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Abstract

Hybrids between different inbred varieties display novel patterns of gene expression resulted from parental variation in
allelic nucleotide sequences. To study the function of chromatin regulators in hybrid gene expression, the histone
deacetylase gene OsHDT1 whose expression displayed a circadian rhythm was over-expressed or inactivated by RNAi in an
elite rice parent. Increased OsHDT1 expression did not affect plant growth in the parent but led to early flowering in the
hybrid. Nonadditive up-regulation of key flowering time genes was found to be related to flowering time of the hybrid.
Over-expression of OsHDT1 repressed the nonadditive expression of the key flowering repressors in the hybrid (i.e. OsGI and
Hd1) inducing early flowering. Analysis of histone acetylation suggested that OsHDT1 over-expression might promote
deacetylation on OsGI and Hd1 chromatin during the peak expression phase. High throughput differential gene expression
analysis revealed that altered OsHDT1 levels affected nonadditive expression of many genes in the hybrid. These data
demonstrate that nonadditive gene expression was involved in flowering time control in the hybrid rice and that OsHDT1
level was important for nonadditive or differential expression of many genes including the flowering time genes, suggesting
that OsHDT1 may be involved in epigenetic control of parental genome interaction for differential gene expression.
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Introduction

Epigenetic programming is suggested to be key mechanisms in

the interaction between different genomes in hybrids [1]. Inbred

parental genome interaction in hybrids leads to differential

expression patterns that could be equal to the mid-parent

(additivity), higher or lower than the mid-parent (nonadditivity),

above the high-parent or below the low-parent (over- or under-

dominance) [2]. Novel patterns of gene expression or action in

hybrids may result from parental variation in allelic nucleotide

sequence and transcript abundance, which is supposed to be an

important genetic component of phenotypic diversity [3,4]. It is

suggested that differential accumulation of allelic-specific tran-

scripts in hybrids may contribute to heterosis [5].

Rice (Oryza sativa) is one of the most important crops in the

world. Rice has become a model plant for plant biology with the

availability of the complete genome sequences. Hybrids between

two subspecies (i.e. O. sativa ssp indica cv and O. sativa ssp japonica cv)

or different inbred varieties within a subspecies display high

growth vigor which has substantially increased rice grain

production during the last decades. Recent analysis by using

high-throughput DNA sequencing technologies has revealed

differential epigenetic modifications that correlate with changes

in transcript levels between two rice subspecies and their reciprocal

hybrids [6]. It is likely that multiple mechanisms including

epigenetic processes are involved in parental genome interaction

leading to distinct expression patterns in the hybrid, which are

presently not understood.

Chromatin structure and remodelling are important compo-

nents of genetic and epigenetic regulations of gene expression.

Chromatin modification consists of covalent modifications of the

N-terminal tails of the nucleosomal histones and DNA cytosine

methylation [7]. Histone modifications including acetylation,

methylation, phosphorylation, ubiquitinylation and others provide

mechanisms to regulate gene expression through changes in

chromatin states and by recruiting protein complexes that regulate

transcription [8]. Histone lysine acetylation that is generally

associated with gene activation is reversible, dynamic and regu-

lated by histone acetyltransferases (HAT) and histone deacetylases

(HDAC). Plant HAT and HDAC have been shown to play

important roles in plant gene expression [9,10]. Plant genome

contains more than 20 genes encoding HDAC, which can be

grouped into 3 classes [11]. Among them the HD2 class is found

only in plants [12]. HD2 members have been shown to be

involved in developmental and epigenetic pathways [13,14,15,

16,17]. Specifically, an Arabidopsis HD2 protein, AtHDT1, is

shown to be involved in nucleolar dominance in allopolyploid

hybrids [13,16]. In this work, we studied the function of a rice

HD2 member, OsHDT1 (accession number: AK072845, LO-

C_Os05g51830), in regulating differential gene expression in

hybrid rice. We show that the expression of OsHDT1 displayed a

circadian rhythm and that increased OsHDT1 could suppress

overdominance expression of flowering time repressors in the

hybrid leading to early flowering under long day condition,

providing evidence of overdominance gene action in heterosis. In

addition, alteration of OsHDT1 levels affected differential
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expression patterns of many other genes in the hybrid. These

results indicate that OsHDT1 plays an important role in

epigenetic processes regulating differential gene expression pattern

in the hybrid.

Results

OsHDT1 expression displays a circadian rhythm
Recent results have shown that differential epigenetic modifi-

cations correlated with changes in transcript levels among hybrids

and parental lines [6]. Rice varieties (O. sativa ssp indica cv)

Zhenshan 97 (ZS97) and Minghui 63 (MH63) are the parent lines

of Shanyou 63 (SY63), one of the most widely cultivated hybrid

rice in China. To study whether histone modification enzyme

genes were involved in differential expression patterns in the

hybrid, we chose to analyze the rice HD2 gene OsHDT1

(Figure 1A). The expression of this gene was detected in different

tissues/organs and developmental stages in MH63 (Figure 1B).

Importantly, OsHDT1 expression displayed a circadian rhythm

under short day conditions (9 h light/15 h dark) (Figure 1C).

Relatively lower expression levels were detected under long day

(15 h light/9 h dark) conditions. There was no clear difference of

OsHDT1 expression between MH63 and SY63. The OsHDT1

protein was readily detectable in rice leaves by Western blots using

antibodies raised against E. coli-produced OsHDT1 protein. There

was no clear difference in OsHDT1 levels between the parent

(MH63 and ZS97) and the hybrid (SY63) plants grown under

same conditions (Figure 1D). The OsHDT1 protein was found to

be distributed all over the nucleus as revealed by immunostaining

with anti-Flag on cells isolated from transgenic rice expressing

Flag-tagged OsHDT1 (Figure 1E, Figure S1). The same cells

tested by anti-OsHDT1 displayed a similar localization pattern

(Figure 1E). The immunostained areas did not overlap with

the chromocenters revealed by 49-6-Diamidino-2-phenylindole

(DAPI), suggesting that OsHDT1 may be mostly localized in

euchromatic regions.

OsHDT1 over-expression affects the flowering time of
hybrid rice

The expression pattern of OsHDT1 suggested that it might be

involved in circadian regulation of gene expression. Circadian

rhythms are shown to confer higher level of fitness in plants [18].

Importantly, it has been shown that altered circadian rhythms

regulate growth vigor in Arabidopsis hybrids and allopolyploids [19].

To study whether OsHDT1 played a role in hybrid gene expression,

we produced OsHDT1 over-expression and RNAi plants in the

MH63 background (Figure S2A). Most of the transgenic plants had

a single T-DNA insertion in the genome (Figure S2B). OsHDT1

expression in the transgenic plants was tested by Northern blots for

over-expression or by qRT-PCR for RNAi (Figure S2C). Over-

expression lines (PU) 5, 8 and 9 and RNAi lines (PR) 1, 8 and 9 were

selected for further analysis. The over-expression or RNAi of

OsHDT1 did not produce any visible morphological defects. No

obvious change in overall histone acetylation was observed (Figure

S3). However, examination of yield performance parameters

revealed that the seed setting rate (total seed number/total floret

number/plant) was reduced in the RNAi plants compared to wild

type plants (Table 1). However, the seed setting rate of the RNAi

negative plants was even lower, suggesting that the phenotype might

be not related to the transgene. The over-expression of OsHDT1 did

Figure 1. Expression profiles and subcellular localization of OsHDT1. (A). Phylogenetic relationship of HD2 subfamily proteins from O. sativa
(Os), and A. thaliana (At). (B). OsHDT1 transcripts detected by Northern blots in different tissues or developmental stages of MH63. Ca, callus; Se,
seedling; Sh, shoot; Ro, root; St, stem; FL, flag leaf; Le, leaf; P5, panicle development stage 5; P3, panicle stage 3. (C). Diurnal expression of OsHDT1 in
MH63 and SY63 under long day and short day conditions revealed by qRT-PCR. Expression levels relative to MH63 at long day conditions 8:30 (set as
1) are presented. (D). OsHDT1 protein levels in MH63, ZS97 and SY63, detected by Western blots. The large subunit of Rubisco was revealed by gel
staining as loading control. (E). Euchromatic localization of OsHDT1. Cells from transgenic rice expressing OsHDT1-Flag were detected by
immunostaining using the anti-OsHDT1 and anti-Flag antibody simultaneously. a, stained with DAPI. b, examined by anti-OsHDT1 antibody. c,
examined by anti-Flag antibody. d, merged image. Scale Bars = 2.94 mm. Arrows indicate positions of chromocenters.
doi:10.1371/journal.pone.0021789.g001
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not significantly affect the different parameters of the yield

performance including panicle number, panicle length, seed setting

rate, one-thousand-grain weight etc. (Table 1). Examination of the

two next generations confirmed the above observation.

To test if the altered expression of OsHDT1 in MH63 could

affect hybrid growth, three independent T3 transgenic plants (PU

or PR) were used to pollinate ZS97 (as practiced for SY63 seed

production in agriculture). Transgene-negative plants (PU- or PR-)

were used in the crosses as controls. The respective transgenic-

positive hybrids were named FU or FR, the transgenic-negative

hybrids as FU- or FR-. RT-PCR analysis of 3 independent

transgenic lines (both parent and hybrid) in comparison with the

wild type and the negative controls confirmed the down-regulation

of OsHDT1 in PR and FR and the up-regulation of the gene in PU

and FU (Figure 2A). Western blot analysis using anti-OsHDT1

detected a decrease of OsHDT1 protein level in the RNAi parent

(PR) and hybrid (FR) plants and an increase in the over-expression

parent (PU) and hybrid (FU) plants compared to the wild type

parent or hybrid (Figure 2B). Growth and yield traits were

surveyed for the hybrids. The FU and FR hybrids did not exhibit

any visible growth difference from SY63, except that the heading

date (flowering time) of the over-expression hybrid (FU) lines was

significantly earlier than SY63 and the transgene-negative hybrid

controls (FU-) under natural long day conditions (.14 h)

(Figure 2C, 2D; Table 1). These data together suggested that

increased OsHDT1 level may alter flowering time-related gene

expression in the hybrid, while without a clear effect in the parent

background.

OsHDT1 over-expression suppresses overdominance
expression of flowering time genes in hybrid rice

Rice is a short day plant. Hd1 (Heading date 1), the rice

orthologue of Arabidopsis CONSTANS (CO), activates Hd3a

(Heading date 3a, the orthologue of Arabidopsis florigen gene

FLOWERING LOCUS T, FT) under short day conditions but

repressed it under long day conditions [20,21]. Identification of

natural variation affecting flowering time has revealed genes such

as Ehd1 (Early heading date1) and Ghd7 (Grain number, plant height and

heading date 7), which encode unique transcription regulators in

rice [22,23]. Ehd1, a B-type response regulator, up-regulates

Hd3a expression and mainly confer short day-dependent

flowering promotion in rice [22] . Ghd7, a CCT-domain protein,

is expressed under long day conditions. It represses Ehd1

expression and mainly confers long day-dependent flowering

repression [23].

Under short day conditions, the expression of Hd3a is up-

regulated by Hd1 and Ehd1. Under long day conditions, the

expression of Ehd1 is repressed by Ghd7, while Hd1 becomes as a

repressor of Hd3a (Figure 3A). RFT1 (RICE FLOWERING LOCUS

T1) is the florigen gene that can be activated by Ehd1 [24]. The

hybrid parents differ significantly in heading date under natural

long day conditions. MH63 flowered at the age of 96 days, while

ZS97 flowered at 71 days (Figure 2D). This difference is likely to

be mainly due to the repression of the flowering activator Ehd1 by

Ghd7 in MH63, which is defective in ZS97 [23]. qRT-PCR

analysis of RNA isolated from 35-day old leaves revealing higher

expression of Hd3a, RFT1 and Ehd1 in ZS97 than in MH63 and

SY63 under long day conditions confirmed this hypothesis

(Figure 3B). Hd1 shows a comparable expression level in MH63

and ZS97 under either long day or short day conditions [23].

However, the rhythmic expression of Hd1 and OsGI (OsGIGAN-

TEA, an upstream activator of Hd1) was higher in SY63 than the

parents under same conditions (Figure 3B), suggesting a

nonadditive effect (i.e. overdominance) on the expression of these

genes in the hybrid. In contrast, the expression levels of Hd3a,

RFT1 and Ehd1 in SY63 were close to that of MH63 (Figure 3B),

which was correlated with the relatively late flowering observed in

SY63 compared to ZS97 (Figure 2D). The reduced expression of

Hd3a, RFT1 and Ehd1 may result from a collective action of both

the increased expression of Hd1 and the presence of active Ghd7

(MH63 allele) in the hybrid. The increased expression of Hd1 and

OsGI in SY63 under long day conditions was reduced by OsHDT1

over-expression (FU), while there was no clear difference for the

two genes between the transgenic (PU) and wild type (MH63)

parents under long day conditions (Figure 4). This suggested that

increased OsHDT1 expression reduced the overdominance

expression of Hd1 and OsGI in the hybrid. In contrast, higher

expression of Hd3a, RFT1 and Ehd1 was observed in the over-

expression hybrid (FU) compared to SY63. The higher level of

Hd3a may be, at least in part, a consequence of the repression of

OsGI and Hd1 by OsHDT1 in the hybrid. The increased expression

of Ehd1 might be essentially due to the repressed expression of

OsGI, as the expression of Ghd7 that represses Ehd1 under long day

conditions was not altered by the OsHDT1 over-expression (Figure

Table 1. Performance of wild type and OsHDT1 transgenic plants under natural long-day conditions.

Genotype Days to heading Panicle length Grain number per panicle Seed setting rate 1000-grain weight

PU 95.4062.51 24.3960.38 79.3069.33 78.5861.51 27.3761.30

PU- 94.8061.32 24.3360.35 80.6161.55 75.6261.88 27.8960.42

MH63 96.2062.2 25.6260.66 98.7160.04 82.0560.87 28.8960.76

PR- 95.2061.73 24.2960.53 68.5560.41 62.1462.29 27.3660.33

PR 93.6760.75 25.0560.54 77.7868.17 69.9965.57* 26.360.76

FU 78.8760.40*
# 27.160.56 111.6064.72 76.5661.33 28.6960.28

FU- 90.7360.31 26.6960.51 112.2869.26 74.8461.09 28.2860.40

SY63 88.2061.67 26.3160.72 118.0763.81 78.3763.41 28.1260.37

FR- 88.4761.11 25.2760.27 100.8860.20 70.5864.68 28.0660.93

FR 88.0360.78 26.5160.05 100.1461.87 68.1563.55* 27.5360.21

Data presented were from a randomized complete block design with three replicas. Every replica included the three lines per transgene (positive or negative) tested in
Figure 3A. Every line contained 30 plants. Asterisks indicate ranking by Least Significant Difference (LSD) tests at highly significant (*P,0.01) differences relative to the
corresponding wild type plants. Wells indicate highly significant (#P,0.01) differences relative to the corresponding transgene-negative plants.
doi:10.1371/journal.pone.0021789.t001
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S4). In addition, recent results indicate that the mutation of OsGI

increases Ehd1 expression under long day condition [25].

Increased Ehd1 in turn induced RFT1 that has been shown to

be the florigen gene in long day conditions [24], explaining the

early flowering phenotype of the over-expression hybrid. Under

short day conditions, the expression of Hd3a, Ehd1 and Hd1 was

higher in the hybrid than in MH63 (Figure 4). There was no clear

difference for these genes between the transgenic and wild type

parents or hybrids (Figure 4). The expression of OsCCA1, OsLHY

and OsTOC1, which are putative upstream regulatory genes of

OsGI was higher in the hybrid than the parent, but there was no

clear difference between SY63 and FU or between MH63 and PU

(Figure S4). These data suggested that increased OsHDT1

expression suppressed the overdominance expression of OsGI

and Hd1 in the hybrid under long day conditions, which led to

early flowering.

Figure 2. OsHDT1 over-expression induces early flowering in the hybrid. (A). Comparison of OsHDT1 transcript accumulation in transgenic
and wild type (WT) parent MH63 and hybrid SY63 by semi-quantitative (22 cycles) RT-PCR. Three independent over-expression (OX) positive (+, lines
5, 8, and 9) or negative (2, lines 29, 30 and 31) and RNAi positive (+, line 1, 8 and 9) and negative (2, lines 6, 14 and 15) transgenic lines in both MH63
and SY63 backgrounds were analyzed. Rice actin transcripts were detected as controls. (B). OsHDT1 protein levels in RNAi (line 1), over-expression
(OX, line 5) and wild type MH63 (MH) and SY63 (SY) detected by Western blots using anti-OsHDT1. RNAi plants in MH63 and SY63 were designated as
PR and FR, respectively; Over-expression plants in MH63 and SY63 were designated as PU and FU, respectively. (C). Over-expression of OsHDT1
induces an early heading flowering phenotype in SY63 background. a, comparison between MH63 and PU (line 5) at 98 days after sowing. b,
comparison between SY63 and FU (line 5) taken at 88 days after sowing. (D). Heading dates of transgenic positive and negative lines in MH63 and
SY63 backgrounds in comparison with the respective wild type lines under natural long day conditions. The transgenic lines used are indicated at the
bottom. Asterisks indicate ranking by LSD test at highly significant (*P,0.01) differences relative to the corresponding wild type plants.
doi:10.1371/journal.pone.0021789.g002

Regulation of Flowering Time Genes in Rice Hybrid

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e21789



Figure 3. Diurnal expression of rice key flowering time genes under long day conditions. (A). Model for heading date genetic control
pathways in MH63 and SY63 under long day conditions. Bars, repression; arrows, activation. Dashed lines indicate reduced activity in SY63. (B).
Diurnal expression patterns of Ehd1, OsGI, Hd1, Hd3a and RFT1 in SY63, MH63 and ZS97 under long day condition. In all panels, the mean values of
each point are based on the averages of three biological repeats calculated using the relative quantification method. Values relative to MH63 at 8:30
(set arbitrarily as 1) are presented. Light and dark periods are indicated by white and black, respectively. Time points of the subjective day for sample
harvesting are indicated. Error bars, s.e.m. from 3 biological repeats.
doi:10.1371/journal.pone.0021789.g003

Figure 4. Effects of OsHDT1 on flowering time gene expression. Diurnal expression of OsGI, Hd1, Ehd1, Hd3a and RFT1 in MH63, OsHDT1 over-
expression in MH63 (PU), SY63 and OsHDT1 over-expression in SY63 (FU) under long day (left) and short day (right) conditions, revealed by qRT-PCR.
Values relative to the transcript levels in MH63 at 8:30 (arbitrarily set as 1) are presented. Error bars, s.e.m. from 3 biological repeats.
doi:10.1371/journal.pone.0021789.g004
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Effect of OsHDT1 on histone acetylation
To test whether OsHDT1 over-expression altered histone

acetylation on flowering time genes, chromatin fragments isolated

from MH63, ZS97, SY63, PU and FU were precipitated by

antibodies against acetylated H4. Because the expression of OsGI

and Hd1 is at the lowest level at 8:30 and highest at 16:30, samples

were harvested at the two time points. Two regions of the 59-end

of Hd1 and OsGI and one region of Ehd1 were analyzed by qPCR

(Figure 5A). The 59 region of rice actin gene was tested as

reference for normalization. At 16:30, histone H4 acetylation on

the 3 genes was found to be lower in PU compared to MH63 and

in FU compared to SY63 (Figure 5B), suggesting that OsHDT1

over-expression had a negative impact on histone H4 acetylation

on these genes in both parent and hybrid backgrounds. Region 2

of both OsGI and Hd1 displayed higher acetylation than region 1

(Figure 5B). Only Region 2 of the two genes and region 1 of Ehd1

were tested at 8:30. At this time point acetylation on the three

genes was about 3–5 folds lower compared to at 16:30. There was

no clear difference observed between the different genotypes at

this time point. These observations indicated that acetylation was

likely to correlate with the rhythmic expression of Hd1 and OsGI

and that OsHDT1 over-expression had an effect at the time when

acetylation was high. The deacetylation promoted by OsHDT1

over-expression correlated with the repression of Hd1 and OsGI in

the hybrid. Although acetylation on Ehd1 was also reduced, the

expression of the gene was low at this time point. The higher

expression of the gene in FU than in SY63 might be mainly due to

the repression of OsGI by elevated OsHDT1 (Figure 3, Figure 4).

In addition, SY63 displayed higher H4 acetylation compared to

the parents, which was correlated with the increased expression of

Hd1 and OsGI in the hybrid (Figure 3).

Impact of altered OsHDT1 levels on gene expression in
rice hybrid

To study whether altered OsHDT1 levels affected the expression

of other genes in the hybrid, we compared genome-wide transcript

abundance between MH63, ZS97, SY63, FR and FU. By using

the high throughput digital gene expression analysis that sequence

restriction enzyme cut tags and is extremely sensitive for detecting

differential gene expression between samples [26,27]. RNA

samples were isolated from 15 day-old seedlings grown under

long day conditions and harvested at 16:30 of the subjective day.

Figure 5. Histone H4 acetylation on flowering time genes. Chromatin isolated from 35 day-old rice leaves of SY63 (SY), MH63 (MH), ZS97 (ZS)
and OsHDT1 over-expression in SY63 (FU) and MH63 (PU) background, harvested at 8:30 and at 16:30 (of the subjective day) under long day
conditions were precipitated by antibody of acetylated histone H4. The precipitated DNA was analyzed by real-time PCR using the primer sets
corresponding to the 59 region of the genes (A). The 59 region of rice actin gene was amplified as internal control. One region for each gene was
analyzed at 8:30 and two regions of Hd1 and OsGI were analyzed at 16:30. Values relative to actin gene are shown (B). Error bars, s.e.m. from 3
biological repeats.
doi:10.1371/journal.pone.0021789.g005
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Sequence reads were aligned with the well annotated rice genome

(Japonica) to determine the frequency of reads matching each

genomic regions. About 5 million clean reads per sample were

obtained which matched perfectly with about 19 000–20 000

genes per sample (Table S1). In SY63, 1955 and 217 genes were

up-regulated and 1559 and 650 genes down-regulated compared

with MH63 and ZS97 (|log2Ratio$1|), respectively, with False

Discovery Rate (FDR)#0.001 as an empirical cutoff value to

provide a conservative assessment of differentially expressed genes

(Figure 6A). Gene expression differed also greatly between MH63

and ZS97. This analysis suggests that the gene expression pattern

in SY63 is closer to that of ZS97 than MH63. When compared to

mid-parent expression, 619 and 471 genes in SY63 showed a

lower (log2Ratio#21) and a higher (log2Ratio$1) expression,

respectively (Figure 6B). These differentially expressed genes

displayed therefore a nonadditive effect in the hybrid. More

detailed analysis revealed that the expression of 129 genes was

lower (log2Ratio#21) than the low-parent, while 298 showed a

higher expression (log2Ratio$1) compared to the high-parent

(Figure 6B) (Table S2). These genes therefore displayed under-

dominance and overdominance expression, respectively.

Comparison of transcript abundance between SY63, FR and

FU revealed that many genes were up- or downregulated by

OsHDT1 in the hybrid (Figure 6C). The OsHDT1 over-expression

(FU) altered more genes than the RNAi (FR). In FU, more genes

showed up-regulation (totally 440) than down-regulation (164)

compared to SY63, while in FR, 112 and 109 genes were induced

and repressed, respectively (Table S3). Analysis of affected genes

revealed that relatively higher proportions of genes involved in

phenylpropanoid (e.g. flavoinoid) biosynthesis pathway were

affected in both FU and FR plants, compared to other metabolic

or biochemical pathways (Table 2, Table 3). Recent data have

shown that the mutation of OsGI affects accumulation of

transcripts and metabolites in the phenylpropanoid metabolite

pathway [28]. The present data suggested that the effect of

OsHDT1 on phenylpropanoid pathway genes might be achieved

through regulation of OsGI. Few genes were affected in both FU

and FR plants. Only 4 genes showed a FU.SY.FR profile,

among which one is OsHDT1 itself, reflecting the effect of

transgene expression (Table S4). More than 20% of the affected

genes by altered OsHDT1 expression were nonadditive genes

(SY63 . or , mid parent) (Figure 6C, Table S5).

To check whether altered OsHDT1 expression affected the

additive and nonadditive genes similarly in the parent line, qRT-

PCR analysis of a selection of 14 genes (7 showing nonadditive (SY

. or , mid parent), the others showing additive (SY = mid parent)

expression in the hybrid) was performed to compare FU, FR,

SY63, ZS97, MH63, PU and PR. The results confirmed the digital

expression analysis data and revealed that the effects of altered

OsHDT1 expression on these genes in the hybrid were different in

MH63 background (Figure 7). For instance, most of the tested

genes were induced by OsHDT1 over-expression in the hybrid, but

they were reduced or not clearly affected in the parent line. These

observations indicate that altered OsHDT1 levels differentially

regulate gene expression in hybrid than in the parent.

Discussion

OsHDT1 function in histone deacetylation
OsHDT1 belongs to the plant-specific HD2 subfamily of

histone deacetylases. The first member of the HD2 family was

identified from maize, which is tightly bound to chromatin, located

in the nucleolus [12]. Arabidopsis HDT1 is also localized in the

nucleolus [13,16]. Unlike AtHDT1 and the maize HD2, OsHDT1

was found to be localized in euchromatin regions (Figure 1E). As

OsHDT1 phylogenetically diverges from AtHDT1 (Figure 1A), the

two proteins may have different functions. The euchromatic

localization of OsHDT1 is consistent with the effect of its over-

expression and RNAi on gene expression. AtHDT1 has been

shown to be required for the post-embryonic establishment of

nucleolar dominance that is an epigenetic phenomenon in plant

and animal genetic hybrids and describes the expression of

ribosomal RNA (rRNA) genes inherited from only one progenitor

Figure 6. Differential gene expression patterns in hybrid SY63.
(A). Numbers of differentially expressed genes (FDR#0.001 and
|log2Ratio|$1) in MH63 versus SY63, ZS97 versus SY63 and MH63
versus ZS97. Black bars: up-regulated genes; grey bars, down-regulated
genes. (B). Numbers of differentially expressed gene in SY63 compared
to mid-parent (|log2Ratio|$1). 1, SY,mid-parent; 2, SY = mid-parent;
3, SY.mid-parent; 4, SY,low-parent; 5, SY.high-parent. (C). Percent-
age of nonadditive and additive gene in SY63 affected by OsHDT1 over-
expression (FU) and RNAi (FR).
doi:10.1371/journal.pone.0021789.g006
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due to the silencing of the other progenitor’s rRNA genes [13,16].

Although a number of HD2 members have been studied, the

biochemical function as histone deacetylases of this small protein

family is not determined. Our data suggest that OsHDT1 may be

involved in histone deacetylation on a subset of genes, as over-

expression of OsHDT1 led to decreases of histone acetylation on

flowering repressor genes in both parent and hybrid backgrounds.

Increased OsHDT1 promoted deacetylation that correlated with

the repression of OsGI and Hd1 and early flowering in the hybrid.

The effect of OsHDT1 seemed to occur at a higher acetylation

phase of target genes (Figure 5), suggesting that OsHDT1 might be

involved in circadian oscillation of histone acetylation and gene

expression. In addition, OsHDT1 expression exhibited also a

circadian oscillation and was sensitive to photoperiods (Figure 1C).

These observations suggest a possible function of the protein in

circadian regulation of histone deacetylation and gene expression.

However, it is not known at this stage whether OsHDT1 was

directly involved in the deacetylation or through an indirect

mechanism.

OsHDT1 function as a trans-acting regulator of hybrid
differential gene expression

Our data show that increased OsHDT1 could repress

nonadditive up-regulation of flower repressor genes in the hybrid

Table 2. Pathway classification of differentially expressed genes in OsHDT1 over-expression hybrid.

Pathway
DEGs with pathway
annotation (291)

All genes with pathway
annotation (16810) P-value Q-value Pathway ID

Biosynthesis of phenylpropanoids 41 (14.09%) 866 (5.15%) 1.445e-08 1.445e-06 ko01061

Flavonoid biosynthesis 24 (8.25%) 397 (2.36%) 2.475e-07 1.238e-05 ko00941

Nitrogen metabolism 8 (2.75%) 118 (0.7%) 0.001 0.019 ko00910

Biosynthesis of terpenoids and steroids 17 (5.84%) 430 (2.56%) 0.002 0.026 ko01062

Cyanoamino acid metabolism 9 (3.09%) 183 (1.09%) 0.006 0.067 ko00460

Biosynthesis of alkaloids derived from
ornithine, lysine and nicotinic acid

10 (3.44%) 264 (1.57%) 0.008 0.086 ko01064

Cysteine and methionine metabolism 10 (3.44%) 276 (1.64%) 0.012 0.090 ko00270

Glycolysis / Gluconeogenesis 8 (2.75%) 185 (1.1%) 0.019 0.120 ko00010

Amino sugar and nucleotide sugar metabolism 8 (2.75%) 189 (1.12%) 0.021 0.126 ko00520

Starch and sucrose metabolism 13 (4.47%) 429 (2.55%) 0.048 0.228 ko00500

Metabolism of xenobiotics by cytochrome P450 5 (1.72%) 149 (0.89%) 0.053 0.236 ko00980

Glycine, serine and threonine metabolism 4 (1.37%) 79 (0.47%) 0.054 0.236 ko00260

Linoleic acid metabolism 3 (1.03%) 103 (0.61%) 0.116 0.397 ko00591

Carbon fixation in photosynthetic organisms 4 (1.37%) 103 (0.61%) 0.116 0.397 ko00710

Steroid biosynthesis 3 (1.03%) 73 (0.43%) 0.145 0.426 ko00100

Spliceosome 10 (3.44%) 511 (3.04%) 0.441 0.689 ko03040

Plant-pathogen interaction 28 (9.62%) 2224 (13.23%) 0.969 0.979 ko04626

doi:10.1371/journal.pone.0021789.t002

Table 3. Pathway classification of differentially expressed genes in OsHDT1 RNAi hybrid.

Pathway
DEGs with pathway
annotation (124)

All genes with pathway
annotation (16810) P-value Q-value Pathway ID

Linoleic acid metabolism 3 (2.42%) 103 (0.61%) 0.009 0.591 ko00591

Biosynthesis of phenylpropanoids 12 (9.68%) 866 (5.15%) 0.019 0.623 ko01061

Flavonoid biosynthesis 7 (5.65%) 397 (2.36%) 0.037 0.623 ko00941

Nitrogen metabolism 3 (2.42%) 118 (0.7%) 0.066 0.625 ko00910

Glycine, serine and threonine metabolism 2 (1.61%) 79 (0.47%) 0.128 0.625 ko00260

Cysteine and methionine metabolism 4 (3.23%) 276 (1.64%) 0.172 0.625 ko00270

Phenylpropanoid biosynthesis 7 (5.65%) 629 (3.74%) 0.225 0.625 ko00940

Starch and sucrose metabolism 5 (4.03%) 429 (2.55%) 0.248 0.625 ko00500

Biosynthesis of alkaloids derived from
ornithine, lysine and nicotinic acid

3 (2.42%) 264 (1.57%) 0.343 0.676 ko01064

Plant-pathogen interaction 13 (10.48%) 2224 (13.23%) 0.685 0.785 ko04626

Spliceosome 3 (2.42%) 511 (3.04%) 0.769 0.826 ko03040

doi:10.1371/journal.pone.0021789.t003
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rice. Nonadditive or differential gene expression may be a basis for

the overdominance hypothesis to explain heterosis. The evidence

for overdominance gene action, however, has been limited so far.

Our observation of overdominance expression of flowering time

genes in SY63 provides clear evidence for overdominance gene

action (Figure 3, Figure 4). Flowering time is related to the success

of hybrid reproduction. In rice and tomato, single genes involved

in flowering time control have been demonstrated to be related to

heterosis [23,29]. Under long day conditions, the flowering time

differs considerably between the MH63 and ZS97, whereas the

flowering time in SY63 is close to that of MH63 (Figure 2D). Thus,

the flowering time is a nonadditive phenotype, which is resulted

from a complex interaction between a set of flowering regulatory

genes in the hybrid (Figure 3A). It is shown that the mutation of

OsGI increases Ehd1 expression under long day condition [25].

Therefore, the nonadditive up-regulation (or overdominance) of

OsGI and Hd1 observed in the hybrid likely contributed to the

below mid-parent expression of Ehd1, RFT1 and Hd3a under long

day conditions (Figure 3B). Reduction of the nonadditive increase

of Hd1 and OsGI by OsHDT1 over-expression and the early

flowering phenotype indicates that the ‘‘late flowering overdom-

inance’’ in SY63 can be suppressed by elevated OsHDT1. These

data together with the effects of altered OsHDT1 expression on

other nonadditive genes provide direct evidence of regulation of

nonadditive or differential gene expression in hybrid by a trans-

acting factor.

It is hypothesized that differential gene expression in hybrid

may be responsible for heterosis [30,31]. Gene expression patterns

in hybrid plants have been reported [2,6,32]. The present study

using digital expression analysis revealed characteristic expression

patterns in the elite hybrid rice SY63 (Figure 6). From 2754

comparable genes (FDR#0.001), about 40% (1090) were non-

additively expressed (|log2Ratio$1|) in the hybrid. Gene

expression in SY63 is less deviated from ZS97 than MH63,

suggesting more contribution to the hybrid gene expression from

the ZS97 genome than from MH63. Alternatively, the ZS97

genome may mostly influence the expression of MH63 genome in

the hybrid. As previous results in rice suggest no significant parent-

of-origin effect for the action of parental alleles in hybrid [6],

interaction between the two parental genomes for gene expression

is most likely to be mediated by trans-acting factors that may be

predominantly from the ZS97 origin. Differential gene expression

in hybrid is suggested to be the result of variation in cis-acting

elements or trans-acting factors between parents [2,4,5]. It is

suggested that nonadditive expression in hybrid may be controlled

by trans-acting factors, while additive expression by both cis-acting

promoter elements and trans-acting transcription factors. The

observations that OsHDT1 over-expression and RNAi affected

both additive and nonadditive gene expression in the hybrid

support the hypothesis that trans-acting factors control both

additive and nonadditive variations.

In addition, the present data showed that the expression of a

significant number of genes displayed over- or underdominance in

the hybrid. Over- or underdominance in gene expression has been

explained by nonallelic control of transcript accumulation [2]. The

effects of altered OsHDT1 levels on overdominance gene

expression are in favour of this hypothesis.

Taken together, this work provided evidence of regulation and

action of overdominance genes in flowering time control in the

hybrid and revealed that OsHDT1 level was important for a

subset of differentially expressed genes including flowering time

genes in the hybrid. The data suggest that OsHDT1 may have a

function in parental genome interaction for gene expression in the

hybrid.

Materials and Methods

Plant Materials and Growth Conditions
The rice varieties MH63 (male) and ZS97 (female) (Oryza sativa

L.spp.indica) and the hybrid SY63 were studied in this study. MH63

was used for transgenic plant production. The field conditions for

rice cultivation are described previously [23]. For rice cultivation

in growth chambers, rice seeds were sown in pots and rice plants

were grown in a Versatile Environmental Test Chamber (MLR-

351H, SANYO) with light intensity set at 15,000 lx, temperature

at 30uC during the light period and 25uC during the dark period,

Figure 7. Different effects of OsHDT1 in hybrid and parent. A
selection of 14 genes was analyzed by quantitative RT-PCR in the
indicated genotypes: PU, OsHDT1-over-expression in MH63; MH, MH63;
PR, OsHDT1 RNAi in MH63; FU, OsHDT1-over-expression in SY63; SY,
SY63; FR, OsHDT1 RNAi in SY63. Left panels: genes showing nonadditive
expression, right panels, genes showing additive expression in the
hybrid.
doi:10.1371/journal.pone.0021789.g007
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and humidity at 70%, under either long day (15 h light/ 9 h dark)

or short day conditions (9 h light /15 h dark). For in vitro culture,

rice seeds were germinated and the seedlings were grown on 1/2

MS medium under a 15 h/light at 30uC and 9 h/dark cycle at

25uC for 15 days.

Phylogenetic Analysis
For sequence analysis, the HD2 family protein sequences

downloaded from plant ChromDB database (www.chromdb.org/)

were used for sequence alignment and phylogeny. Phylogeny

reconstruction of HD2 protein sequence alignments was per-

formed by MEGA 3.1 [33] using the neighbor-joining method.

Vector Construction and Rice Transformation
To make OsHDT1 RNAi construct, the vector pDS1301 was

used [34]. A 448-bp cDNA fragment of OsHDT1 was amplified

using primers RNAi-F and RNAi-R (listed in Table S6). PCR

products were digested with Kpn I/BamH I and Sac I/Spe I

respectively and inserted downstream to the CaMV 35S promoter

in pDS1301.

The over-expression vector was constructed by directionally

inserting the full cDNA sequence amplified with the primer set

HDT1-F and HDT1-R (Table S6) (digested with Kpn I/BamH I)

into the binary vector pU1301 under the control of the maize

ubiquitin promoter [35].

For OsHDT1-36FLAG fusion, the OsHDT1 full-length cDNA

without stop codon was inserted downstream the 36FLAG tag in

a modified pU1301 vector. Agrobacterium tumefaciens (strain

EHA105)-mediated transformation of rice plants was conducted

according to a published protocol [36].

Antibody Production and Affinity Purification
Anti-OsHDT1 antibody was raised against proteins expressed

in E. coli. Briefly, OsHDT1 full length cDNA was cloned in pET28a

vector with an N-terminal 66His tag. The plasmid was

transformed into BL21-DE3 cells grown at 37uC. When cultures

reached an A600 of 0.8, protein expression was induced by

addition of 0.1 mM IPTG and cultures were incubated for

additional 10 hrs at 20uC. Cells collected by centrifugation at

5,000 g for 10 min at 4uC were resuspended in 10 ml Phosphate

Buffered Saline (PBS), sonicated to lyse the cells and centrifuged.

Soluble proteins were purified by B-PERH 66HIS Spin Purifica-

tion Kit (Thermo). Approximately 2 mg of purified OsHDT1

protein were subjected to SDS-PAGE and excised from the gel.

Gel slices were grinded in liquid nitrogen and resuspended in PBS

for antibody production in rabbits. The affinity purification of

anti-OsHDT1 antibody was performed as described previously

[16].

Nuclear Localisation
For FLAG-tagged OsHDT1 immunostaining, 10 days old rice

seedling nuclei were isolated and fixed in 4% paraformaldehyde in

PBS as described previously [37]. Nuclei were incubated overnight

at 4uC with the following polyclonal antibodies: the mouse anti-

FLAG (Sigma, 1:300 working dilution) and rabbit anti-OsHDT1

(1:30). Protein-antibody complexes were detected using the Alexa

Fluor 594–coupled goat anti-mouse and Fluor 488–coupled goat

anti-rabbit second antibodies (Molecular Probes, 1:200).

Expression Analysis by Northern Blot, RT-PCR and
Quantitative PCR

For flowering time gene expression analysis, after growing under

long day conditions (15 h light/9 h dark) for 21 days, half of the

plants received a short-day treatment in a different chamber, and

the other half remained under long-day conditions. After

entraining for 14 days, young leaves were simultaneously

harvested from three different plants for each treatment, and

stored in liquid nitrogen. The samples were collected in 4 h

intervals, starting at 08:30 for a total of 48 h. After RNA samples

extracted using TRIzol (Invitrogen) according to standard

protocols.

For quantitative PCR (Applied Biosystems 7500), primers were

designed by PRIMER EXPRESS 2.0 software (PE Applied

Biosystems) to amplify 90- to 150-bp products. Products were

measured by SYBR green fluorescence (Takara) in 25 ml

reactions, all primers were annealed at 58uC. In all qRT-PCR,

rice actin transcripts were measured as internal references. Data

analyses with 22DDCt method were performed as described [38].

For semi-quantitative RT-PCR analyses were performed as

described. For Northern blots, an OsHDT1 cDNA fragment

was used as probe. RT and real-time PCR primers were listed in

Table S6.

Western Blot Analysis
For OsHDT1 detection, protein samples were isolated from 40

day-old rice leaves grown under natural long day conditions. Total

protein was extracted from rice leaves as described [39]. Western

blot analysis was performed with anti-HDT (1:1000 working

dilution) as primary antibody according to standard protocols. For

histone modifications, rice leaf histone extraction was performed

as described [40]. After blocked with 2% BSA in PBS (pH 7.5), the

membrane was incubated overnight with primary antibodies Anti-

acetyl-Histone H3 (06-599, Millipore), Anti-acetyl-Histone H4

(06-866, Millipore), Anti-acetyl-Histone H4K16 (07-329, Milli-

pore), Anti-acetyl-Histone H4K5 (ab51997, Abacm) and Anti-H3

(ab1791, Abcam) in a 1:5000 dilution at room temperature. After

three washes (10 min each) the secondary antibody goat anti-

rabbit IgG (SouthernBiotech, USA) was used at 1:10000.

Visualization was performed by using the SuperSignalH West

Pico Kit (Pierce, USA) according to the manufacturer’s instruc-

tions.

Southern Blot Analysis
Genomic DNA was extracted from rice leaves. A total of 4 mg

of DNA was digested with Kpn I and BamH I overnight, separated

on 1% (w/v) agarose gel, then transferred to a nylon membrane

and hybridized with hygromycin gene probe according to

standard protocols.

Chromatin Immunoprecipitation (ChIP) Assay
Leaves from 35 days old rice plants cultured in growth

chambers were used for chromatin immunoprecipitation assays,

and the methods were performed as described [41]. The antibody

used for immunoprecipitated was Anti-acetyl-Histone H4 (06-866,

Millipore). Precipitated DNA was re-suspended in 100 ml TE

(10 mM Tris/1 mM EDTA, pH 8.0) for quantitative PCR with

the rice actin gene as control. PCR primers for CHIP were listed

in Table S6.

Digital Expression Analysis
For digital expression analysis, 15 day-old transgenic and wild

type seedlings grown on 1/2 MS medium were harvested for

RNA extraction using TRIzol (Invitrogen) as described by the

manufacturer. The digital expression analysis was performed by

Beijing Genomics Institute using the following standardized

procedure: The main reagents and supplies are Illumina Gene
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Expression Sample Prep Kit and Illumina Sequencing Chip

(flowcell), and the main instruments are Illumina Cluster Station

and Illumina HiSeqTM 2000 System. Six mg of total RNA were to

purify mRNA by using oligo(dT) magnetic beads, and the

mRNAs were used to synthesize the first and second-strand

cDNA using oligo(dT) as primer. The bead-bound cDNAs were

subsequently digested with restriction enzyme NlaIII, which

recognizes and cuts off the CATG sites. The fragments apart

from the 39 cDNA fragments connected to oligo(dT) beads were

washed away and the Illumina adaptor 1 was ligated to the sticky

59 end of the digested bead-bound cDNA fragments. The

junction of Illumina adaptor 1 and CATG site is the recognition

site of MmeI, which is a type of endonuclease with separated

recognition sites and digestion sites. It cuts at 17 bp downstream

of the CATG site, producing tags with adaptor 1. After removing

39 fragments with magnetic beads precipitation, Illumina adaptor

2 was ligated to the 39 ends of tags, acquiring tags with different

adaptors of both ends to form a tag library. After 15 cycles of

linear PCR amplification, 95 bp fragments were purified by 6%

TBE PAGE Gel electrophoresis. After denaturation, the single-

chain molecules were fixed onto the Illumina Sequencing Chip

(flowcell). Each molecule grows into a single-molecule cluster

sequencing template through in situ amplification. Then four

types of nucleotides which are labeled by four colors were added,

and sequencing was performed with the method of sequencing by

synthesis (SBS). Each tunnel generated millions of raw reads with

sequencing length of 35 bp.

All clean tags were mapped to the reference sequences (ftp://

ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sa-

tiva/annotation_dbs/pseudomolecules/version_6.1/all.dir/all.

cDNA) and only 1 bp mismatch is considered. Clean tags

mapped to reference sequences from multiple genes were

filtered. Remainder clean tags were designed as unambiguous

clean tags. The number of unambiguous clean tags for each

gene was calculated and then normalized to TPM (number of

transcripts per million clean tags) [26,27].

The significance of digital gene expression was determined

using a published statistical model as descried previously [42].

The significance of gene expression difference was judged by

using ‘‘FDR#0.001 and the absolute value of log2Ratio$1’’

[43] as the threshold. FDR (False Discovery Rate) is a method

to determine the threshold of P-value in multiple test and

analysis through manipulating the FDR value. The original data

set is deposited in the National Institutes of Health Gene

Expression Omnibus database under accession number

GSE27240.

Pathway Enrichment Analysis for Differentially Expressed
Genes

All differentially expressed genes (DEGs) were mapped to terms

in KEGG public pathway-related database (http://www.genome.

jp/kegg/). Pathway enrichment analysis applies hypergeometric

test identifying significantly enriched metabolic or signal trans-

duction pathways in differentially expressed genes comparing with

the whole genome background.

Supporting Information

Figure S1 Detection of OsHDT1-Flag in transgenic lines
by Western blots. Arrows indicate positions of the
HDT1-Flag protein.
(TIF)

Figure S2 Copy number and expression analysis of
OsHDT1 transgenic lines. A. Schematic representation of the

gene structure and cDNA sequence of OsHDT1. The black boxes

indicate the exons, the fold lines indicate the introns and the

white boxes indicate the UTR. The DNA segment used to

construct the RNAi vector is indicated. B. Copy number of

OsHDT1 transgenes detected by Southern blot hybridization. The

total DNA was cut by Kpn I and BamH I respectively. The blots

were probed by the hygromycin gene of the vector. C. OsHDT1

expression analysis in overexpression and RNAi transgenic plants

compared to wild type MH63 by Northern blots (upper) and

qRT-PCR respectively.

(TIF)

Figure S3 Comparison of histone modifications. His-

tones isolated from the 75 days old rice leaf using the antibodies of

different histone modification modules indicated on the left. Gel

staining of loaded histones is shown at the bottom. ZS, ZS97; PU,

OsHDT1-over-expression in MH63; MH, MH63; PR, OsHDT1

RNAi in MH63; FU, OsHDT1-over-expression in SY63; SY,

SY63; FR, OsHDT1 RNAi in SY63.

(TIF)

Figure S4 Diurnal genes expression in different geno-
types under long day conditions.
(TIF)

Table S1 Summary of statistics for the RNA sequencing
results.
(DOCX)

Table S2 Genes showing SY63.high-parent or SY63,

low-parent expression.
(DOCX)

Table S3 Differential expressed genes between trans-
genic and wild type hybrids.
(DOCX)

Table S4 Genes showing FU.SY63.FR expression.
(DOCX)

Table S5 Differentially expressed genes affected by
OsHDT1 in SY63 background.
(DOCX)

Table S6 Primers used in this study.
(DOCX)
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