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Introduction
MicroRNAs (miRNAs) are small endogenous single-stranded 
noncoding RNAs containing about 22 nucleotides, and they 
usually regulate the gene expression at the posttranscriptional 
level by binding to the 3′-untranslated region of related mes-
senger RNAs (mRNAs).1-3 In 1993, the first miRNA lin-4 was 
found in Caenorhabditis elegans larva. lin-4 coded for a 
22-nucleotide regulatory RNA rather than a protein.4 Since 
then, plenty of miRNAs have been discovered in different 
types of organisms, such as plants, animals, and viruses.5-7 
Currently, more than 2588 miRNAs in the human genome 
have been annotated.8 With the in-depth biology research 
about miRNAs in recent years, increasing evidence indicates 
that miRNAs play critical roles in different biological pro-
cesses, such as cell growth,9 metabolism,10 proliferation,11 
immune reaction,12 tumor invasion,13 cell cycle regulation,14 
and so on. Therefore, the dysregulation of miRNAs, abnormal-
ity of miRNAs, and dysfunction of miRNA biogenesis may 
result in maladjusted cell behaviors.15

Recently, several studies reveal that miRNAs are highly rel-
evant to the development of human complex diseases, includ-
ing various cancers, diabetes, acquired immune deficiency 
syndrome, neurological disorders, and so on.16 For example, in 

the breast cancer patient, the expression level of miRNA-141 is 
increased.17 Besides, miRNA-145 is downregulated in atypical 
meningiomas and negatively functioned by regulating the pro-
liferation and motility of meningioma cells.18 And compared 
with normal people, the expression level of miRNA-106a in 
glioblastoma patients is significantly higher.19 According to 
those studies, the statistics of the Human microRNA Disease 
Database (HMDD) 3.0 has collected 32 281 experimentally 
supported miRNA-disease association entries from 17 412 
papers, including 1102 miRNA genes and 850 diseases.20 Also, 
several studies indicate that more than one-third of genes are 
regulated by miRNAs,21 which further demonstrates the asso-
ciations between miRNAs and diseases. As indicated by those 
previous study results, miRNAs are considered as novel poten-
tial biomarkers or diagnostic tools for diseases.22,23 Therefore, 
exploring the relationships between miRNAs and diseases is 
meaningful for the prognosis, diagnosis, treatment, and pre-
vention of human complex diseases.24-26

Nevertheless, traditional experimental methods for identi-
fying the miRNA-disease associations are costly and time-
consuming. As previous biological studies on miRNAs 
provided us massive and reliable miRNA data and their related 
data,20 researchers began to develop some in silico methods to 
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predict miRNA-disease associations, which makes the follow-
up biological validation experiment much more convenient and 
effective.27 Currently, most of the computational approaches 
are based on networks, which include miRNA association net-
works, disease phenotype networks,20 miRNA-disease net-
works,28 gene co-expression networks,29 and protein-protein 
interaction (PPI) networks.30 The basic assumption of most 
computational methods is that functionally similar miRNAs 
are more likely to be associated with the phenotypically same 
or similar diseases and vice versa.31 Therefore, the key to judg-
ing whether an miRNA is related to a specific disease is the 
similarity computation, which is based on known miRNA-
disease relationships and some external information such as 
gene ontology, PPIs, and gene expression. In recent years, with 
the development of machine learning, some prediction 
approaches based on machine learning have also been pro-
posed. Here, we discuss the previous approaches from 2 aspects: 
network similarity methods and machine learning methods.

Network similarity methods, according to the information 
involved in similarity computation, can be grouped into 2 cat-
egories:32 local network similarity methods24,33 and global net-
work similarity methods.31,34 Local network similarity–based 
methods only consider the directed edge information con-
tained in the involved networks, which ignore the global struc-
ture of these networks. For example, Jiang et al24 proposed a 
Boolean network method that uses hypergeometric distribu-
tion to identify the miRNA-disease associations based on an 
miRNA-miRNA network, a disease-disease network, and an 
miRNA-disease relationship network. Xuan et al33 proposed a 
K nearest neighbor method, HDMP, which was based on the 
weighted k most similar neighbors. In the global network sim-
ilarity–based group, a random walk with restart (RWR) model 
is a classic representative, which applies an RWR on the 
miRNA-miRNA functional similarity network.31 Based on the 
RWR algorithm, researchers integrated more miRNA-related 
data and developed some improved methods. For example, Shi 
et al34 mapped disease genes and miRNA target genes on the 
PPI network and obtained 2 ranked lists of genes obtained by 
the RWR algorithm with different seeds. The global network 
similarity methods usually have better performance than the 
local similarity methods. However, both local and global net-
work methods usually directly compute associations score from 
networks, and most of them are unsupervised without using 
labeled information that is difficult to catch the deep complex 
interaction patterns between miRNAs and diseases. With the 
development of artificial intelligence in recent years, some 
researchers began to use machine learning methods to predict 
miRNA-disease associations.

The machine learning–based prediction methods usually 
face 2 challenges: first, the current data sets include only posi-
tive samples without negative samples; second, extracting the 
feature vectors of miRNA-disease pairs is nontrivial. Although 
there are some limitations, the excellent performance of 
machine learning methods can still guarantee high-quality 

prediction models. The first machine learning–based method 
for miRNA-disease association prediction was proposed by Xu 
et al, which extracted features from miRNA-disease network 
data and train a support vector machine (SVM).24 After that, 
Chen and Yan35 proposed the model of regularized least squares 
for miRNA-disease association (RLSMDA), which is a global 
and sim-supervised learning method. Niu et  al36 integrated 
random walk and binary regression to identify novel miRNA-
disease associations that are based on global similarity and 
supervised learning method. Although the existing computa-
tional methods have already achieved great performance, there 
is still some room for improvement.

In recent years, many researchers attempted to use deep 
neural networks to solve bioinformatics computing and got 
promising results.37 For instance, Peng et al38 identified the 
miRNA-disease associations by a learning-based framework, 
MDA-CNN, which is based on convolution neural networks, 
and Luo et al39 predicted disease-gene associations by multi-
modal deep belief network (DBN) learning. It has been 
proved that DBNs can perform both unsupervised learning 
by automatically learning the high-level abstract features and 
supervised learning by backpropagation to fine-tune the 
weights got from the unsupervised learning with a few labeled 
data.40 The shortcoming of DBNs is time-consuming when 
handing a large database, but it shows great performance in 
extracting features for regular data and performing supervised 
training with just a few labeled data. The properties of DBNs 
show that DBN is suitable for the miRNA-disease associa-
tion prediction that owns a few labeled data and the database 
is not so big.

In this study, we present a DBN-based matrix factorization 
model, DBN-MF, for miRNA-disease prediction. The main 
idea is factorizing the miRNA-disease adjacency matrix to 2 
matrices with DBNs, one represents all the miRNAs’ features, 
whereas the other one represents all the diseases’ features. Then 
an association score of each miRNA-diseases pair is calculated 
for the prediction according to a classifier consisting of 2 DBNs 
and a cosine score function. The results of our computational 
experiments show that DBN-MF outperforms the state-of-
the-art approaches.

Materials and Methods
Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a stochastic neural 
network that only has 2 layers, a visible layer at the bottom and 
a hidden layer at the top.41 The basic structure of an RBM is 
shown in Figure 1 and contains m visible neurons and n hidden 
neurons. Each visible neuron is connected to every hidden neu-
ron, and there are no connections between the neurons in the 
same layer. RBM can understand and determine a probability 
distribution of hidden unites over its set of inputs that can be 
used as features to characterize raw data. When the data are 
binary, the corresponding RBM is a Binary-Binary RBM 
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(BBRBM) and the RBM concerning an energy function, 
which is defined as follows:
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where vi is ith neuron in the visible layer and hj is the jth neu-
ron in the hidden layer; wij is the weight between vi and hj; ai 
and bj are biased, corresponding to the ith visible neuron and 
jth hidden neuron, respectively. According to equation (1), the 
joint probability distribution formula of the neuron state (v, h) 
can be given as follows:

 P v h e
z

Z e
E v h

E v h

v h

( , | )
( )

, ( )
( , )

( , | )

,

θ
θ

θ θ= =
−

−∑  (2)

where θ  = {ai, bi, wij} is the set of parameters in the RBM, Z is 
the normalization factor and is also called the partition 
function.

The probability distribution of the input data P(v) is the 
marginal probability distribution of P(v|θ):
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The purpose of RBM training is to obtain the parameters 
set θ, which maximizes the P(v|θ). The parameter set θ can be 
determined by performing a stochastic gradient descent (SGD) 
on the negative LogLikelihood probability of the training data 
as follows:

L P v e eE v h

h

E v h

hv

( ) log ( ) log| ( , ) ( , )θ θ= =








 −











− −∑ ∑∑  (4)

 ∂
∂

= −
L
a

E v E vpd pm
( ) [ ] [ ]θ  (5)

 ∂
∂

= −
L
b

E h E hpd pm
( ) [ ] [ ]θ  (6)

 ∂
∂

= −
L
w

E vh E vhpd
T

pm
T( ) [ ] [ ]θ  (7)

where Epd represents the expectation of the input conditional 
probability distribution of training data, and Epm denotes the 
expectation of the joint probability distribution of the model. 

Gibbs sampling42 method is used to calculate the expectation, 
which has a heavy computation cost in the training process of each 
iteration. A learning method contrastive divergence (CD) pro-
posed by Hinton43 is applied to the approximate calculation after 
sampling. Then the RBM parameters are updated as follows:
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θ
θ

i i L+ = +
∂
∂

1 ( )  (8)

where i is the current iteration, and η is the learning rate. 
According to the rules (equation (8)), the parameter θ is itera-
tively updated, and the maximum value of the gradient of the 
likelihood function is reached quickly, and the optimal param-
eters are obtained.

DBNs

DBN is a probabilistic neural network proposed by Hinton in 
2006.44 A DBN model includes 1 input layer v, and multiple 
hidden layers {h1, h2, . . ., hL}, which has connections between 
different layers, and no connections within the same layer. The 
DBN model can be seen as a stack of multiple RBMs where 
each of the 2 layers formed an RBM model. As shown in 
Figure 2, the process of DBN training is, from bottom to up, 
training an RBM model by the input data, and getting the out-
put of the current RBM as the input of the next RBM.

The probability distribution of the DBN model P(v, h1, h2, 
. . ., hL) can be factorized as follows:
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where P(hk|hk + 1) is the conditional probability distribution of 
hk when hk + 1 is given; P(hL−1, hL) is the joint probability distri-
bution of hL−1 and hL.

The key to the DBN model is training the parameters. First, 
we trained the RBM one by one and obtained each RBM’s 
parameters by the contrast divergence algorithm. After training 
all the hidden layers, the last layer represents the feature 
extracted from DBN.

Figure 1. The basic structure of RBM. RBM indicates restricted 

Boltzmann machine.

Figure 2. The basic structure of the DBN model. DBN indicates deep 

belief network; RBM, restricted Boltzmann machine.
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DBN-MF model

Problem statement. Suppose there are k miRNAs M = {m1, m2, 
. . ., mk}, and p diseases D = {d1, d2, d3, . . ., dp}. The k miRNAs 
and p diseases form a k*p adjacency matrix Y, which represents 
the associations between miRNAs and diseases. In this matrix, 
element Yij = 1 if the association between miRNA i and disease 
j is confirmed, and otherwise Yij = 0.

In this study, we try to factorize matrix Y into 2 matrices, 
one represents the features of miRNAs, whereas the other one 
represents the features of diseases. Then according to the result 
of factorization, the association score for each pair of miRNA-
disease can be calculated.

Model-based methods45,46 usually assume that there is an 
underlying model that can predict the association score as 
follows:

 Y F m dij i j
 = ( , | )θ  (10)

where Y ij  denotes the prediction score of association between 
miRNA mi and disease dj, θ denotes the model parameters, and 
F denotes the model function that maps the mi and dj to the 
predicted scores under parameters θ. Then the score of each 
pair of miRNA-disease can be obtained by this model.

Therefore, the key question becomes how to define the 
function F. Latent Factor Model (LFM)47 simply applied the 
inner product to calculate the association score between 2 
objects. Neural collaborative filtering (NCF)48 used a multi-
layer perceptron to automatically learn the function F and 
determine the nonlinear associations between 2 items. 
Inspired by NCF, in this study, we try to determine the non-
linear associations between miRNAs and diseases by a deep 
representation learning architecture. This deep representation 

learning includes 2 parts, the first part is the unsupervised 
pretraining of DBNs, and the second part is the supervised 
learning of a classifier by backpropagation. The cosine score is 
used in the last step to calculate the final score in supervised 
learning.

The process of DBN-MF model. The framework of the DBN-
MF model is shown in Figure 3.

Step 1, unsupervised pretraining of DBN. Taking the adja-
cency matrix Y as input, each row represents an miRNA 
while each column represents a disease. Two DBN models 
are used to perform unsupervised learning, respectively, with 
miRNAs and diseases. In each DBN model, from the input 
layer, each RBM model learns a group of parameters for the 
current layer i, and the output of RBM i is the input of 
RBM i + 1. After finishing the pretraining, all the param-
eters of 2 DBN models are recorded as θm* and θd*. At the 
same time, the features of miRNAs and diseases have also 
been extracted.

Step 2, supervised training of a classifier for fine-tuning the 
parameters by backpropagation. Taking the same input data as 
step 1, a classifier consisting of 2 DBNS and a cosine func-
tion is trained with the values of the parameters ′ ′θ θm d* *and  
as the initial weights of 2 DBNs. The training is done by 
iterative forward-propagation and backpropagation on 
these 2 DBNs. By the forward-propagation, the raw feature 
of miRNA mi and disease dj finally mapped to feature vec-
tors miRNA pi and disease qj. After getting the extracted 
features pi and qj, the cosine similarity is used to measure 
the relationship score between pi and qj, which is calculated 
as follows:

Figure 3. The flow chart of the DBN-MF model. DBN-MF indicates deep belief network–based matrix factorization.
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 Y F m d p qij i j i j
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Then, a cost function is used to measure the difference 
between the predicted score and the real label, and backpropa-
gating is applied to update the parameters according to the cost 
function.

The cost function is also an important component of deep 
learning. The squared loss function is one common and simple 
cost function, yet it cannot perform well with implicit data that 
the target value Yij is a binarized 1 or 0.49 Aimed at this kind of 
binary data, He et  al proposed a cost function that can pay 
special attention to the binary property of implicit data as 
follows:

 L Y YY Yij ij ij ij= −∑ + − −log ( ) log( ) 1 1  (12)

which we use in this study.

Experiments and Results
Data sources

For evaluating its effectiveness of model DBN-MF, we per-
form DBN-MF on the HMDD50 database. HMDD is a man-
ually collected database on human miRNA-disease associations 
with experimentally supported evidence. HMDD V2.0 was 
published in 2013, which includes 5441 pairs of positive asso-
ciations between 501 miRNAs and 383 diseases after combin-
ing the miRNAs from different stages, such as has-let-7a-1 
and has-let-7a-2. Then in 2018, a new version HMDD V3.0 
was published that contains 2-fold more entries than the 
HMDD V2.0. After doing the same combining operation, 
HMDD V3.0 contains 17 198 positive associations between 
1065 miRNAs and 894 diseases. As there are no confirmed 
negative samples, we randomly choose a negative set with the 
same size as the positive set from all nonpositive (unknown) 
associations for the supervised training.

Evaluation methods

In this article, 10-fold cross-validation (10-fold CV) was used 
to evaluate the performance of DBN-MF. The 10-fold CV 
randomly divides the known positive associations and the same 
number of unknown samples into 10 folds, and each fold takes 
in turn as the test samples and the rest as the train set at each 
time. We do not use leave-one-out cross-validation (LOOCV), 
because the database is big enough for 10-fold CV and the 
computational model is based on a deep neural network which 
would be time-consuming with LOOCV.

To evaluate the result of the 10-fold CV from different 
aspects, the area under receiver operating characteristics (ROC) 
curve (AUC), the area under precision and recall (AUPR), and 
F1 score are used in this study. ROC curves show the true posi-
tive rate (TPR) against the false positive rate (FPR) under dif-
ferent score thresholds. Here, TPR is the percentage of positive 
samples that are correctly identified, whereas FPR refers to the 

percentage of negative samples that are identified as positive 
samples to all the negative samples. The AUPR curve plots the 
precision versus the recall at different thresholds, in which preci-
sion is a ratio of correctly predicted samples to the total sam-
ples, and recall is the same as TPR. F1-score is the harmonic 
mean of the precision and recall, which is defined as follows:

 F score precision recall
precision recall

1
2- =

+
* *  (13)

Hyperparameters

In this study, several hyperparameters affect the performance of 
the prediction. Because the supervised learning fine-tunes the 
parameters of unsupervised learning, the number of hidden 
layers hi and the number of nodes in each hidden layer hid_N 
on supervised learning is the same with DBN. For DBN, the 
basic architecture is determined by hi and hid_N. In our experi-
ment, we found that when the number of hidden layers is larger 
than 3, the model becomes stable. Therefore, we set the num-
ber of hidden layers to 4. We tried hid_N as {100, 150, 200, 250, 
300, 500}, the model gets the best performance with 200, and 
there is no big change from 150 to 250. Then we also tried 
hid_N as {180, 200, 220}, the model DBN_MF keeps the best 
performance in 200, so we set hid_N to 200.

Another 3 hyperparameters that determine whether the 
model is well trained are learning rate (lr), batch size (bs), and 
the number of epochs (ie). The previous studies51 showed that 
lr is usually selected as 0.01, and in our model, 0.01 is small 
enough to result in a stable state. For bs, it is usually set as the 
number of classes, and each batch usually contains at least 1 
sample from each class. However, we just have 2 classes in our 
model that may not guarantee the best performance of 
DBN-FM. Therefore, we set bs to different values from {2, 4, 6, 
8, 10}, and the prediction model obtains the best prediction 
ability of AUC when bs set as 8. For ie, we set it as 30, because 
the model becomes stable after 30 epochs.

Comparison with other algorithms

Comparison with the methods that integrated different kinds of 
evidence. DBN-FM model predicts miRNA-disease associa-
tions only based on the miRNA-disease adjacency matrix. 
However, most of the prediction methods integrated different 
kinds of data, such as gene co-expression networks, PPI net-
works, and disease phenotype network, to get more informa-
tion. In this section, we compare the performance of DBN-MF 
in predicting miRNA-disease associations with the other 5 
competing approaches, CIPHER,52 Boolean network 
method,24 Shi,34 PBMDA,53 and MDA-CNN.38 These 5 
methods are all based on heterogeneous networks. CIPHER is 
a network-based regression model that extracts the relation-
ships between phenotypes and genotypes, Boolean network 
method is a local similarity–based method, Shi is a random 
walk–based global similarity method, PBMDA is a path-based 
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method by constructing a heterogeneous network, and MDA-
CNN is a machine learning–based method. All these methods 
are tested on HMDD V2.0 data by a 10-fold CV evaluation 
method. Table 1 shows the AUC, AUPR, precision, recall, and 
F1-score of each method. Because the final results that we get 
from DBN-MF are the predicted association scores, so we 
need a threshold to get the predicted label. When calculating 
the precision, recall, and F1-score, we set the threshold as 0.5.

In Table 1, the bolded number is the largest in each column. 
According to the experimental results shown in Table 1, it is 
obvious that DBN-FM achieves the best performance on 
AUC, AUPR, precision, and F1-score. Even though DBN-FM 
cannot get the best performance in recall, its F1-score value is 
the highest one that is more balanced than recall value. 
DBN-MF achieves an AUC value as 0.9169, an AUPR value 
as 0.9043, and an F1-score as 0.8451 that are much higher than 
CIPHER, Boolean network, Shi, and PBMDA methods, and 
also higher than the other deep neural network–based method 
MDA-CNN. All in all, the experiments on HMDD V2.0 

showed that DBN-MF achieves the best performance on 
miRNA-disease association prediction.

Comparison with the methods based on the same information. In 
section “Comparison with the methods that integrated differ-
ent kinds of evidence,” we compared the performance of 
DBN-FM with some other prediction methods based on the 
heterogeneous networks. In this section, we compare DBN-
FM with the method random walk and binary regression–
based miRNA-disease association prediction (RWBRMDA)35 
that also predicts miRNA-disease associations only using  
the miRNA-disease association matrix. RWBRMDA was 
proposed in 2019 and it integrated random walk and binary 
regression to identify novel miRNA-disease associations  
and has a global similarity and supervised learning method. 
We perform DBN-FM and RWBRMDA on both HMDD 
V2.0 and HMDD V3.0, respectively, and the ROC and  
precision-recall curve (PRC) of the prediction results is 
shown in Figure 4.

Figure 4. The comparison between DBN-MF and RWBRMDA on data HMDD V2.0 and HMDD V3.0. (A) The ROC of DBN-MF and RWBRMDA. (B) The 

P-R curve of DBN-MF and RWBRMDA. DBN-MF indicates deep belief network–based matrix factorization; HMDD, Human microRNA Disease Database; 

ROC, receiver operating characteristics; RWBRMDA, random walk and binary regression–based miRNA-disease association.

Table 1. The comparison between DBN-MF and other 5 methods on AUC, AUPR, precision, recall, and F1-score value on miRNA-disease 
association prediction.

AUC AUPR prEcision rEcall F1-SCORE

CIPHER 0.5564 0.5612 0.4942 0.9954 0.6605

Boolean network 0.7897 0.8343 0.5876 0.9836 0.7356

Shi 0.7584 0.7896 0.7112 0.8615 0.7794

PBMDA 0.6321 0.6140 0.5192 0.9036 0.6594

MDA-CNN 0.8897 0.8887 0.8244 0.8056 0.8144

DBN-MF 0.9169 0.9043 0.8377 0.8526 0.8451

Abbreviations: AUC, area under the curve; AUPR, area under precision recall; DBN-MF, deep belief network–based matrix factorization; MDA, miRNA-disease 
association.
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Figure 4A shows that the DBN-FM achieves the AUC 
value of 0.92 on HMDD V2.0 (old data) and 0.94 on HMDD 
V3.0 (new data), which are both higher than the AUC value of 
RWBRMDA on HMDD V2.0 and HMDD V3.0, respec-
tively. In addition, both DBN-FM and RWBRMDA have bet-
ter prediction performance on the new data than the old data. 
Figure 4B shows the AUPR value of these 2 methods on both 
the new database and old database, and it has the same trend as 
the AUC value that DBN-FM achieves higher value than the 
RWBRMDA and they perform better on the new version 
database than on the old version database. In a word, 2 conclu-
sions can be drawn from Figure 4. First, the performance of 
DBN-FM is superior to the RWBRMDA method when they 
predict miRNA-disease associations based on the same infor-
mation. Second, a bigger database can help DBN-FM model 
improve the prediction ability.

Effects of DBN-MF components

To evaluate the performance of each step of DBN-MF, we 
compare DBN-MF with the other version of DBN-MF, which 
is DBN-SVM. In DBN-SVM, the first step is the same as 
DBN-MF, which uses DBNs to extract the features of miR-
NAs and diseases. Then, DBN-SVM trains an SVM-based 
classifier with the extracted features in the first step. Each pair 
of miRNA-disease is considered as a sample, and we combine 
their features extracted from the first step to represent the fea-
tures of a sample. Figure 5 shows the AUC value and AUPR 
value of DBN-MF and DBN-SVM on database HMDD 
V2.0 and HMDD V3.0.

According to Figure 5A, DBN-MF achieves a higher AUC 
value than DBN-SVM in both HMDD V2.0 and HMDD 
V3.0. Figure 5B shows that DBN-MF has better prediction 

ability than DBN-SVM on old data, while DBN-MF has the 
same prediction performance compared with DBN-SVM on 
new data when evaluated in terms of AUPR. Besides, DBN-
SVM has much better performance than the RWBRMDA 
method no matter based on the new data set or old data set. All 
in all, DBN-SVM also can effectively predict the miRNA-
disease associations, and it has better performance than 
RWBRMDA, but its performance is still not as good as 
DBN-MF, especially when the database is not so big. All these 
results demonstrate that both the DBN part and the backprop-
agation part play important roles in the good prediction perfor-
mance of DBN-MF, and the backpropagation is especially 
crucial when the data are not big enough. In addition, the 
results on the old database and new database further illustrate 
that a big database can result in better performance in miRNA-
disease association prediction than the small database.

Case study

To further demonstrate the prediction ability of DBN-MF in 
identifying novel miRNA-disease associations, DBN-MF is 
conducted on HMDD V2.0 for predicting all the unknown 
associations. The other 3 databases (HMDD V3.0, dbDEMC,54 
and miRCancer55) are used to verify the novel associations pre-
dicted by DBN-MF on database HMDD V2.0, and we also 
search the literature to confirm the newly predicted associa-
tions. In the prediction on data HMDD V2.0, 5441 positive 
associations and 5441 unknown associations are chosen as 
training samples. According to these 10 882 samples, DBN-MF 
trains a classifier, and the well-trained classifier is used to pre-
dict the association score for all the unknown associations. For a 
certain disease di, we rank the candidate miRNAs according to 
the predicted association scores, and the top several miRNAs 

Figure 5. The comparison between DBN-MF and DBN-SVM on the data HMDD V2.0 and HMDD V3.0. (A) The ROC of DBN-MF and DBN-SVM. (B) The 

P-R curve of DBN-MF and DBN-SVM. DBN-MF indicates deep belief network–based matrix factorization; HMDD, Human microRNA Disease Database; 

SVM, support vector machine; ROC, receiver operating characteristics.



8 Evolutionary Bioinformatics 

usually have a high probability to be associated miRNAs of dis-
ease di. Here, we analyze the prediction results of lung cancer 
and pancreatic neoplasms by the top 20 potential-associated 
miRNAs.

Lung cancer is one of the most common cancers that have a 
high rate to cause death because it is difficult to diagnose at the 
early stage.56 Nevertheless, miRNAs can act as biomarkers that 
help diagnose cancers in an early stage. Table 2 shows the top 
20 candidate miRNAs associated with lung cancer, which are 
predicted by the DBN-MF model based on the HMDD V2.0 
data set. In these miRNAs, 19 of 20 miRNAs have been veri-
fied to have associations with lung cancer according to database 
HMDD V3.0, dbDEMC, miRCancer, or previous literature. 
Furthermore, for the unconfirmed miRNA has-mir-208b, a 

previous study57 showed that has-mir-208b was significantly 
upregulated in all moderate pulmonary hypertension subjects, 
and pulmonary hypertension is a common phenomenon in 
lung cancer patients, which indicates that has-mir-208b also 
has a high probability to associate with lung cancer. The results 
in Table 2 demonstrate the effectiveness of our DBN-MF 
model in predicting novel associations between miRNAs and 
lung cancer.

Pancreatic neoplasm is another high incidence of disease 
that also causes a large number of deaths every year. To further 
demonstrate the performance of DBN-MF, we analyze the top 
20 novel associations between miRNAs and pancreatic neo-
plasm that predicted by the DBN-MF model based on data 
HMDD V2.0. The results are shown in Table 3, in which 18 of 

Table 2. The prediction results of the top 20 new miRNA-disease associations of lung cancer.

LUNG CANCER

RANK miRNAs REFERENCES RANK miRNAs REFERENCE

1 has-mir-15b miRCancer, dbDEMC 11 has-mir-208a HMDD V3.0

2 has-mir-106b dbDEMC 12 has-mir-184 HMDD V3.0

3 has-mir-20b dbDEMC 13 has-mir-451a HMDD V3.0

4 has-mir-195 miRCancer 14 has-mir-328 HMDD V3.0

5 has-mir-373 HMDD V3.0 15 has-mir-302a dbDEMC

6 has-mir-372 HMDD V3.0 16 has-mir-340 HMDD V3.0

7 has-mir-208b Unconfirmed, high probability 17 has-mir-23b PMID:30214567

8 has-mir-141 HMDD V3.0 18 has-mir-204 PMID:25157435

9 has-mir-129 HMDD V3.0 19 has-mir-15a HMDD V3.0

10 has-mir-92b dbDEMC 20 has-mir-122 HMDD V3.0

Abbreviations: HMDD, Human microRNA Disease Database; miRNA, microRNA.

Table 3. The prediction results of the top 20 new miRNA-disease associations of pancreatic neoplasms.

PANCREATIC NEOPLASM

RANK miRNAs REFERENCES RANK miRNAs REFERENCE

1 has-mir-26b dbDEMC, HMDD V3.0 11 has-mir-208b dbDEMC

2 has-mir-30b dbDEMC, HMDD V3.0 12 has-mir-133a dbDEMC, HMDD V3.0

3 has-mir-106b dbDEMC, HMDD V3.0 13 has-mir-29c dbDEMC, HMDD V3.0

4 has-mir-499a unconfirmed 14 has-mir-181c dbDEMC, HMDD V3.0

5 has-mir-20b dbDEMC 15 has-mir-30a dbDEMC

6 has-mir-9 dbDEMC 16 has-mir-141 dbDEMC, HMDD V3.0

7 has-mir-195 dbDEMC, HMDD V3.0 17 has-mir-181a dbDEMC

8 has-mir-373 dbDEMC, HMDD V3.0 18 has-mir-140 dbDEMC

9 has-mir-125a dbDEMC, HMDD V3.0 19 has-mir-129 dbDEMC

10 has-mir-372 unconfirmed 20 has-mir-19b dbDEMC

Abbreviations: HMDD, Human microRNA Disease Database; miRNA, microRNA.
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20 novel associations have confirmed in database dbDEMC or 
HMDD V3.0, and only 2 predicted associations has-mir-499a 
and has-mir-372 are not confirmed. The prediction results in 
Table 3 further illustrate the validity and feasibility of our pre-
diction model.

Conclusions
MiRNAs were demonstrated to associate with a variety of dis-
eases and can be biomarkers of diseases. Identifying miRNA-
disease associations contributes to understand the underlying 
pathogenesis of diseases and provide proper disease treatment. 
As more and more miRNA-related and disease-related data-
bases were created based on the biological experiments, 
researchers began to focus on predicting the miRNA-disease 
associations by computational methods. In this study, we have 
proposed a DBN-based matrix factorization model named 
DBN-MF to identify the underlying miRNA-disease associa-
tions. First, the unsupervised learning DBNs were trained with 
miRNAs’ and diseases’ raw features, respectively, and the 
extracted features were obtained. Second, a classifier with 2 
pretrained DBNs is trained in the section of supervised 
machine learning for fine-tuning the parameters of our model. 
Finally, the well-trained model was used to predict the associa-
tion score for each pair of unknown miRNA-disease. We com-
pared DBN-MF model with previous computational methods 
on HMDD V2.0 and HMDD V3.0, the experimental results 
showed that DBN-MF achieved much better prediction per-
formance than the previous methods for both AUC and AUPR 
no matter based on the same information or with the methods 
based on multiple types of evidence. The results on database 
HMDD V3.0 were better than HMDD V2.0, which demon-
strated that a more sufficient database can help improve the 
performance of the prediction method. Also, the case study 
further illustrated the effectiveness of DBN-MF.

The excellent performance of DBN-MF is attributed to 
several important factors. First, this model took full advantage 
of the valid and updated miRNA-disease association data veri-
fied with biological experiments. Even though it did not inte-
grate multiple types of data, the association data were sufficient 
enough to train a good model. Second, the unsupervised train-
ing of DBNs can learn the latent features of miRNAs and dis-
eases very well, and well-trained DBNs are obtained with all 
the miRNAs or diseases, so this model includes the global 
information. Finally, backpropagation has a strong ability for 
learning the underlying complex associations between miR-
NAs and diseases with the labeled data. In summary, the excel-
lent performance of this model is attributed to the nonlinear 
features of diseases and miRNAs that our proposed deep net-
works learned in the process of matrix factorizations. This 
advantage reveals the information that the traditional linear 
matrix factorization methods cannot learn.

Although DBN-MF shows great performance in predicting 
novel miRNA-disease associations, there are also some limita-
tions. For example, the calculation of DBN-MF is based on 

miRNA-disease associations, so it cannot predict the novel 
associations for new diseases or miRNAs that have no known 
associations with miRNAs or diseases. In the future, we would 
further improve our model by extracting the features of miR-
NAs and diseases based on more and various types of informa-
tion on miRNAs and diseases, such as the genes that miRNAs 
targeted, the GO terms of miRNA, the protein-protein net-
work, and the disease phenotype. Specifically, we could inte-
grate the miRNAs’ and diseases’ features extracted by DBN-MF 
with the miRNAs’ and diseases’ features extracted from other 
types of data. For example, first, the miRNAs’ semantic features 
can be described according to manifold learning method by 
miRNA target gene information from the database mirTar-
Base58 and the gene ontology annotations from the database 
GO.59,60 The disease semantic features can be obtained accord-
ing to the manifold learning method by directed acyclic graph 
(DAG) constructed by the MeSH descriptors (https://www.
nlm.nih.gov/). Then each miRNA or disease can be repre-
sented by integrating its DBN-MF features with its semantic 
features. Finally, we get an association score for each pair of 
miRNA-disease according to the integrated features of miR-
NAs and diseases. Also, we may use iFeature,61 iLearn,62 
BioSeq-Analysis2.0,63 or BioSeq-Analysis64 to extract the fea-
tures of miRNAs for improving our method.
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