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Abstract 

Background: Anaplasma phagocytophilum is an obligate parasitic intracellular bacterium. It is the causative agent of 
granulocytic anaplasmosis, with effects on human and animal health. In Europe, the pathogen is mainly transmitted 
among a wide range of vertebrate hosts by blood-sucking arthropods. The aim of this study was to determine the 
presence of A. phagocytophilum in wild carnivores, viz raccoon dogs (Nyctereutes procyonoides), badgers (Meles meles), 
foxes (Vulpes vulpes), martens (Martes sp.) and European polecats (Mustela putorius), using molecular methods.

Methods: In the present study, 174 spleen samples were collected from adult, wild carnivores hunted in the years 
2013–2016. A short fragment (383 bp) of the 16S ribosomal RNA gene partial sequence was used as a marker to iden-
tify A. phagocytophilum in spleen samples collected from carnivores using nested PCR.

Results: The prevalence of A. phagocytophilum in wild carnivores was 31.61% (55/174). Seven sequences of A. 
phagocytophilum were generated from two raccoon dogs, two badgers, one marten, one red fox and one European 
polecat. Six identical nucleotide sequences were obtained from one raccoon dog, two badgers, one marten, one red 
fox and one European polecat (A. phagocytophilum sequences 1: MH328205–MH328209, MH328211), and these were 
identical to many A. phagocytophilum sequences in the GenBank database (100% similarity). The second sequence (A. 
phagocytophilum sequence 2: MH328210) obtained from the raccoon dog shared 99.74% identity with A. phagocyt-
ophilum sequence 1.

Conclusions: To our knowledge, this is the first study to use molecular methods to determine the presence of A. 
phagocytophilum in wild carnivores, viz raccoon dog, badger, marten and European polecat, in Poland. The detected 
A. phagocytophilum sequences (1 and 2) were closely related with those of A. phagocytophilum occurring in a wide 
range of wild and domestic animals and vectors.
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Background
Anaplasma phagocytophilum is a Gram-negative bac-
terium belonging to the family Anaplasmataceae [1]. 
It is the causative agent of tick-borne fever in rumi-
nants, also known as bovine or ovine granulocytic ana-
plasmosis, and of human granulocytic anaplasmosis. 
Anaplasma phagocytophilum is typically detected in 

wild animals (such as rodents, carnivores and ungu-
lates) and domestic animals (such as cattle, goats and 
sheep) in the natural environment [2–6]. In the north-
ern hemisphere, A. phagocytophilum is transmitted 
mainly by hard ticks of the genus Ixodes [7, 8]. Spe-
cies of other tick genera, such as Dermacentor spp. 
and Rhipicephalus spp., can also serve as biological 
vectors; however, their significance currently remains 
unknown. In addition, while A. phagocytophilum is 
known to demonstrate transstadial transmission in 
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tick vectors, transovarial transmission has not been 
observed [7].

Anaplasma phagocytophilum has also been detected 
in other arthropods such as blood-sucking flies, specifi-
cally deer flies (Lipoptena cervi) and horse flies (Dip-
tera: Tabanidae) [9]. In addition, wild carnivores can 
also play a key role in pathogen transmission between 
wildlife, domestic animals and, possibly, humans. The 
growing degree of contact between free-living animals, 
domestic animals and human populations due to cli-
mate change and population growth has resulted in an 
elevated risk of human and bovine anaplasmosis out-
breaks [10].

Anaplasma phagocytophilum has been detected by 
molecular methods in many carnivore species. In red 
foxes, it has been detected in Italy [11, 12], Germany 
[13], the Netherlands [14], Romania [15], Hungary [16], 
Switzerland [17], the Czech Republic [18, 19] and Aus-
tria [20]. In raccoon dogs, A. phagocytophilum has been 
detected in Germany [13] and in South Korea [21].

Knowledge about A. phagocytophilum infection in 
badgers, polecats and martens is still limited. It has 
been detected in European polecats (Mustela putorius) 
in Germany [22] and in the Netherlands [23], as well as 
in badgers (Meles meles) in the Netherlands and Spain 
[23, 24]. It has also been identified among pine martens 
(Martes martes) in Belgium. [23].

With the exception of foxes, data regarding the lev-
els of A. phagocytophilum infection in many wild car-
nivores, such as raccoon dogs, European polecats, 
martens and badgers, is scarce in Poland [25]. While 
the majority of these carnivores are native to central 
Europe, the raccoon dog (Nyctereutes procyonoides) is 
an introduced species from Asia. In Poland, they were 
first identified in the Białowieża Primeval Forest in 
1955 [26]; they are currently widespread throughout 
central Europe, and their range is extending into west-
ern Europe [27].

These wild carnivores could potentially act as vectors 
of A. phagocytophilum in the natural environment [8]. 
The aim of the present study was therefore to deter-
mine the prevalence of A. phagocytophilum in five spe-
cies of predatory wild animals in Poland.

Methods
Spleen samples were collected from 174 wild carnivores 
[68 raccoon dogs: 28 females (F)/40 males (M); 49 badg-
ers: 21F/28M; 29 foxes: 13F/16M; 24 martens: 7F/17M; 4 
polecats: 2F/2M] hunted in Poland around the Głęboki 
Bród Forest District (53°98′N, 23°29′E) during the years 
2013–2016. These were stored at −20  °C until further 
processing. DNA was isolated from the middle part of 
the spleen using a Genomic Mini AX Tissue kit (A&A 

Biotechnology, Gdynia, Poland) and according to the 
manufacturer’s instructions.

Molecular detection of A. phagocytophilum was based 
on semi-nested PCR amplification of the partial 16S 
rRNA gene according to Werszko et al. [9]. Three prim-
ers were used to molecular detection of A. phagocytophi-
lum: A480F, A520F and A900R. The first PCR reaction 
was performed with primers A480F and A900R. For the 
second reaction (semi nested PCR), 1 μl of the first reac-
tion product and primers A520F and A900R were used. 
PCR reactions were conducted in 50 µl of reaction mix-
ture containing the following: 40 μl of deionized water in 
first reaction (41 μl in second), 1 μl of a 25 mM solution 
of  MgCl2, 0.5 μl of Allegro Taq DNA Polymerase (5 U/μl; 
Novazym, Poznań, Poland), 0.5 μl of dNTPmix (10 mM), 
5  μl of 10× Taq DNA Polymerase Buffer (with 25  mM 
 MgCl2), 0.5 μl of each primer (20 pmol/μl), 2 μl of tem-
plate DNA in the first reaction and 1 μl of first reaction 
PCR product in the second reaction. DNA isolated from 
red deer (Cervus elaphus) infected with A. phagocytophi-
lum (GenBank: GQ450278) was used as the positive con-
trol. Nuclease-free water was added to the PCR mix as a 
negative control. The PCR reaction was performed in an 
automated DNA Engine PTC-200 Peltier Thermal Cycler 
(BioRad, Hercules, CA, USA). The thermocycling profile 
was as follows: denaturation at 92 °C for 2 min, followed 
by 35 cycles with 30 s denaturation at 94 °C, 10 s primer 
annealing at 60 °C, and 1 min at 72 °C for primer exten-
sion, with a final extension step of 5 min at 72 °C.

The PCR products were subjected to electrophoresis 
(Bio-Rad Power Pac Basic 85 V, 45 min) on a 1.0% aga-
rose gel stained with ethidium bromide and visualized 
using ChemiDoc, MP Lab software (Imagine, BioRad); a 
Nova 100 bp DNA Ladder (Novazym, Poznań, Poland) 
was used for comparison. The PCR amplicons were puri-
fied using a QIAEX II Gel Extraction Kit (Qiagen, Hilden, 
Germany), sequenced by Genomed (Warszawa, Poland) 
and assembled into contigs using ContigExpress, Vector 
NTI Advance v.11.0 (Invitrogen Life Technologies, New 
York, NY, USA). The obtained sequences were compared 
with sequences available on GenBank using the Basic 
Local Alignment Search Tool (BLAST). Statistical analy-
ses were performed using the Chi-square test in Graph-
Pad online (https ://www.graph pad.com).

Results
The overall prevalence of A. phagocytophilum infection 
was 31.60% (55/174); however, among all tested groups, 
the prevalence of infection varied according to the host 
species. The highest prevalence was observed in mar-
tens (41.70%; 10/24), followed by raccoon dogs (35.30%; 
24/68) and foxes (34.48%; 10/29), with the lowest preva-
lence observed in badgers (18.70%; 9/49). Anaplasma 
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phagocytophilum was detected in two of four investigated 
European polecats. The prevalence of A. phagocytophi-
lum was significantly higher in martens than in badgers 
(χ2 = 4.5422, df = 1, P = 0.033; 95% CI: 0.16–0.36). The 
prevalence in raccoon dogs was significantly higher than 
in badgers (χ2 = 4.0295, df = 1, P = 0.045; 95% CI: 0.20–
0.36). During the tests, a large difference was observed 
between the first and the second reaction in nested PCR. 
After the first reaction only 4 samples were positive in all 
tested animals (2.30%). After the second amplification 
step, 55 samples out of 174 were positive (31.60%).

Seven sequences were obtained from A. phagocytophi-
lum PCR-positive samples and submitted to the Gen-
Bank database (from two raccoon dogs, two badgers, 
one marten, one red fox and one European polecat). Six 
sequences (Anaplasma phagocytophilum sequence 1: 
MH328205-MH328209, MH328211) were found to be 
identical (100% similarity) with many A. phagocytophi-
lum sequences obtained from Europe, Asia, Africa and 
North America. Anaplasma phagocytophilum sequences 
were obtained from a wide range of hosts: human, dog, 
raccoon dog, fox, sheep, black-striped field mouse, north-
ern red-backed vole, tick, cow, goat and horse. More 
detailed data are shown in Table 1. Anaplasma phagocy-
tophilum sequence 2 was highly similar to all examples 
of A. phagocytophilum sequence 1 obtained in this study 
(99.74% identity) and differed only by one nucleotide 
from sequence 1.

Discussion
Studies performed in Europe confirm that a wide range 
of mammals can serve as competent animal reservoirs 
for A. phagocytophilum, and that the composition of this 
reservoir varies according to geographical regions [8, 28]. 
The high prevalence of A. phagocytophilum infection in 
the tested animals provides compelling evidence for the 
involvement of wild carnivores in the enzootic cycle. So 
far in Europe, A. phagocytophilum has been detected in 
red foxes in Germany (8.20%), Italy (16.60%) and Hun-
gary (12.50%) [11, 13, 16]. It has also been detected in 
Poland, but only with an infection rate of 2.70% [25]. The 
higher prevalence identified in the present study (34.48%) 
may be associated with infection rate in the vectors [29], 
or the geographical distribution: the previous study was 
performed in central Poland, whereas the present study 
was performed in the north-east. Additionally, the preva-
lence was found to be 2.7% in the earlier study in Poland 
[25] which is close to prevalence levels obtained after the 
first PCR reaction in presented study. Anaplasma phago-
cytophilum can be detected in many various organs such 
as spleen, lung and liver tissue [4, 12, 13]. Our present 
findings confirm that semi-nested PCR offers a high level 
of accuracy in detecting Anaplasma in spleen samples, 

and that it is more sensitive than standard PCR: while the 
detected prevalence was only 4/174 (2.30%) in all tested 
animals after the first reaction, the detection level was 
increased to 55/174 (31.60%) after the second stage.

Foxes are well adapted to the urban environment and 
are accustomed to the presence of humans. In addition, 
their frequent exposure to tick bites and their potential 
to act as reservoirs or maintenance hosts for pathogens 
infecting humans and domestic animals highlights their 
importance in public health [15]. The prevalence of A. 
phagocytophilum observed in raccoon dogs in Poland 
(35.30%) is higher than in Germany (23.00%) [13]. 
Interestingly, while Han et  al. [21] and Kang et  al. [30] 
reported the prevalence of A. phagocytophilum infection 

Table 1 Examples of A. phagocytophilum sequences with 100% 
similarity from the GenBank database found using the Basic Local 
Alignment Search Tool (BLAST)

Host Country of isolation GenBank ID

Human (Homo sapiens) South Korea MH482862

South Korea KP306518-KP306520

Austria KT454992

Dog (Canis lupus familiaris) Japan LC334014

Croatia KY114936

Austria JX173652

Germany JX173651

South Africa MK814402-MK814406

Shelter cat (Felis catus) South Korea KR021165

Raccoon dog (Nyctereutes 
procyonoides)

South Korea KY458570, KY458571

Fox (Vulpes vulpes) Switzerland KX180948

Horse (Equus caballus) Sweden AY527213

Cow (Bos taurus taurus) Turkey KP745629

Sheep (Ovis aries) Norway CP015376

Black-striped field mouse 
(Apodemus agrarius)

South Korea KR611718, KR611719

China GQ412337

China DQ342324

Bank vole (Clethrionomys 
glareolus)

Russia AY094352, AY094353

UK AY082656

Northern red-backed vole 
(Myodes rutilus)

Russia HQ630622

Kachin red-backer vole 
(Eothenomys cachinus)

China FJ968660-FJ968662

Tick (Ixodes ricinus) Estonia HQ629922

Russia HQ629911, HQ629912

Belarus HQ629914, HQ629915

Tick (Ixodes pacificus) USA KP276588

Tick (Ixodes persulcatus) Russia HM366579-HM366584

China AF486636

Tick (Ixodes ovatus) Japan AY969012

Tick (Haemaphysalis 
longicornis)

China KF569908, KF569909

South Korea GU064898, GU064899
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in this host to be 1.00% in Korea, Hildebrandt et al. [31] 
reported no infection in raccoon dogs in western Poland.

According to the present findings, 18.70% of the tested 
badgers in north-eastern Poland displayed A. phago-
cytophilum infection; however, Garcia-Pérez et  al. [24] 
reported a prevalence of 1.50% among badgers in Spain, 
and Hofmeester et  al. [23] found it to be 1.80% in the 
Netherlands. While Anaplasma infection was found in 
two of the four tested European polecats in the present 
study, previous studies have found the prevalence to be 
4.30% in Germany and 4.90% in the Netherlands [22, 
23]. Similarly, A. phagocytophilum was found to be more 
common in pine martens (Martes martes) in the present 
study (41.70%) than in Belgium (22.00%) [23].

Conclusions
All five tested species of carnivore may serve as suit-
able reservoir hosts in the ecology of Anaplasma 
phagocytophilum in the natural environment. Most iso-
lates obtained in this study were identical to A. phago-
cytophilum sequences deposited in GenBank. Our 
findings represent the first detection of A. phagocytophi-
lum in badgers, raccoon dogs, martens and polecats from 
Poland. The nested PCR used in the present study was 
more sensitive to detection of A. phagocytophilum than 
standard PCR for spleen tissue samples.

Abbreviations
rDNA: ribosomal DNA; PCR: polymerase chain reaction; BLAST: basic local 
alignment search tool.
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