bath for less than 1 min until only a small
amount of ice was left in the vial. Cells were transferred to 15 mL centrifuge tubes contain-
ing 9 mL of pre-warmed 37 ◦C RPMI with 5% BSA. After mixing, cells were centrifuged at
300× g for 10 min and resuspended to a density of 1 × 107 cells/mL in phosphate buffered
saline (PBS) with 5% BSA. Fluorescent staining was performed by adding 5 µL of each of the
fluorescent dyes and incubating for 30 min at room temperature under continuous mixing
conditions (750 rpm) in the dark. To remove background fluorescence, cells were washed
twice with PBS with 5% BSA (300× g, 10 min each). After this preparation, anti-CA125
PNPs were added to the cells at a ratio of 2000 PNPs/cell as previously described in [18]
and incubated for five minutes at room temperature under continuous mixing conditions
(750 rpm). Labelled cells were transferred to 15 mL tubes and centrifuged at 300× g for
10 min. After discarding, the supernatant cells were reconstituted in 10 mL of PBS with 5%
BSA and centrifuged again for 10 min at 300× g. Following this wash step, the cells were
reconstituted to a density of 25M cells/mL in PBS with 5% BSA. The microscopy slide was
prepared by placing a 9 mm diameter Grace Bio-Labs (Bend, OR, USA) SecureSeal imaging
spacer, adding 9.1 µL of the labeled cell solution and sealing it with a coverslip.

2.3. Microscope and Image Acquisition

A custom microscope was built for this project by Thorlabs Imaging Systems (Sterling,
VA, USA). The microscope was based upon Cerna microscope components (Thorlabs),
consisting of a darkfield slide holder equipped with side illumination RGB and White LEDs,
an EPI-fluorescence imaging unit, a laser-based autofocusing unit and a SCMOS 8 Mp color
camera (4096 × 2678 pixels) (Thorlabs CS985CU). The use of LED side illumination allowed
the use of high-resolution high-power optics without oil immersion and alignment. The
microscope was fitted with an X-Y optical stage (Thorlabs MLS203-1) and a piezoelectric
focusing unit (Thorlabs PFM450E) for both focusing and Z-stacking. Different fluorescent
channels were obtained using a Pinkel set (Semrock DA/FI/TR/Cy5-4x-B) with four
excitation filters (four bands), one multi-band dichroic mirror and a multi-band emission
filter. Cycling through excitation filters and the removal of the emission filter for darkfield
imaging were done with two automated filter wheels (Thorlabs FW102C). Fluorescent
illumination was achieved with a xenon plasma light source. Autofocusing was performed
by inserting a colinear IR laser through the light path and measuring its reflection through
a fiber optic circulator. This resulted in the identification of the aqueous interface between
the cover slip and the microscopy slide. An offset was then applied to find the equatorial
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plane of cells located on the cover slip. Custom software was built for the synchronization
and automated acquisition of the images.

The microscope automatically acquired 105 fields of view per sample, capturing for
each field of view 40 slices of a darkfield image stack and 4-channel fluorescence of the
central slice. The acquisition routine is as follows: (a) the operator selects a field of view
on the center of the microscopy slide, (b) the microscope moves to the upper-left corner
of the fields of view to be acquired, (c) for each field of view the microscope obtains the
optimal focal plane, (d) obtains the four color fluorescent images by switching the excitation
filters, (e) blocks the fluorescent light and turns on the darkfield illumination, (f) acquires
40 axial image slices by moving the piezoelectric focusing unit between ±10 µm from the
optimal focal plane in steps of 0.5 µm, (g) turns off LED illumination, unblocks fluorescent
excitation, changes field of view and repeats steps (c) through (g). The microscopy system
acquires fluorescent and darkfield images of the 105 fields of view in 58 min. A picture of
the microscope, darkfield and fluorescent images of a field of view, a z-stack, and prototype
cells are shown in Figure 1.
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Figure 1. Microscopy system and example images of PBMC from a healthy control. (A) Combined
automated darkfield and epi-fluorescence microscope developed for the project. (B) Maximum-
intensity projection of the z-stack darkfield image of a field of view. Some cells show PNPs bound to
them. (C) First fluorescent channel showing all PBMC in green (CD45) and B cells in blue (CD19).
(D) Second fluorescent channel showing monocytes in green (CD14) and NK cells in orange (CD56).
(E) Third fluorescent channel showing NK cells in orange (CD56) and T cells in red (CD3). (F) Fourth
fluorescent channel showing T cells in red (CD3). (G) Representative slices of the z-stack of the
monocyte highlighted in B. Please observe how PNPs are visible on the planes of the cell that are
above (top) and below (bottom) its equatorial plane (middle), located in the center of the inset. This
is due to the high brightness of the plasmonic nanoparticles and the transparency of the cells under
darkfield. Numbers indicate the order of the image in the z-stack. (H) Composite image showing
the darkfield maximum-intensity projection and 4-channel fluorescence of example cells of different
lineages. Please observe how, for these examples, the monocyte exhibits high CA125 binding, the
B-cell medium CA125 binding and other cell classes show no binding.
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2.4. Image Processing and Data Analysis
2.4.1. Fluorescent Imaging and Color Compensation

While four-channel fluorescence images were acquired, cells positive for a single
fluorochrome may exhibit signal on more than one of those channels. To determine the
antibody that generated the fluorescent signal, we performed image color compensation, a
process analogous to color compensation in flow cytometry, but using images. For each
pixel, we acquired a 12-dimensional information vector, composed of the RGB values of
the camera for each of the four excitation channels of the Pinkel set. With a 5 by 12 color
compensation matrix, we can reduce the dimensionality to a 5-dimensional vector, where
each dimension represents the contribution of each individual fluorochrome. The color
compensation matrix is determined by using beads stained with each of the fluorochromes
as follows.

Color compensation beads (OneComp eBeads) were stained with each of the staining
antibodies to have samples for each of the fluorochromes. The bead staining protocol is
as follows. One drop of OneComp eBeads was placed into an Eppendorf tube. Five µL
of the antibody conjugate were then added and mixed by pulse-vortexing followed by
an incubation at 2–8 ◦C for 30 min in the dark. Then, 0.4 mL of Flow Cytometry Staining
Buffer (FCSB) (Invitrogen eBioscience) was added, and the sample was centrifuged at
500× g for 5 min. The supernatant was discarded and 0.2 mL of FCSB was added. Five
microscopy slides were prepared following the procedure described in Section 2.2.

Images of at least 7 beads were obtained from each of the compensation bead slides.
Beads were detected in the images through intensity thresholding and their median inten-
sity value was computed for the red, green, and blue channels of the color camera for the
four excitation filters. Color compensation was performed as follows: for each bead type
there were 4 fluorescent channels, each of them imaged with a color camera with three
channels (RGB). Therefore, for each fluorochrome there were a total of 12 measurements.
A 12 × 5 matrix M was generated. This matrix, given the quantity of the fluorochromes,
provides the intensity of the 12 measurements. However, when we analyze a sample, we
are interested in the opposite. Given the 12 measurements, we need to infer the quan-
tity of fluorochromes that generated them. We therefore computed the Moose-Penrose
pseudoinverse of the matrix M, resulting in the color compensation matrix MInv. Once a
fluorescent image stack was obtained, the contribution of each fluorochrome to each pixel
was computed by generating a 12-dimensional vector for each pixel and multiplying it
by MInv.

2.4.2. Cell Finding on CD45 Images

Cells were stained with anti-CD45, a pan-leukocyte marker. We used the color-
compensated CD45 image to perform cell detection by standard image processing tech-
niques. First, the image was downscaled to 1/4th of the original. A local threshold, using a
window of 351 pixels and an offset of 0.05, was applied to the image, with pixels above such
threshold considered as belonging to the cell. We then performed connected component
analysis in the binarized image, where only components between 500 and 6000 pixels
were retained. A circular Hough transform [19] searched for circles, representative of cells,
that have a radius between 15 and 35 pixels and are within the connected components.
The circle with the highest Hough score and contained within the bounding box of the
connected component was retained and identified as a positive cell event.

2.4.3. Cell Contour Delineation

While the cell finding routine provides a good circular approximation of the contour
of the cell, such approximation is significantly affected by other cells in close proximity or
if the cell has degraded during storage, transport, or staining. To accurately determine the
contour of the cell, we made use of artificial intelligence techniques. The determination of
the contour of the cell is analogous to its so-called semantic segmentation. Current deep
learning segmentation techniques, such as the UNET [20,21], have excelled in the segmen-
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tation of cells under different imaging conditions. We used a UNET segmentation neural
network to accurately delineate the contour of the cell. Briefly, we collected 3192 images of
82 × 82 pixels and manually delineated the contour of the cell on each of them. We split
such images into three sets: training (50%), validation (25%) and test (25%). Such split
was done once and never changed. We trained the model using the adaptive momentum
optimization algorithm optimizing the Dice [22] coefficient, analogously to [23]. Training
was performed for 150 epochs. No early stopping criteria were used. The model with the
best validation performance is stored to perform the computation of the cell contour in
subsequent images. The number of epochs was selected to force overfitting to the training
data. Please note that we selected the model with the best validation accuracy for analysis;
therefore, overfitting to the training set is of no consequence for further data analysis. The
Dice score in the test images is 0.971. After training, the model is used to generate the
contour of the subsequent cells by thresholding the output of the UNET network at a value
of 0.5. Cells smaller than 16 µm2 or bigger than 400 µm2 were rejected, as they are likely
artifacts or cells of no interest.

2.4.4. Cell Lineage Determination

Given the individual contributions of each fluorochrome estimated in the color com-
pensation images, and the contour of the cell determined by the UNET segmentation
method, we decided if a cell is positive for a given fluorochrome by measuring the signal
intensity within the contour and outside of the contour of the cell. If the average value of
the fluorescent signal inside the cell was higher than the average plus twice the standard
deviation of the fluorescent signal outside the cell, then the cell was considered positive for
such fluorochrome.

Cells positive for CD45 and only one lineage marker were considered the class repre-
sentative for such lineage marker: CD19 for B cells, CD56 for NK cells, CD3 for T cells and
CD14 for monocytes. Cells positive for multiple markers were excluded from this study
except for cells positive for both CD56 and CD14, which were labeled as NK-T cells.

2.4.5. PNP Quantification

PNP quantification on cells followed the methodology of [23]. Briefly, for each cell, we
extract a centered 3D region of interest. We detect PNPs in each z-slice using a Laplacian
of Gaussian blob detection. PNP signals whose x−y coordinates do not lie within the cell
contour determined by the UNET are rejected. 2D PNP signals are clustered to form 3D
PNP signals using the DBSCAN clustering algorithm [24]. Clusters having too few or too
many 2D PNPs are excluded from further analysis. Each remaining cluster is counted as a
PNP, and the central 2D PNP determination is selected as the 3D PNP detection coordinate.
The color of such a coordinate is evaluated to discriminate between a single PNP (green),
a duplet (yellow) or a triplet of PNPs (red). The quantification of the color is made by
dividing the red channel of the image at the 3D detection coordinate by the green channel.
If the division is between 0 and 1, then the PNP is considered green, if it is between 1 and 2,
it is considered yellow and if it is greater than 2 it is considered red.

2.4.6. Data Aggregation

For each sample and cell subtype, we compute the average number of PNPs per cell.
This is performed by assuming that the distribution of PNPs in the cell population follows a
Poisson distribution. We compute the lambda parameter of such distribution by computing
the average number of PNPs per cell. We also include the average number of PNPs per cell
without cell subtyping as reference.

2.5. Statistical Analysis

Since most variables failed Shapiro–Wilk’s normality test, we used the non-parametric
Mann–Whitney U-test to establish the statistical significance of the difference in the average
number of PNPs per cell subtype for the two populations under study: serous ovarian
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cancer patients and healthy controls. Pearson correlation coefficients were employed to es-
tablish correlations between serum and cell-bound CA125. The Python SciPy (version 1.4.1)
and statsmodel (version 0.12.1) libraries were used to compute these statistical tests.

3. Results
3.1. Cohort

The average age of healthy controls was 43.71 years (±10.79). The average age of
serous invasive cancer patients was 64.64 (±11.07). All patients were post-menopausal.
Five healthy controls were pre-menopausal and 2 post-menopausal. The average serum
CA125 value for 12 serous invasive patients was 429 I.U./mL, with a standard deviation of
505 I.U./mL No serum CA125 values were recorded for healthy controls.

3.2. Technical Validation

We compared cell lineage determination with the microscopy platform against the
flow cytometry reference standard. PBMC from a healthy control were run in a standard
flow cytometer and in our system, using the same fluorochromes. The sample was run
three times in the newly developed platform. Gating for the flow cytometry data was
performed manually, while it was completely automated in our system. The percentage of
cells per class are shown in Table 1.

Table 1. Percentage of cells found by standard flow cytometry and by our system.

T Cells B Cells NK-T Cells Monocytes NK Cells

Flow cytometry 74.8% 11.9% 7.14% 6.27% 4.52%
New platform (std) 77.2% (6.7) 7.7% (4.9) 6.2% (1.9) 6.4% (0.7) 1.2% (0.2)

We evaluated the performance of the PNP quantification method by comparing the
number of PNPs per cell detected automatically against manual readings of the same cells.
Forty-nine automatically detected 3D darkfield images of cells were selected at random,
49 more were chosen from cells that contained medium to high numbers of anti-CA125
PNPs bound to their surface. This selection was done to have representative images
of all binding patterns. Since high binding cells are a minority, selecting all at random
would result in a majority of cells having few or no PNPs attached to them, thus biasing
the analysis. The 98 image stacks were annotated by two independent readers using a
custom-built software annotation interface. Inter-reader agreement reached a squared
Pearson correlation coefficient of r2 = 0.893, with an average error of 1.61 PNPs per cell.
The automated quantification method achieved a Pearson correlation coefficient against
manual readings of r2 = 0.752, with an average error of 2.72 PNPs per cell.

3.3. Serous Invasive Ovarian Cancer Patients Show an Elevation of CA125 Bound to Immune Cell
Subsets Compared to Healthy Controls

We computed the average number of PNPs per immune cell type for 14 serous invasive
ovarian cancer patients and 7 healthy controls. The average number of cells per sample
was 2471 cells. Using the Mann–Whitney U-test to establish statistical significance, serous
invasive ovarian cancer patients compared to healthy controls showed elevated binding on
B cells (p = 0.024), NK cells (p = 0.014) and T cells (p = 0.001) and no significant difference
on monocytes (p = 0.397) or NK-T cells (p = 0.109). When comparing all cells regardless of
cell lineage, serous invasive ovarian cancer patients showed an elevation of the number of
PNPs per cell (p = 0.040). Box plots showing the number of PNPs per cell subtype and for
all cells combined are shown in Figure 2. Whiskers represent the data range once outliers
are excluded. Outliers are detected as datapoints that are below or above 1.5 times the
interquartile range beyond the low and high quartiles, respectively. The average number of
PNPs per cell for each cell subtype for serous invasive ovarian cancer patients and healthy
controls are shown in Table 2. We have further analyzed the percentage of cells of serous
invasive ovarian cancer patients that have low, medium, and high nanoparticle binding.
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We used cutoff thresholds of 5 and 10 nanoparticles per cell. The results are shown in
Supplementary Table S1.
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7 healthy controls. p-values were obtained using the non-parametric Mann–Whitney U-test. We observe a statistically
significant elevation of binding on NK cells, T cells, B cells and all cells. The Y-axis is different between box plots due to the
different binding patterns per cell subtype.

Table 2. Average number of PNPs bound per cell subtype for serous invasive ovarian cancer patients
and healthy controls. P-values are computed using the non-parametric Mann–Whitney U-test.

All PBMC NK Cells T Cells Monocytes B Cells NK-T Cells

Controls 4.11 1.11 1.38 27.58 5.19 10.03
Patients 7.78 2.86 4.36 27.71 10.45 9.10
p-value 0.04 0.014 0.001 0.400 0.024 0.109

3.4. Immune Cell-Bound CA125 Does Not Correlate to Serum CA125 Levels in Serous Invasive
Ovarian Cancer Patients

We investigated a correlation between cell-bound CA125 and serum CA125 in patients.
We found no correlation for any cell subtype or for all cells aggregated, as shown in Table 3.

We further determined correlation coefficients between cell-bound CA125 for each
pair of cell types, for both patients and healthy controls. The correlation coefficients as
well as their p-values are shown in Table 3. In healthy controls, only monocytes and B
cells show a statistically significant correlation. More statistically significant correlations
are found in ovarian cancer patients, where B-cell-bound CA125 correlates statistically
significantly to monocyte, T-cell- and NK-cell-bound CA125. T-cell-bound CA125 correlates
also significantly with NK-T-cell-bound CA125 and strongly and significantly to NK-cell-
bound CA125 (r2 = 0.8, p < 0.01).
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Table 3. Correlation coefficients (r2) between the average number of PNPs bound to each leukocyte subtype on 14 serous
ovarian cancer patients and 7 healthy controls. The last column represents the correlation to Serum CA125 for the 12 patients
with available serum data. Highlighted in bold are statistically significant correlations (p < 0.05).

NK CA125 T CA125 Monocyte
CA125 NK-T-CA125 Serum CA125 *

Patients

B CA125 0.67 (<0.01) 0.68 (<0.01) 0.32 (0.03) 0.22 (0.09) 0.07 (0.42)
NK CA125 0.80 (<0.01) 0.18 (0.12) 0.14 (0.19) 0.08 (0.39)
T CA125 0.23 (0.08) 0.49 (<0.01) 0.03 (0.62)

Monocyte CA125 0.26 (0.06) 0.06 (0.44)
NK-T-CA125 0.08 (0.36)

All PBMCs CA125 0.01 (0.81)

Healthy
Controls

B CA125 0.17 (0.35) 0.45 (0.10) 0.71 (0.02) 0.12 (0.50)
NK CA125 0.31 (0.19) 0.03 (0.71) 0.18 (0.39)
T CA125 0.48 (0.09) 0.06 (0.64)

Monocyte CA125 0.01 (0.84)

* Serum CA125 data were available for only 12 patients.

4. Discussion

MUC16 has an extensive protein backbone and glycosylation [25]. Therefore, it is an
excellent candidate for serving as a ligand for several receptors. Since MUC16 is expressed
on the tumor cell surface and is also shed, it is also a good candidate for regulating immune
cell interactions [26]. It is with this reasoning that we investigated the immune regulatory
properties of this mucin.

In this work, we have developed a fully automated alignment-free microscopy plat-
form with concomitant automated image processing methods which detect and quantify
cell-bound CA125 on a leukocyte subset-specific basis in large numbers of cells, some-
thing that could not be achieved with existing microscopy or flow-cytometry methods.
The high sensitivity of the new microscope comes from three factors: first, plasmonic
nanoparticles, when imaged under darkfield conditions are many logs brighter than flu-
orescent stains; second, PNPs do not photo bleach, therefore we can increase the signal
by augmenting excitation intensity; and third, individual PNPs are detected against very
low local backgrounds by using high-resolution optics that require neither alignment nor
oil immersion. We have validated the cell-lineage estimation capabilities of the platform
against flow cytometry, achieving similar counts for T cells, B cells, monocytes and NK-T
cells. There is a discrepancy for NK cells. This discrepancy in cell counts may have been
introduced by different brightness thresholds for the NK cell subset characterized by low
CD56 labeling (CD56dim cells).

The combination of high-power optics (63×) without oil immersion and X-Y and Z
scanning mechanisms enables the simultaneous, detailed, three-dimensional analysis of
individual cells and the extraction of sound statistics on cell populations. Our current
system is able to acquire images from 105 fields of view, representing 2000 cells, in one hour.
Extracting statistics from the images takes 1.5 h on a modern computer utilizing prototype
Python software. We have recently optimized the prototype software and compressed
acquisition and processing time to one hour per sample. This is important for laboratories
doing clinical research and a major step toward throughputs that are acceptable for routine
clinical testing.

Elevation of cell-bound CA125 on PBMC of serous invasive cancer patients was already
shown in flow cytometry [11] and via microscopy [18]. In this work, we furthered our
research in cell-bound CA125 by: (a) improving on our sensitive detection technique that
enables reliable quantification of CA125 on patient PBMCs to make it oil-immersion- and
alignment-free; (b) coupling such sensitive technique to cell-lineaging fluorescent capacities;
and (c) automating slide scanning to analyze large numbers of cells, thus enabling the
analysis of low-abundance cell populations.
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We have shown that an elevation of cell-bound CA125 is markedly significant on T
cells and NK cells, and significant on B cells as well as all PBMCs together. No significant
difference was found for NK-T cells and monocytes. Monocytes are the only phagocytes
that we analyzed, and it has been reported in the literature that, depending upon size,
surface chemistry modification and time, they are phagocytic for nanoparticles [27]. This
mechanism presents a confounding factor and currently prevents drawing conclusions on
monocyte surface CA125 binding. The monocyte data reported in this work may include
both surface bound and internalized nanoparticles.

While our present dataset size is not adequate for a thorough ROC analysis of serous
invasive cancer diagnosis, we took preliminary note that the AUC was 0.92 for T cells,
0.78 for NK cells, 0.74 for B cells, 0.56 for monocytes and 0.38 for NK-T cells. This early
result suggests future studies to test the diagnostic value of MUC16 binding on a specific
leukocyte subset basis.

Our observation that there is no correlation between serum CA125 and PBMC bound
CA125 for any of the subsets or all the cells together highlights the incongruence of CA125
measurements in these two compartments. These data are suggesting that the binding of
CA125 to immune cells does not match with the stoichiometry of CA125 found in serum
of the same individual. Further studies that explore the binding kinetics and anatomical
location for the binding of CA125 to immune cells will be necessary to fully address these
important initial observations.

Furthermore, in Table 3 we observed several correlations between cell subsets that are
statistically significant. It is tempting to suggest that these additional correlations in the
cancer patient population may have some value in developing a novel diagnostic algorithm.
However, these current data were obtained from only a limited number of samples and, in
the case of the healthy donors, the results were obtained from pre- and post-menopausal
women. Our future studies will focus on the analysis of many additional healthy donor
and cancer patient samples and closely examine the diagnostic value of these correlations
between immune cell subsets. Further development of our novel imaging microscope will
facilitate such research.

Based on our prior glycan analysis, it is clear that MUC16 glycans are often terminated
with alpha-2, 3-linked sialic acids [28]. These sialic acid residues are recognized by the lectin
receptor Siglec-9 [11]. The expression levels of Siglec-9 will affect the binding equilibrium
between serum CA125 and cell surface CA125. Further elucidation of Siglec-9 expression
in disease could provide insight into the complex relationship between both compartments
for CA125.

The observation that MUC16 is present on T cells is interesting, because recently it has
been shown that Siglec-9 is overexpressed on T cells from the ascites and tumor-invading
lymphocytes (TILs) of ovarian [29] and other tumors, such as head and neck tumors [30] or
acute myeloid leukemia [31].

In this work, we have focused on the analysis of T cells, B cells, NK cells and NK-T
cells and monocytes by using specific cell-lineage markers. We have mitigated against
granulocytes as a possible source of contamination by the use of fluorescence lineage
marking to identify mononuclear cell subsets. The CD markers we are using for T cells and
B cells protect the results from that contamination, as CD19 and CD3 are not expressed
in granulocytes. The marker for NK cells, CD56, is expressed in granulocytes, but only
in less than 2% of them, minimizing the effect of contamination. CD14, our marker for
monocytes, is weakly expressed in certain granulocyte subpopulations and no difference
in PNP binding to monocytes has been found between healthy subjects and controls.

One limitation of this work is the selection of the healthy controls for compari-
son with serous invasive cancer patients. Our control group included pre- (N = 5) and
postmenopausal (N = 2) women. It is well established that serum CA125 levels in pre-
menopausal women are generally higher than in postmenopausal subjects [32]. The
inclusion of premenopausal control samples has the potential to skew the results to higher
binding of CA125 to the immune cells, and therefore one might argue that it reduces the
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differential between the control and the ovarian cancer cohorts. However, we have shown
in patient samples that there is no correlation between serum CA125 and cell-bound CA125.
On the other hand, should there be a positive correlation in younger healthy women, then
the statistically significant differences in cell-bound CA125 levels we observe are even more
impressive. Moreover, in our previous study [18], we used a small cohort of five patients
and five age-matched controls to show elevation of cell-bound CA125 in patients. Despite
the lack of age-matching in the subjects of the present study, the data obtained are coherent
with our previous publication. Our future studies will focus on careful recruitment of
the subjects to control and test cohorts to obtain a more clinically relevant comparison of
immune cell-bound CA125 levels.

5. Conclusions

Quantitative measurements of low-abundance cell surface molecules are difficult to
perform using standard cytometric techniques. In prior work, we have demonstrated the
use of antibody-conjugated plasmonic nanoparticles and darkfield microscopy to perform
such measurements on PBMCs subtypes. By incorporating automation into the platform,
we are now able to analyze an order of magnitude higher number of cells per patient
sample, thus enabling better statistical characterization of low-abundance cell surface
molecules on low-abundance cell subtypes. This fully automated microscopy system
now enables new studies to examine the relevance of such cell-surface molecules in the
course of disease. Focusing on ovarian cancer, we demonstrate increased binding of
CA125 to aggregate lymphocyte populations and to B cell, T cell and NK cell subsets of
ovarian cancer patients as compared to healthy controls. It is of particular interest that
we found no correlation between the abundance of cell-bound CA125 and the level of
serum CA125. This observation suggests that serum and the surface of certain white cell
subsets are independent compartments for the CA125 biomarker. The new microscope
and the data analysis package detailed in this study is now poised to be used for testing
a novel diagnostic modality for detection and monitoring of ovarian cancer that uses the
circulating immune cells instead of the serum or plasma as the compartment for biomarker
detection. Further, this technology is not constrained to ovarian cancer, but can be readily
adapted to the quantification of other cell surface molecules that are relevant in the course
of disease, especially those associated with cell-mediated immunity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092072/s1, Table S1: Percentage of cells that have low, medium, and high nanoparticle
binding in serous invasive ovarian cancer patients. Cutoff thresholds of 5 PNPs/cell and 10 PNPs/cell
were used to determine medium and high binding.
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19. Smereka, M.; Dulęba, I. Circular Object Detection Using a Modified Hough Transform. Int. J. Appl. Math. Comput. Sci. 2008, 18,
85–91. [CrossRef]

20. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

21. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef]

22. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for
Highly Unbalanced Segmentations. In Transactions on Petri Nets and Other Models of Concurrency XV; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10553, pp. 240–248. [CrossRef]

23. González, G.; Evans, C.L. Biomedical Image Processing with Containers and Deep Learning: An Automated Analysis Pipeline.
BioEssays 2019, 41, e1900004. [CrossRef] [PubMed]

http://doi.org/10.1159/000050638
http://doi.org/10.1186/1476-4598-13-129
http://www.ncbi.nlm.nih.gov/pubmed/24886523
http://doi.org/10.1002/(SICI)1097-0215(19970529)71:5&lt;842::AID-IJC24&gt;3.0.CO;2-8
http://doi.org/10.1016/j.ejogrb.2008.08.011
http://doi.org/10.1172/JCI110380
http://www.ncbi.nlm.nih.gov/pubmed/7028788
http://doi.org/10.1054/bjoc.2001.1787
http://doi.org/10.1093/oxfordjournals.annonc.a010602
http://www.ncbi.nlm.nih.gov/pubmed/8778409
http://doi.org/10.1097/01.AOG.0000149159.69560.ef
http://doi.org/10.3390/cancers12123730
http://doi.org/10.1186/1476-4598-9-118
http://doi.org/10.1016/j.ygyno.2005.07.030
http://doi.org/10.1186/1476-4598-9-11
http://www.ncbi.nlm.nih.gov/pubmed/20089172
http://doi.org/10.1016/j.ygyno.2018.12.023
http://doi.org/10.1038/14382
http://doi.org/10.1002/jcb.10077
http://doi.org/10.1002/adfm.202009229
http://doi.org/10.1021/acssensors.0c00567
http://doi.org/10.2478/v10006-008-0008-9
http://doi.org/10.1038/s41592-018-0261-2
http://doi.org/10.1007/978-3-319-67558-9_28
http://doi.org/10.1002/bies.201900004
http://www.ncbi.nlm.nih.gov/pubmed/31094000


Cancers 2021, 13, 2072 13 of 13

24. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited. ACM Trans. Database Syst. 2017, 42, 1–21.
[CrossRef]

25. Yin, B.W.; Lloyd, K.O. Molecular Cloning of the CA125 Ovarian Cancer Antigen. J. Biol. Chem. 2001, 276, 27371–27375. [CrossRef]
[PubMed]

26. Coelho, R.; Marcos-Silva, L.; Ricardo, C.; Ponte, F.; Costa, A.; Lopes, J.M.; David, L. Peritoneal dissemination of ovarian cancer:
Role of MUC16-mesothelin interaction and implications for treatment. Expert Rev. Anticancer. Ther. 2018, 18, 177–186. [CrossRef]

27. Chhour, P.; Kim, J.; Benardo, B.; Tovar, A.; Mian, S.; Litt, H.I.; Ferrari, V.A.; Cormode, D.P. Effect of Gold Nanoparticle Size and
Coating on Labeling Monocytes for CT Tracking. Bioconjugate Chem. 2017, 28, 260–269. [CrossRef] [PubMed]

28. Wong, N.K.; Easton, R.L.; Panico, M.; Sutton-Smith, M.; Morrison, J.C.; Lattanzio, F.A.; Morris, H.R.; Clark, G.F.; Dell, A.; Patankar,
M.S. Characterization of the Oligosaccharides Associated with the Human Ovarian Tumor Marker CA125. J. Biol. Chem. 2003,
278, 28619–28634. [CrossRef]

29. Chan, A.K.; Lockhart, D.C.; Von Bernstorff, W.; Spanjaard, R.A.; JOO, H.G.; Eberlein, T.J.; Goedegebuure, P.S. Soluble MUC1
secreted by human epithelial cancer cells mediates immune suppression by blocking T-cell activation. Int. J. Cancer 1999, 82,
721–726. [CrossRef]

30. Stanczak, M.A.; Siddiqui, S.S.; Trefny, M.P.; Thommen, D.S.; Boligan, K.F.; Von Gunten, S.; Tzankov, A.; Tietze, L.; Lardinois, D.;
Heinzelmann-Schwarz, V.; et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T
cells. J. Clin. Investig. 2018, 128, 4912–4923. [CrossRef] [PubMed]

31. Biedermann, B.; Gil, D.; Bowen, D.T.; Crocker, P.R. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic
receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk. Res.
2007, 31, 211–220. [CrossRef] [PubMed]

32. Skates, S.J.; Mai, P.; Horick, N.K.; Piedmonte, M.; Drescher, C.W.; Isaacs, C.; Armstrong, D.K.; Buys, S.S.; Rodriguez, G.C.;
Horowitz, I.R.; et al. Large Prospective Study of Ovarian Cancer Screening in High-Risk Women: CA125 Cut-Point Defined by
Menopausal Status. Cancer Prev. Res. 2011, 4, 1401–1408. [CrossRef] [PubMed]

http://doi.org/10.1145/3068335
http://doi.org/10.1074/jbc.M103554200
http://www.ncbi.nlm.nih.gov/pubmed/11369781
http://doi.org/10.1080/14737140.2018.1418326
http://doi.org/10.1021/acs.bioconjchem.6b00566
http://www.ncbi.nlm.nih.gov/pubmed/28095688
http://doi.org/10.1074/jbc.M302741200
http://doi.org/10.1002/(SICI)1097-0215(19990827)82:5&lt;721::AID-IJC16&gt;3.0.CO;2-N
http://doi.org/10.1172/JCI120612
http://www.ncbi.nlm.nih.gov/pubmed/30130255
http://doi.org/10.1016/j.leukres.2006.05.026
http://www.ncbi.nlm.nih.gov/pubmed/16828866
http://doi.org/10.1158/1940-6207.CAPR-10-0402
http://www.ncbi.nlm.nih.gov/pubmed/21893500

	Introduction 
	Materials and Methods 
	Samples 
	Sample Staining 
	Microscope and Image Acquisition 
	Image Processing and Data Analysis 
	Fluorescent Imaging and Color Compensation 
	Cell Finding on CD45 Images 
	Cell Contour Delineation 
	Cell Lineage Determination 
	PNP Quantification 
	Data Aggregation 

	Statistical Analysis 

	Results 
	Cohort 
	Technical Validation 
	Serous Invasive Ovarian Cancer Patients Show an Elevation of CA125 Bound to Immune Cell Subsets Compared to Healthy Controls 
	Immune Cell-Bound CA125 Does Not Correlate to Serum CA125 Levels in Serous Invasive Ovarian Cancer Patients 

	Discussion 
	Conclusions 
	References

