
1.  Introduction
The most dynamic electromagnetic coupling between the magnetosphere and ionosphere occurs in the 
Earth's polar upper atmosphere. In particular, collisions between neutrals and ions drifting under the ef-
fect of the elevated high-latitude ionospheric electric field are a major source of heating and momentum 
transfer, making a global impact on the upper atmosphere. The resulting energy and momentum deposition 
leads to the acceleration of neutral winds and Joule dissipation, triggering dramatic global upper atmos-
phere responses, for example, global temperature and neutral mass density enhancements, pole-to-equator 
general circulation, and atmospheric traveling disturbances (e.g., Burns et al., 2014; Fuller-Rowell, 2014; 
Schunk, 2014). Practical effects include altered drag force on low-Earth-orbit satellites and debris by sud-
den changes in neutral mass density, aggravating our ability to track these objects to mitigate potential 
collisions; radio wave propagating disruption affected by ionospheric density changes, deteriorating relia-
bility of communication, navigation and positioning systems; and geomagnetically induced currents in the 
ground resulting from intensified ionospheric currents, affecting power transmission systems, oil and gas 
pipelines, railway systems, and any other extended ground-based conductor systems (e.g., Groves & Carra-
no, 2016; Marcos et al., 2010; Pulkkinen et al., 2017). Accurate knowledge of this energy and momentum 
source in the polar ionosphere is therefore of great scientific interest and has important economic and 
societal benefits.

The current general circulation models of the upper atmosphere exhibit systematic biases that can be at-
tributed to the underestimation of the high-latitude energy sources, likely resulting from an inadequate 
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representation of the Joule heating rate (e.g., Codrescu et al., 1995, 2000; Deng et al., 2009; Matsuo & Rich-
mond, 2008; Zhu et al., 2018). These biases are known to exist regardless of geomagnetic activity levels. The 
Joule heating rate is proportional to the square of the electric field magnitude and scales linearly with the 
Pedersen conductivity. Both of these ionospheric electrodynamics state variables are highly variable and 
heavily influenced by magnetosphere-ionosphere coupling processes that are not usually self-consistently 
solved in the upper atmosphere general circulation models and thus have to be empirically parameter-
ized and/or specified as boundary conditions. The empirical models of high-latitude ionospheric plasma 
convection designed to characterize the climatological behavior of the global large-scale electric fields are 
not suited to representing highly variable localized multi-scale electric fields and result in residual fields 
with a magnitude as large as the modeled global fields themselves (e.g., Codrescu et  al.,  2000; Cousins 
& Shepherd, 2012; Matsuo et al., 2002, 2003). Even with data assimilative procedures, the instantaneous 
states of the localized electric fields on scales smaller than 500 km and 5 min associated with highly tran-
sient and regional magnetosphere-ionosphere coupling processes are difficult to capture (Matsuo & Rich-
mond, 2008; Matsuo et al., 2005). As pointed out originally by Codrescu et al. (1995) and elaborated in later 
work (Codrescu et al., 2000; Deng et al., 2009; Matsuo & Richmond, 2008; Zhu et al., 2018), the underrepre-
sented electric field variability in the upper atmosphere general circulation models is considered as one of 
the primary causes of the underestimation of Joule heating rate.

The volume integrated Joule heating rate is given as

Q dVJ pV
    ( )E U B

2

�

where pE   is the Pedersen conductivity which specifies the conductivity associated with ionospheric electric 
currents that flow perpendicular to the geomagnetic field E B and parallel to the electric field defined in the 
reference frame moving at the velocity E U (Jackson, 1999). Note that E E is the electric field in the Earth frame 
of reference and essentially electrostatic on time scales longer than tens of seconds and in the bottomside 
ionosphere where neutral species predominate over plasma, E U is approximately equal to the neutral wind 
velocity (Kelly, 2009). E U B thus represents the dynamo fields resulting from an electromotive force in-
duced by the neutral wind traversing the geomagnetic field. Because of very high electrical conductivity in 
the direction of E B, a geomagnetic field line is effectively equipotential where it traverses the ionosphere and 
therefore E E is nearly constant with altitude along the direction of the field line which is nearly radial at high 
latitudes. Note that for the sake of simplicity the radial component of the electric field is ignored from dis-
cussion in this paper. When the effect of E U B is small, JE Q  can be approximated using the height-integrated 
Pedersen conductivity ( )p pE dr    as

Q dV d dJ p pAV
         E E

2 2 ( , ) ( , )� (1)

where E   is the polar angle (i.e., magnetic co-latitude) and E  is the azimuth angle (i.e., magnetic local time 
[MLT]). For simplicity, geomagnetic fields are here assumed strictly radial. Let us suppose that E E can be 
decomposed into global large-scale electric fields and regional small-scale electric fields as

( , , ) ( , , ) ( , ),t t      E E E� (2)

and E E represents time-dependent mean vector fields and E E  represents stochastic or random vector fields 
that belong to a certain probabilistic distribution. It is important to note that specific instances of E E  are 
different as E E  are random fields but its statistical characteristics of their randomness are assumed to be 
temporally stationary, thus in Equation 2 a dependence on  is dropped. (Note that this assumption is made 
due to the necessity to aggregate data over time in the current study and should be relaxed in the future as 
discussed later.) It is easy to see the underestimation of the Joule heating rate could result from not account-
ing for effects of E E , which can be as large as E E at times, in the upper atmosphere general circulation models.

Additional sources of uncertainty in determining the Joule heating rate include neutral winds E U and Ped-
ersen conductivity pE  . The contribution of dynamo fields E U B to JE Q  can be as large as 30% especially 
when neutral winds are driven by elevated ionospheric plasma convection during geomagnetic storms (e.g., 
Lu et al., 1995; Ridley et al., 2003; Sangalli et al., 2009). Depending on the direction of the neutral wind, 
the dynamo field effect can increase or decrease the total Joule heating rate. For instance, Lu et al. (1995) 
found the neutral winds have approximately a 28% negative effect on Joule heating rate on average for 
the 2-day geomagnetically disturbed period investigated. It is also important to note that E U is not constant 
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with altitude, thus requiring knowledge of vertical distributions of both the neutral wind and Pedersen 
conductivity when computing JE Q  (Thayer, 1998). In addition, ionospheric conductivity varies considerably 
due to ionization of the neutral species by solar extreme ultraviolet radiations and auroral energetic particle 
precipitations. The effects of auroral ionization can be extremely localized and transient, which are difficult 
to characterize with the currently available auroral models (e.g., Newell et al., 2009). Furthermore, Dimant 
and Oppenheim (2011) have pointed out that during geomagnetically disturbed conditions the Pedersen 
conductivity can be enhanced considerably due to strong anomalous electron heating and nonlinear electric 
currents resulting from the Farley-Buneman instability (Buneman, 1963; Farley, 1963). Part of the insta-
bility effect was incorporated into a recent upper atmospheric general circulation modeling study by Liu 
et al. (2016). In spite of recent progress in modeling, considerable uncertainty still remains in representing 
all physical processes responsible for Joule heating in current general circulation modeling.

Spatial and temporal coherence and other properties of randomness of the electric field variability affect the 
estimate of Joule heating rate as they control how effectively momentum and energy are transferred from 
ionospheric plasma to neutral species. Matsuo and Richmond (2008) demonstrated this effect using ensemble 
modeling and Gaussian random fields generated with the space-time covariance model derived from DE-2 
observations in Matsuo et al. (2002, 2005). If spatiotemporal coherence is taken into account when incorpo-
rating the effects of electric field variability into an upper atmospheric general circulation model, electric field 
variability becomes more effective in influencing the neutral winds and thus affecting the overall Joule heat-
ing rate. The analysis of Super Dual Auroral Radar Network (SuperDARN) plasma drift measurements by 
Cousins and Shepherd (2012) has furthermore revealed scale-dependent non-Gaussian probabilistic behav-
iors of the electric field variability. The observed localized transient characteristics of electric field variability 
are difficult to model using currently available standard statistical inferential frameworks. In response to the 
need for a new framework, Fan et al. (2018) have developed a multiresolution non-Gaussian random field 
model by using a class of specialized needlet basis functions (Marinucci & Peccati, 2011) that has all the de-
sired properties (including smoothness, spatial and frequency localization, frame properties), which have en-
abled for flexible multiresolution reconstruction of scalar electrostatic potential fields on the sphere. By using 
the Lyon-Fedder-Mobarry (LFM) magnetosphere-ionosphere coupled model simulation results (Wiltberger 
et al., 2016). Fan et al. (2018) have furthermore demonstrated a measurable impact on the Joule heating rate.

By building on the statistical inferential framework developed by Fan et al.  (2018), the objective of this 
paper is to characterize the electric field variability as multiresolution non-Gaussian random vector fields 
from actual SuperDARN observations, and to evaluate its impact on the Joule heating rate. The novel ele-
ments of the data analysis method and modeling technique described in Section 3 are as follows. The work 
of Fan et al. (2018) is extended to vector fields in this study. This is important as existing multiresolution 
bases for dealing with vector fields (such as vector spherical harmonics) do not have the spatial localization 
property and hence are not appropriate for describing features that are spatially localized. Since needlets 
can be represented in terms of spherical harmonics, in particular through Legendre polynomials, the sur-
face gradient and curl operators can be applied to them to yield vectorial needlets that inherit the spatial 
compactness, facilitating flexible, multiresolution representations of the curl-free multi-scale electrostatic 
fields. Furthermore, the adaptive Markov Chain Monte Carlo (MCMC) estimation approach developed in 
Fan et al. (2018) is used to characterize non-Gaussian random electric fields from SuperDARN observations. 
The needlet-based model is constructed on the entire spherical domain due to the spherical quadrature 
grid points on which needlets are placed (Fan et al., 2018; Marinucci & Peccati, 2011). Figure 1 displays the 
spherical quadrature grid points on the unit sphere at different resolution levels, and an illustrative exam-
ple of a needlet placed at one of the points. To assure coefficients for the needlets outside the high-latitude 
region are well estimated with data confined to high latitudes, the SuperDARN data points are stretched 
from the high-latitude region to the entire sphere in this work by following the work by Weimer (1995) and 
Ruohoniemi and Baker (1998). See Section 5.1 of Fan et al. (2018) for more discussion.

An additional notable element of the study is a special pre-processing of a standard SuperDARN FITACF 
data designed for the needlet-based approach to modeling electric field variability as described in Section 2. 
Although similar approaches have been used in the past (Ruohoniemi & Baker, 1998), this is the first consol-
idated attempt to extract randomness information from the FITACF data product, and can serve as a foun-
dation for follow-on future studies with more data and validation with independent data. The SuperDARN 
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data from a 4-hour period on February 29, 2012 are selected for the study with a number of considera-
tions including data coverage and consistency in geophysical conditions, and processed as described in 
Section 2. As demonstrated in Section 4, and discussed and summarized in Section 5, the study is an im-
portant cross-disciplinary research and development effort that enables a more comprehensive data-driven 
approach to modeling of magnetosphere-ionosphere-atmosphere coupling processes.

2.  SuperDARN Data
The SuperDARN is an international network consisting of more than 30 low-power HF (3–30 MHz) coher-
ent scatter radars at middle to polar latitudes in both hemispheres that look into Earth's upper atmosphere 
and ionosphere (Chisham et al., 2007; Nishitani et al., 2019). The radars measure the line-of-sight (LOS) 
component of the E F-region ionospheric plasma drift velocity when decameter-scale electron density irreg-
ularities are present and oriented favorably to produce backscatter. The irregularity motion here is due to 

E E B drift. Normally, the SuperDARN radars are scheduled for 1-min or 2-min azimuthal sweeps in the 
normal mode. The step in azimuth between adjacent beams is 3.24E  and the range resolution is 45 km. This 
study uses LOS plasma drift velocity ( LOSE v ) from SuperDARN radars operating in the normal scan mode 
from the northern hemisphere over the 4-hour period from 00:00 to 04:00 Universal Time (UT) on February 
29, 2012. The location of these radars and their field-of-views (FOVs) as well as the data coverage are shown 
in Figure 2. This is a largely quiet period during the rising phase of Solar Cycle 24 (F107 = 100.1) with a 
minor geomagnetic activity of the Kp index of 3, the minimum Dst index of about −30 nT, and the Auroral 
Electrojet (AE) index ranging from 100 to 420 nT peaking at 02:50 UT.

LOS( , )E v    is related linearly to the electrostatic potential E ( , )E   , where E( , ) ( , )E     E , as described 
in Section 2.1. Both global large-scale mean electric fields E E and regional small-scale random electric fields 

Figure 1.  (Top) The quadrature grid points on the unit sphere, set according to the symmetric spherical -designs, at different resolution levels 2,3,4E j  . 
(Bottom) Plots of a representative spherical needlet at respective resolution levels.
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E E , expressed in terms of the electrostatic potential, are here estimated from SuperDARN LOS velocity data. 
Among multiple types of SuperDARN LOS data products made available by the SuperDARN consortium for 
different scientific applications, the FITACF data product is used for estimating E E  after the pre-processing 
described in Section 2.2. The GRID data product that itself is a derived product of FITACF data is used for 
estimating E E using the SuperDARN Assimilative Mapping (SAM) procedure (Cousins et al., 2013b) as de-
scribed in Section 2.3. The SAM analysis is conducted every two minutes using the GRID data, and global 
large-scale fields' contribution to the LOS plasma drift velocity is subtracted from FITACF LOS velocity data 
(see Section 3.2). Note that the FITACF data is aggregated over the four hours for needlet-based analysis as 
described in Section 3.

2.1.  SuperDARN Line-of-Sight (LOS) Plasma Drift Velocity

Assuming that the geomagnetic field is strictly radial (i.e., ˆE B B r), the electric field E E is expressed as

E E
E

ˆ1 1 1
si

ˆ,
nR R


  

 
    

 
E θ� (3)

where E R is the radius of the ionosphere. The plasma drift velocity v E B  / B
2 is thus given as

E E1 1 1 ,
in

ˆ
s

ˆ
BR BR


  

 
  

 
v θ�

where 0E B   is a magnitude of the geomagnetic field that varies over the sphere. The LOS component of the 
velocity E v, which is LOS LOSE v  v k  where LOS

ˆ ˆE k k  k θ  is a unit vector that gives the direction of the 
line-of-sight, becomes

E E
LOS

1 .
sin

kkv
BR BR



  
 

 
 

� (4)

The SuperDARN data sets include values of E k  and E k for each LOSE v  data points.

Figure 2.  (a) The location of Super Dual Auroral Radar Network (SuperDARN) radars in the northern hemisphere used in this study and their field-of-views 
and (b) scatter plot showing the SuperDARN measurement coverage during the 4-hour interval on February 29, 2012.
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2.2.  Pre-Processing of SuperDARN FITACF Data

In order to estimate velocity and other parameters from autocorrelation functions calculated from the radar 
backscatter returns for each beam and range gate of a radar, the FITACF fitting routine is applied to estimate 
Doppler velocity, spectral width, and backscatter power (Ribeiro et al., 2013). Similar to the criteria used in 
Cousins and Shepherd (2012), several steps have been taken to ensure that only high-quality LOS plasma 
velocity measurements from the F-region ionosphere are included in the analysis. Primary selection criteria 
include (a) the slant range greater than 600 km, (b) the backscatter power or signal-to-noise ratio (SNR) 
greater than 8 dB, and (c) the velocity error less than 100 m/s. In addition, ground scatters are carefully ex-
cluded based on the ground scatter flag from the standard SuperDARN data processing and spectral width 
and velocity magnitude values. Incidental outlier data with very large velocity values can still be commonly 
found after the above processing, necessitating further processing on data. These outliers are excluded by 
applying a filtering scheme that examines the number of nearest-neighbor points in time and space on a 
cell-by-cell basis and identifies the beam and gate cells that are isolated. The filtering is performed using 
a 10-min time window and the beam-gate cells adjacent to the cell under consideration. In general, a data 
point that persists for at least two minutes and has at least one spatial neighbor would be considered valid. 
This analysis has also produced values of median velocity and standard deviation of velocity within each 
valid beam-gate cell.

2.3.  Estimation of Global Large-Scale Electric Fields by SuperDARN Assimilative Mapping 
(SAM)

The distribution of global large-scale ionospheric convective electric fields ( , )E  E  is determined at 2-min 
cadence from the SuperDARN GRID data over 4-min windows using the SAM procedure (Cousins 
et al., 2013b). The SAM uses a set of the spherical cap harmonics functions developed by Richmond and 
Kamide (1988), with the spherical harmonics of the order 12 and non-integer degrees of 72.6 for the th0E  
order zonally symmetric harmonic functions that give the effective resolution of 15E  longitude and 2.5E  lati-
tude in terms of the Nyquist sampling rate. The SAM solves a Bayesian spatial statistical prediction problem 
for ionospheric convective electric fields just as the Assimilative Mapping of Ionospheric Electrodynamics 
(AMIE) (Richmond & Kamide, 1988), and computes the posterior mean given the prior mean convective 
electric fields specified by Cousins and Shepherd (2010). A major advantage of the SAM over the AMIE 
is the use of prior model error covariance developed from a large volume of SuperDARN data in Cousins 
et al. (2013a) for the prior model of Cousins and Shepherd (2010). The LOS plasma drift velocity due to 
these global large-scale electric fields is computed according to Equation 4 and subtracted from the pre-pro-
cessed LOS velocity data explained in Section 2.2.

Due to the use of global spherical cap harmonics functions, with a limited resolution, in the SAM, it is 
sufficient to use the GRID data which provide the standardized LOS velocity values on an equal-area grid 
over a fixed period of time of 1 or 2 min, rather than the FITACF data which contain the LOS velocity meas-
urements recorded by individual radars as a function of beam-azimuth range gate setting. GRID data is a 
highly processed data product derived from FITACF data. A median filter is first applied to the individual 
radar scan data to remove noise to calculate the median LOS velocities of a particular scan. The LOS vectors 
are then mapped within the cells of an equal-area grid, which is defined in the geomagnetic coordinates 
system with each cell measuring 1E  in latitude, to eliminate biases that would derive from the much denser 
sampling over nearer radar range gates. The vectors contributed by a radar to a particular cell are averaged 
over a fixed period of time to obtain the GRID LOS data product. More details of GRID data processing can 
be found in Section 3 of Ruohoniemi and Baker (1998).

3.  Needlet-Based Approach to Modeling Electric Field Variability
The novel element of the statistical modeling approach presented here is the use of a multiresolution tight 
frame called needlets (Marinucci & Peccati, 2011) to represent stochastic fluctuations in the electric field 
vectors. In the same way wavelets facilitate analysis of transient and localized signals, needlets enable us 
to represent spatially localized features of the observed electric field variability in functions defined over a 
spherical domain. Needlets have been shown to be more efficient than spherical harmonics in representing 
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spatially localized features on the sphere as linear combinations of spherical harmonics, through a con-
struction involving Legendre polynomials (Scott, 2011). Furthermore, the surface gradient operators can be 
applied on them, thus facilitating multiresolution representations of the curl-free multi-scale electrostatic 
potential fields. In Section 3.1, spherical needlets used in this study are briefly defined, and Fan et al. (2018) 
should be referenced for more details.

3.1.  Multiresolution Tight Frame: Spherical Needlets

Specifically, a needlet function at scale E j and location E k, ( )jkE  s , evaluated at a point E s on the unit sphere takes 
the following form:

 jk jk

l M
j

M
j

j
m l

l

lm jk lmb
l

M
Y Y( ) ( ) (s s


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M
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1
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where the nonnegative function ( )E b   is bandlimited and enables a frequency tiling, 1E M   controls the win-
dow size of the frequency tiling, ( , )jk jkE    are quadrature (location, weight) pairs for scale E j and location E k,  

lmE Y ’s are the standard orthonormal, complex-valued spherical harmonics basis functions corresponding 
to frequency (degree) index l  and phase (order) index E m, and lE P is the associate Legendre polynomial of 
degree l . The function E b is positive on the interval 1( , )E M M , satisfies the resolution of identity condition 

j

j
b M

 
0

2
1( / )  for 0E   , and is E F times continuously differentiable for some 1,2,E F  . From Equa-

tion 5, it is evident that needlets jkE  ’s are bandlimited over spherical frequencies ranging from integer index 
l  greater than or equal to 1jE M   to l  less than or equal to M j1. In addition to being localized in the frequency 
domain, the needlets are localized in the spatial domain. Specifically,

( ) ,
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where FE C  is a constant independent of E j and E k. See Figures 1 and 2 of Fan (2015) for examples of a spherical 
needlet jkE  , and Fan (2017) for more detail. Hereafter, we choose 2E M   following the prior work (e.g., Fan 
et al., 2018). Note that because of the linear representation of needlets in the spherical harmonic basis, need-
let coefficients of a scalar function can be obtained from the spherical harmonics coefficients of the function 
through a linear transformation, since for any 2E L  (quadratically integrable) function E f  on ordinary sphere 2E  ,
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where , jkE f   and , lmE f Y  denote the needlet and spherical harmonics coefficients, respectively.

3.2.  Needlet-Based Random Electric Fields Model

Suppose that there is a total of dE p  SuperDARN LOS plasma velocity data points at locations ( , )i iE   , 1, , dE i p  ,  
in the high-latitude region of the northern hemisphere. Note the data points shown in Figure  2b are 
down-sampled as explained later in Section 3.4 before being used for the needlet model estimation. Since 
these data contain the observational noise, they are modeled by the following statistical model

fitacf
LOS LOS( , ) ( , ) ,i i i i iv v     �

where fitacf
LOSE v  represents the observational data, LOSE v  represents the underlying true velocity value, and 

2(0, )i iE    is the observation noise or error with standard deviation iE  . (Note that ( , )E    represents the 
normal distribution with a mean parameter E  and a variance parameter E  .) For simplicity, iE   is henceforth 
assumed independent of the location (i.e., iE   , 1, , dE i p  ). As described later in Section 3.3, 2E   is one of 
the statistical model parameters to be estimated from SuperDARN LOS velocity data.

According to Equation 4, the velocity field LOSE v  can be derived from the electrostatic potential EE   by apply-
ing the differential operators, and the electrostatic potential EE   can be decomposed into two components: 
global large-scale and spatially localized regional small-scale components, E,gE   and E,rE  , which respectively 
correspond to E,gE  E  and E,rE  E . Therefore, LOSE v  can also be decomposed into two components 
accordingly, that is,
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LOS LOS,g LOS,r .v v v �

The SAM procedure described in Section 2.3 is well suited to estimate LOS,gE v  from the SuperDARN LOS 
plasma velocity data fitacf

LOSE v . We subtract the fitted LOS,gE v , denoted by LOS,gˆE v , from fitacf
LOSE v , and obtain

fitacf
LOS LOS,g LOS,r( , ) ( , ) ( , ) .ˆi i i i i i iv v v        �

LOS,r ( , )i iE v    is precisely what is modeled in terms of E,rE   by spherical needlets jkE  ’s.

Since SuperDARN LOS plasma velocity data points are restricted to the high-latitude region, the data points 
are stretched to the entire sphere by mapping observation location points ( , )i iE    to (4 , )i iE   . Since the magni-
tude of LOS,rE v  has a strong dependency on the latitude, a variance profile, that is, the variance of the observed 
LOS velocity field as a function of the latitudinal location, is introduced as a function of co-latitude, and E,rE   
is modeled by the product of the variance profile and a linear combination of spherical needlets as follows:

E,r ( , ) ( ) ( , ), [ , / ],        i i i
j J

J

k

p j

jk jk i i i ig c 
 
 4 4 0 4

0 1

 [ , ],0 2� (6)

where E g is the variance profile function, and jkE c  are needlet coefficients, which are random variables. As 
in Fan et al.  (2018), it is assumed that jkE c ’s are distributed as scale multiples of a t-distribution, that is, 

( )jk jE c t  , where ( )E t   denotes the t-distribution with E   degrees of freedom. The t-distribution has heavier 
tails in comparison to the normal distribution. 3E    is used for this study following Fan et al. (2018) where-
in 3E    was chosen among 2.5, 3, and 4 in their applications to the LFM model output as it yielded the best 
predictive performance for simulated data. Note that with infinite degrees of freedom, the t-distribution ap-
proaches to the standard normal distribution. The assumed distribution characterizes both scale-dependent 
variations and spatially localized features of the electric field variability. Moreover, jkE c ’s are assumed to be 
statistically independent for simplicity. Due to the non-Gaussianity of jkE c  and the spatial localization of jkE  ,  
the resulting field is also non-Gaussian.

The variance profile function E g is assumed to have the representation T( ) exp( ( ) )E g   h η , where ( )E h  are the 
basis functions specified as cubic B-splines due to their numerical stability. To avoid the non-identifiability 
issue, the first B-spline is dropped in the formula. As described later in Section 3.3, the B-spline weights E η 
that control the variance profile E g and the t-distribution population parameters 2

jE  , 0, ,E j J J  , that deter-
mines a probabilistic distribution of needlet coefficients, given a value of 3E   , are estimated from Super-
DARN LOS data.

By the chain rule, we know that











 






 
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
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
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
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E,r

,

1 sin 1(4 ) ,
sin sin sin
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jk

j k
g c

 
    








 �

where 4E    . Plugging these into Equation 4, we have

v
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g c k k
j k
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LOS,s 
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�

In this way, the spherical needlets are transformed into two new sets of basis functions ( ), 1,2n
jkE n   in the 

domain of line-of-sight velocities. Recall that

2 1( , ) ( sin cos sin sin cos ),
4jk jk l jk jk jkj

l

l lb P x y z
M

        


  
   

 
   

�

where 2( , , )jk jk jkE x y z    is the centroid of the needlet jkE  . Then
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and
1 2 1

4sin
( sin cos )

( )





  

















  


jk
jk jk jk

l
j

lx y b
l

M

l dP u

ddu
u u 

,�

where sin cos sin sin cosjk jk jkE u x y z         . Note that dP u du
l
( )/  can be efficiently computed by us-

ing a recursive formula.

The statistical model for LOSE v  can be summarized as the following matrix-vector form:
fitacf 1 1
LOS LOS,g 1 1 2 2( ) ( ) ( ) ,ˆ BR BR      v v G A G A c GAc �

where vLOS
fitacf

LOS
fitacf  { }v i pi i d( , ), , ,  1 , v LOS,g LOS,g  { }v i pi i d( , ), , ,  1 , 1 diag{ (4 ), 1, , }i dE g i p  G , 

2 4diag | , 1, , di
gE i p  

 
   

  G , 1E A  and 2E A  are the design matrices constructed by the new basis func-

tions ( ), 1,2n
jkE n  , respectively, 1 2[ ; ]E G G G  and 1 2[ ; ]E A A A . For convenience, we hereafter use E D to denote 

1( )E BR  GA and E z to stand for LOS LOS,gˆdE v v  so that
. z Dc �

3.3.  Adaptive Markov Chain Monte Carlo Estimation

This section describes how the parameters 2 2
0 , ,J JE    and E η that determine a probabilistic distribution of 

needlet coefficients E c and the observational noise parameter E   are estimated from the residual SuperD-
ARN LOS velocity data E z using the adaptive MCMC method. These parameters, grouped here as the vector 

2 2 2
0( , , , , )J JE    ω η , are assumed a priori independent. The prior distributions of 2

jE   and 2E   are the non-in-
formative Jeffreys’ priors. The prior distribution of E η is assumed to be 2( , )E 0 I η , where the hyperparameter 

E  η is chosen to be sufficiently large such that the prior distribution is nearly non-informative. Under these 
settings, the posterior distribution of the parameters can be computed by the following MCMC algorithm.

Since a t-distribution can be expressed as scale mixture of Gaussians, the probability distribution of jkE c  can 
be written in a hierarchical form by introducing an auxiliary random variable jkE V

c V Vjk jk jk|   ( , ),0�

Vjk j
j

| 
 

, , ,













2 2

2

�

where ( , )E    represents the inverse gamma distribution with a shape parameter E  and a scale parameter 
E  . Denote by E V the vector consisting of the coordinates jkE V , and 2E σ  to be the vector comprising of 2 2

0 , ,J JE   . 
We shall employ a Gibbs sampler to obtain samples from [ , , ]c V z|  so that the full conditional distributions 
of 2, ,E c V σ  and 2E   have closed forms. The full conditional distribution of E c (i.e., [ , , ]c z V|  ) is multivariate 
Gaussian, and hence sampling from it requires 3( )E p  operations, where E p is the total number of needlets. 
This is computationally intractable for large E p. Nonetheless, numerical experiments indicate that the sub-
blocks c z Vj j J J| , , , , ,  0  are weakly correlated, where T

1( , , )j j jp jE c c c , where jE p  is the number of 
needlets at level E j. Therefore, the sampling step for E c is achieved by successive draws from the conditional 
subblocks [ , , , ]c z V cj j|   . The full conditional distribution of E η is not available in closed form. Therefore,  
we sample from [ , , , , ] |z c V

2 2  using an adaptive Metropolis algorithm (Andrieu & Thoms, 2008, Algo-
rithm 4) and incorporate it into the Gibbs sampler.

Suppose jE D  denotes the subblock of E D corresponding to the E j-th level of needlets, so that  0 , ,J JE  D D D ,  
and T

1( , , )j j jp jE V V V . Then the aforementioned adaptive Metropolis-within-Gibbs sampler can be sum-
marized as follows:

1.	 �Sample jE c  from c z V c Σμ[ | , , , ] ( , )ˆˆj j j j   , where
1

T 2 1
2

1 diag( ) ,ˆ
j j j j




 

  
 

Σ A D A V�

�and
T

2 .ˆˆ 1 ( )j j j j j


  Σ A D z DA cμ�
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2.	 �Sample E V from [ , , ]V z c|  , where Vjk |z c, ,  are independent and distributed as
2 21 , .

2 2
jk jc   

 
 

�

3.	 �Sample 2E σ  from [ , , , , ] 2 2
|z c V  , where  j

2 2
|z c V, , , ,  are independent and distributed as

1

1, ,
2 2

pj
j

k jk

p
V

 



 
 
 
 

�

�where ( , )E    represents the gamma distribution with a shape parameter E  and a rate parameter E  .
4.	 �Sample 2E   from

[ , , , , ] ,
( ) ( )

. 2 2

2 2
|z c V

z DAc z DAc
  

 









pd
T

�

5.	 �Sample E η using the adaptive Metropolis algorithm from

[ , , , , ] exp ( ) ( ) exp   


|z c V z DAc z DAc
2 2

2 2

1

2

1

2


 
   











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









.�

The proposal distribution is chosen to be
Ση η η*( | ) ( , ),Q  �

where E   is a parameter adaptively tuned with the goal of achieving the optimal acceptance rate (Gelman 
et al., 1996), and E Σ is adaptively updated to approximate the covariance matrix of the full conditional dis-
tribution of E η.

3.4.  Down-Sampling of SuperDARN LOS Data

The SuperDARN LOS plasma velocity measurements are down-sampled before being applied to estimation 
of the needlet model parameters. As shown in Figure 2b, the LOS velocity measurements are unevenly 
distributed over the high-latitude region of the sphere. The aim of down-sampling is to assure that the data 
are evenly distributed and the computational cost is manageable. To achieve the goal, we first partition the 
sphere into approximately equal-area regions by applying Voronoi tessellation on the sphere. The number 
of partitioned regions is the same as the number of data points. We then calculate the area of each region. 
The sampling probability of each data point is proportional to the area of its corresponding region. Roughly 
speaking, the larger the surface area of one region, the further the data point in the region is from the neigh-
boring data points. Therefore, a higher probability of retaining the data point is assigned. In this way, the 
data points after down-sampling are approximately uniformly distributed.

3.5.  Model Performance

A summary of the performance of MCMC based estimation of the needlet-based model parameters de-
scribed in Sections 3.2 and 3.3 is given here. We set 0E J  to 2 since the global large-scale components have 
already been subtracted from the SuperDARN LOS plasma velocity data. E J is set to 3 given the the compu-
tational limitation of the model with too high E J as well as the SuperDARN data signal-to-noise ratio, thus 
needlets at two resolution levels 2,3E j   are used. (More discussion on the needlets resolution is given in 
Section 4.1 when the geophysical interpretation of SuperDARN data analysis results are presented.) The 
logarithm of the variance profile function E g is represented by a linear combination of cubic B-splines with 
one interior knot  /2. The parameter estimates are calculated as the average of 1,000 MCMC samples.

Figure 3 shows the estimated variance profile E g as a function of co-latitude. The peak is around 75E  latitude, 
consistent with the locations of the high LOS residual velocity within auroral oval zone. As described in Sec-
tion 3.4, the needlet model is fitted to a subset of the SuperDARN LOS plasma velocity data after down-sam-
pling. We examine the model out-of-sample prediction performance on the remaining data, which is shown 
as a scattered plot of LOS velocity magnitudes in Figure 4. The predicted values generally align with the 
observed values as the Pearson correlation coefficient between them is approximately 0.33. In terms of 
the magnitude, the predicted values are mostly smaller than the observed values. This can be explained 
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Figure 3.  The fitted variance profile model E g defined in Equation 6 to residual Super Dual Auroral Radar Network 
line-of-sight plasma drift velocity data is shown as the latitudinal distribution of velocity standard deviation in m/s.
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Figure 4.  Out-of-sample prediction of residual Super Dual Auroral Radar Network line-of-sight plasma drift velocities 
versus observed values in m/s. Pearson correlation coefficient between predicted and observed values is 0.33.
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by the following reasons: (a) The observed LOS velocity residuals show large variability and may contain 
some outliers. As shown in the middle plot of Figure 5, there are clearly some extreme values (indicated by 
sporadically appearing red arrows), not entirely captured by the model; (b) The needlet-based model can-
not represent features with resolution higher than 3E J   due to the computational limitation; (c) We have 
assumed a simplified structure for the underlying electrostatic field, which is longitudinally (magnetic local 
time) symmetric with a variance profile depending on latitudes only; and (iv) Beyond these, in general, the 
predicted values of observations under a Bayesian paradigm (or in a random effects model) tend to shrink 
toward zero, even when the model represents the data perfectly. However, the observed LOS velocity resid-
uals appear heterogeneous with respect to both longitudes and latitudes. These are the unique challenges of 
modeling the LOS velocity residuals, which we will discuss further in Section 5.

4.  Results
This section summarizes the results of the needlet-based approach to modeling electric field variability us-
ing SuperDARN data described in Sections 2 and 3, and demonstrates how the approach can help better rep-
resent the impact of the high-latitude ionospheric electric field variability on Joule heating rate in the upper 
atmosphere general circulation models. It also illustrates how uncertainty in data-driven modeling of elec-
tromagnetic coupling between the magnetosphere and ionosphere may be represented using ensembles.

4.1.  Multiresolution Non-Gaussian Electric Fields

Figure 6 shows the electrostatic potential fields at different needlet resolution levels generated using the es-
timated needlet model parameters (e.g., E c, E ω) from SuperDARN LOS observations. Note that the electrostat-
ic potential fields shown here correspond to regional small-scale electric fields E,rE  E  (see Equation 6). 
The top row displays the mean prediction conditional on the SuperDARN observations, and the middle 
and bottom rows show two instances of random samples conditional on the observations. These mean and 
two random instances are shown to illustrate that the electric field variability is in fact modeled as random 
fields that belong to a certain probability distribution that is, conditional on the SuperDARN observations 
in contrast to the past studies wherein the sample mean and standard deviations of observations have been 
often used. These two instances are part of a 1,000-member ensemble set (1) (2) (1000)

E,r E,r E,r{ , , , }E      generated 
from 1,000 independent random draws, which are being used for the Joule heating estimation shown in 
the next subsection. The potential fields at two needlet resolution levels at 2,3E j   are shown in the first 
two columns, and the total potential fields, which is a combination of all resolution levels, is shown in the 
right-most column.

Figure 5.  Line-of-sight (LOS) plasma velocities from one 2-min scan of Super Dual Auroral Radar Network radars from 00:04 to 00:06 UT on February 29, 
2012: (Left) The FITACF LOS plasma velocity ( fitacf

LOSE v ), (middle) residual velocity ( fitacf
LOS LOS,gˆE v v ), and (right) regional small-scale velocity modeled by the needlet 

model ( LOS, rˆE v ).
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The smallest scales resolved at these two needlet resolution levels correspond to the spherical harmonics 
frequency (degree) and phase (order) of 8E l  , 8E m   and 16E l  , 16E m  , respectively, which are equivalent 
to the spatial scales of 5.6E  in latitude and 22.5E  in longitude for 2E j   and 2.8E  in latitude and 11.25E  in lon-
gitude for 3E j  , with consideration of the factor 4 latitude coordinate stretching of the analysis domain as 
described in Section 3.2. (Note that an approximate spatial resolution corresponding to a certain degree and 
order of the spherical harmonic function is obtained using the Nyquist frequency of a half wavelength.) 
Even though the resolutions of needlets and spherical harmonics are comparable, due to needlets’ spatial 
and frequency localization and frame properties that needlet-based model can better represent localized 
regional features that exist in the SuperDARN observations, in comparison to spherical harmonics with a 
global support that are designed to capture global structures.

The SAM used to model global large-scale electric fields from the SuperDARN observations (see Section 2.3) 
can resolve scales up to the spherical harmonics degree and order of about 72E l   and 12E m  , corresponding 
to the resolution of 2.5E  in latitude and 15E  in longitude. As shown in Figure 7 for 03:00 UT, the SAM field in 
fact exhibits global large-scale features in comparison to regional small-scale features that are present in mu-
ti-resolution random electrostatic fields estimated from the needlet-based modeling approach (Figure 6). 
Due to the variance profile, shown in Figure 3, which peaks around 75E  latitude, more distinct features 
appear between 70E  and 80E  in regional small-scale fields.

Figure 6.  Electrostatic potential fields in kV at different resolutions generated from the needlet model. (Top row) The 
mean prediction conditional on the observations; (Middle Row) a random sample conditional on the observations and 
(bottom row) another random sample conditional on the observations. (Left) Field at level 2E j  ; (middle) field at level 

3E j  ; and (right) total field summed at levels 2,3E j  .



Journal of Geophysical Research: Space Physics

MATSUO ET AL.

10.1029/2021JA029196

14 of 18

4.2.  Impact on Joule Heating Rate

Figure 8 shows the ensemble mean of the hemispherically integrated Joule heating rate computed with the 
effect of random regional small-scale electric fields E E  (blue) as well as the hemispherically integrated Joule 
heating without the effect of E E  (black). The hemispherically integrated Joule heating rate with the effect of 

E E  is integrated over the northern hemisphere high-latitude ionosphere from 45E  to 90E  in latitude, following 
the definition given in Equation 1, as

( ) ( ) 2
,( ) ( , , )( ( , , ) ( , )) ,n n

J pQ t t t d d           E E∬� (7)

where E n is an ensemble member index, 1, ,1000E n   , the global large-scale electric field E E is specified by 
the SAM as described in Section 2.3. Note that a 1,000-member ensemble set of random regional small-scale 
electric field (1) (2) (1000){ , , , }E   E E E  is computed from (1) (2) (1000)

E,r E,r E,r{ , , , }E      as described in Section 4.1. The 
hemispherically integrated Joule heating without the effect of E E  is given as

2
,( ) ( , , ) ( , , ) .J pQ t t t d d         E∬� (8)

In Equations 7 and 8, the height-integrated ionospheric conductivity ( , )pE    is specified using empirical 
models of the solar EUV conductance and auroral conductance. The solar EUV conductance model is pa-
rameterized by solar zenith angle and the solar F10.7 index (e.g., Moen & Brekke, 1993), and the auroral 
conductance is based on the Ovation Prime empirical aurora model (Newell et al., 2009) and the empirical 
relationship of Robinson et al. (1987). Note that the Ovation Prime model is parameterized with respect 
to the upstream solar wind and interplanetary magnetic field conditions. Except for a minor geomagnetic 
activity, there is no notable geomagnetic activity during the time period of 00:00 to 04:00 UT on February 29, 

Figure 7.  Global large-scale Electrostatic potential field in kV, estimated from the Super Dual Auroral Radar Network 
GRID data over 4-min windows using the SuperDARN Assimilative Mapping procedure, at 3:00 UT on February 29, 
2012, around the peak of Auroral Electrojet index.
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2012. The overall Joule heating rate is thus small. In general, the Joule heating rate tracks temporal changes 
of the AE index (red) shown also in Figure 8, which is due to the changes of large-scale electric fields. By 
taking the regional small-scale electric field variability into account, the Joule heating rate increases by a 
factor of about 1.5 which is close to the lower end of an arbitrarily adjusted factor of 1.5 and 2.5 typically 
used in general circulation models. As discussed in Section 1, the biases in the upper atmosphere general 
circulation models attributed to an inadequate representation of the Joule heating rate exist regardless of 
geomagnetic activity levels. The future study needs to allow for more flexibility in the needlet model to 
account for temporal variation of the variance profile so that the changes of electric field variability at dif-
ferent geomagnetic activity levels can be better characterized.

5.  Discussion and Conclusions
In response to the need for a new statistical inferential framework for data-driven modeling of high-latitude 
ionospheric electric field variability, Fan et al. (2018)’s spherical needlet-based scalar random fields model is 
being extended for vector random fields and applied to the carefully curated SuperDARN FITACF LOS plas-
ma velocity data set. The modeling results for the largely quiet period from 00:00 to 04:00 UT on February 
29, 2012 show that the approach have the potential to rectify the underestimation of the Joule heating rate 
in the current upper atmosphere general circulation models due to insufficient representation of the electric 
field variability. The study demonstrates how data-driven modeling of the magnetosphere-ionosphere-ther-
mosphere coupling can be formulated in an ensemble modeling framework. Specific findings of the current 
efforts are summarized as follows.

The needlet-based probabilistic approach to modeling regional small-scale electric field variability can help 
estimate a distribution of electric field variability conditioned on actual SuperDARN LOS observations. The 

Figure 8.  Hemispherically integrated Joule heating rate in GW from 00:00 to 04:00 UT on February 29, 2012. The ensemble mean of the Joule heating rate 
computed with the effect of random regional small-scale electric fields ( )nE E  (Equation 7) is shown in blue solid line, along with the upper and lower bounds 
given in terms of two standard deviations shown in blue dash lines. The Joule heating rate resulting only from global large-scale electric field E E without E E  
(Equation 8) is shown in black line. As a reference, the high-latitude geomagnetic activity, Auroral Electrojet index nT, is overlaid in red.
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probabilistic modeling approach, rather than a deterministic model approach, to represent regional small-
scale electrostatic potential fields allows us to borrow information across spatial locations to model random 
fields globally even outside the domain of SuperDARN observation locations. The variance of random fields 
varies with latitudes according to the variance profile estimated from actual SuperDARN observations as 
shown in Figure  3. As shown in Figure  6, estimated regional small-scale electrostatic potential fields at 
different resolutions exhibit considerably more localized fine-scale features in comparison to global large-
scale potential fields modeled using the SAM procedure (Figure 7). This is enabled by the spherical needlet 
frames' spatial localization and overcompleteness properties and reinforces the fact that spherical harmonic 
basis functions, with global support, are not suited for describing features that are spatially localized.

As shown in Figure 8, the overall hemispherically integrated Joule heating rate during a largely quiet period 
on February 29, 2012 is increased by a factor of about 1.5 due to the effect of random regional small-scale 
electric fields E E . This is close to the lower end of arbitrarily adjusted Joule heating multiplicative factor of 
1.5 and 2.5 typically used in upper atmosphere general circulation models. It is expected that this factor will 
change under different geophysical conditions. The magnitude of regional small-scale electric fields would 
likely become greater under southward interplanetary magnetic fields, winter conditions, and geomagnet-
ically disturbed conditions (e.g., Matsuo et al., 2003), thus increase the Joule heating rate accordingly. As 
shown in Matsuo and Richmond (2008), the electric fields with the scale size smaller than 5E  vary strongly 
with seasons but less with interplanetary magnetic fields, suggesting a scale size dependence of regional 
small-scale electric fields on the Joule heating.

The impact of the modeled electric field variability on the Joule heating rate is computed using a 1,000-mem-
ber ensemble set of regional small-scale electric fields (1) (2) (1000){ , , , }E   E E E . This example demonstrates that 
how the uncertainty of the SuperDARN LOS data can be propagated to the estimate of Joule heating rate 
in general circulation models through the needlet-based modeling of the ionospheric electric variability.  
The approach can also be applied to the output from high-fidelity high-resolution numerical simulations 
that may be computationally prohibitive to perform routinely. This study is an important step toward a da-
ta-driven ensemble modeling of magnetosphere-ionosphere-atmosphere coupling processes.

Some of the methodological shortcomings identified by the current study can be addressed in future work. 
The needlet model can be expanded to account for non-stationarity of the electric field variability not only 
with respect to magnetic latitudes but also MLT. By doing so, the electric field variability associated with 
specific physical processes such as convection reversal, and auroral electrojet that appear in localized loca-
tions can be better represented. As suggested by the out-of-sample prediction of LOS plasma drift velocities 
shown in Figure 4, SuperDARN LOS residual velocities with greater magnitudes ( fitacf

LOS LOS,gˆE v v  350 m/s) 
are not well predicted by the needlet model. This is evident in Figure 5. This can be addressed by increasing 
the needlet resolution level from 3E j   to 4E j  , equivalent to the spatial scales of 1.4° in latitude and 5.6° in 
longitude, ideally to 5E j  , corresponding to the scales of 0.7° in latitude and 2.8° in longitude. Uncertainty 
resulting from inconsistent model assumptions associated with spatiotemporal stationarity of random fields 
should be better quantified using more data.

These methodological improvements will have to be accompanied with an improved uncertainty quantifi-
cation in the determination of SuperDARN LOS velocity from radar backscatter. The availability of Super-
DARN data with greater spatial coverage will alleviate the need to aggregate data over time allowing us to 
drop the assumption of spatiotemporal stationarity of random fields in the method. In order to increase the 
needlet resolution level to 5E j  , SuperDARN data at a higher spatial resolution will be needed. Prospects 
for the availability of such SuperDARN LOS velocity data sets are discussed next. With more SuperDARN 
radars being constructed (e.g., Adak Island East and West radars in 2012, Hokkaido West radar in 2014, 
and Jiamusi radar in 2019 (Nishitani et al., 2019)), we could have a better spatial coverage for future work. 
However, there still exist a few challenges on obtaining more SuperDARN data. First, lack of ionospheric 
backscatter in SuperDARN data during the day would cause a data gap in MLT, particularly at mid-latitudes 
(Figure 1b). Second, strong particle precipitation during geomagnetically active times could cause radar 
signals absorbed by the ionosphere. The Local Divergence-Free Fitting technique from Bristow et al. (2016) 
is able to provide SuperDARN plasma velocity with a spatial resolution ( 50E   km) that is, comparable to the 
LOS velocity measurements. The LDFF technique uses all LOS velocities within a user-defined region to 
produce local plasma convection which can resolve finer scale structures such as plasma flows associated 
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with auroral arcs. This technique can be used in the future to obtain time-dependent (mean) vector fields 
E E at much finer scales than the SAM, which is expected to improve the signal-to-noise ratios of residual 

SuperDARN LOS velocity data for the method presented in this study.

Data Availability Statement
The SuperDARN data used for the study and the conditional mean and random electrostatic potential fields 
drawn from the fitted needlet model shown in the paper are available from https://doi.org/10.17605/OSF.
IO/E7W8P. Geomagnetic activity indices data (e.g., AE index) are obtained from the GSFC Space Physics 
Data Facility OMNIWeb at https://omniweb.gsfc.nasa.gov.
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