www.nature.com/scientificreports

scientific reports

W) Check for updates

Squeezed-light-driven force
detection with an optomechanical
cavity in a Mach-Zehnder
interferometer

Chang-Woo Lee'?, Jae Hoon Lee?* & Hyojun Seok*™

We analyze the performance of a force detector based on balanced measurements with a Mach-
Zehnder interferometer incorporating a standard optomechanical cavity. The system is driven by a
coherent superposition of coherent light and squeezed vacuum field, providing quantum correlation
along with optical coherence in order to enhance the measurement sensitivity beyond the standard
quantum limit. We analytically find the optimal measurement strength, squeezing direction, and
squeezing strength at which the symmetrized power spectral density for the measurement noise is
minimized below the standard quantum limit. This force detection scheme based on a balanced Mach-
Zehnder interferometer provides better sensitivity compared to that based on balanced homodyne
detection with a local oscillator in the low frequency regime.

Quantum mechanics hinders the ability to measure a physical observable with arbitrarily high precision in con-
tinuous measurements. The corresponding quantum object being measured is not only agitated by its environ-
ment, but also disturbed by a quantum probe'. Therefore, the quantum limit of the measurement sensitivity is
associated with the quantum characteristics of the object, the probe, and their mutual interactions. Efforts to opti-
cally measure the mechanical motion with high sensitivity triggered the research field of cavity optomechanics>*
in which the intensity of a cavity field is coupled to the motion of a mechanical oscillator via radiation pressure
force®. This type of optomechanical measurement first became relevant in research where feeble forces act on
macroscopic quantum objects® and in gravitational wave detection’. It has been known that the noise resulting
from individual photons randomly arriving at the detectors for absorption, and the noise due to random scat-
tering events between intracavity photons and the mechanical oscillator limit the measurement sensitivity of the
displacement or the external force®®’. These two types of noises, namely the photon counting noise and the radia-
tion pressure backaction noise, have opposite scaling behavior with respect to the input laser power: increasing
the input power decreases the photon counting noise but increases theradiation pressure backaction noise, and
vice versa. Balancing these two noises gives rise to the so-called standard quantum limit (SQL) that describes
the limit of sensitivity for conventional interferometric measurements®®°. Routes to enhancing the sensitivity
beyond the SQL thus requires evading the photon counting noise or the radiation pressure backaction noise.
Nonclassical states of light are possible resources for enhancing the sensitivity of displacement or force sen-
sors. Particularly, squeezed states of light are one of the most prominent nonclassical probes of which the quan-
tum fluctuations in one of the quadratures are less than the vacuum noise level'*!!. Employing squeezed states of
light was first proposed to demonstrate a reduction of the photon counting noise in the context of gravitational
wave detection, yet undesirably accompanying an increase in the radiation pressure backaction noise'®. This
proposal prompted much theoretical effort on overcoming the SQL for gravitational wave detection, for example,
exploiting quantum correlation in the input field'?, frequency-dependent squeezing of the input field'*-'?, and
variational measurements of the output field’®-*. Such suppression of photon counting noise by squeezing has
been realized in various types of table-top interferometers including Mach-Zehnder?, polarization®?, Sagnac®,
and Michelson interferometers* and recently demonstrated with gravitational wave interferometers®. It has also
been experimentally shown that squeezing the input field can modify the radiation pressure backaction noise®.
Another approach to surpassing the SQL is using quantum nondemolition (QND) measurements in which the
observable being measured is not dynamically coupled to its conjugate observable?’-?’. In QND measurements,
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Figure 1. (a) Schematics of the Mach-Zehnder interferometer incorporating an optomechanical cavity for
quantum enhanced force detection. The coherent field and squeezed vacuum field are combined at the first
50/50 beam splitter (BS1) producing an input field for the optomechanical cavity and a correlated reference field.
The field exiting the optomechanical cavity is then combined with the reference beam at the second 50/50 beam
splitter (BS2) for balanced detection. (b) Schematics of a standard homodyne optomechanical force sensing
setup. The output field of the optomechanical cavity is combined with a local oscillator field at BS2. In both
schemes, the photon flux difference between the two output ports of BS2 is measured in order to analyze the
noise spectrum.

such dynamical decoupling restrains backaction noise of the conjugate observable from being fed back into the
observable being measured, allowing for backaction-evading measurements. A simple example of QND meas-
urements in cavity optomechanics is to measure a static observable, for instance, only one of the quadratures of
the mechanical motion”~*. Such backaction-evading measurements have been experimentally demonstrated
by modulating the amplitude of the driving field in single-mode mechanical systems*~** and in a collective
quadrature of multimode mechanical systems®>?*. Recently, dynamical decoupling between an observable and
its conjugate was proposed in the so-called quantum-mechanics-free subsystem (QMES) by introducing an
anti-backaction noise path in the system dynamics for coherent cancellation of the backaction noise*”*%. Such
observables in the QMFS are dynamical QND observables in that they evolve in time but are not coupled to
their conjugate observables®. Backaction-evading measurements of motion based on QMFS have been pro-
posed in a variety of optomechanical systems including an optomechanical cavity incorporating Kerr medium®,
Bose-Einstein condensates*’, an optomechanical cavity with an auxiliary cavity*, and hybrid atom-optomechan-
ical systems*>**. Furthermore, it has recently been reported that the backaction noise is somewhat suppressed
in atomic ensembles that are subject to external magnetic fields*.

In this paper, we study schemes employing quantum correlations in squeezed states of light and further utilize
the notion of coherent quantum-noise cancellation developed in QND measurements to suppress the photon
counting noise in an optomechanical force sensor operating in the low frequency regime. Specifically, we analyze
the performance of a force detector based on a balanced Mach-Zehnder interferometer (MZI) incorporating
a standard optomechanical cavity. The optomechanical system is driven by a coherent superposition of coher-
ent light and squeezed vacuum field, providing quantum correlation along with optical coherence in order to
enhance the measurement sensitivity beyond the SQL. We analytically find the optimal measurement strength,
squeezing direction, and squeezing strength at which the symmetrized power spectral density (sPSD) for the
measurement noise is minimized below the SQL. This force detection scheme based on a balanced MZI provides
better sensitivity compared to that based on a balanced homodyne detection with a local oscillator field in the
low frequency regime.

The remainder of this paper is structured as follows. In “Results” section we provide a description of the
model system of interest and discuss the quantum characteristics of the optomechanical cavity output field. We
then compare the measurement sensitivity of the two detection schemes, specifically, the balanced homodyne
detection scheme and the balanced MZI scheme. In “Methods” section we present detailed derivation of the
sPSD of the measurement noise, and subsequently show the optimization processes for suppressing the sPSD
with respect to the squeezing direction and squeezing strength. Finally, we give our summary and conclusions
in “Conclusions” section.

Results

Model system. We consider a Mach-Zehnder interferometer in which an optomechanical cavity of reso-
nant frequency w, with a harmonically bound mirror of mass m and mechanical frequency €2 is integrated into
one of the optical paths depicted in Fig. 1a. A coherent mixture of monochromatic coherent light and squeezed
vacuum is created with a 50/50 beam splitter (BS1). The coherent light oscillates at frequency wr, while the broad-
band squeezed vacuum is characterized by squeezing strength r, squeezing direction 6, and central frequency
wr.. The optomechanical system is optically driven by this coherently superposed field, and the output field from
the optomechanical cavity is combined with the reference field at a second 50/50 beam splitter (BS2). In order
to analyze the quantum noise introduced by this measurement scheme, the difference in photon flux between
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the output ports of BS2 is measured, i.e., balanced detection. The Hamiltonian governing the dynamics of the
optomechanical system in a frame rotating at the driving frequency reads

H = —hAd"a + ih/kmain(@" — @) + 7(212 + %) — hgov/2a"ag + Hyis + Hext. (1)

The first two terms describe the cavity field driven by a pump field of detuning A = wp — w, with rate \/kin@tin
where kiy is the loss rate through the cavity input port mirror, and e, = +/P/(hwr) is the coherent amplitude
of the input field with P being the continuous wave optical power into the cavity. The bosonic annihilation
operator of the cavity field 4 satisfies the relation [, 4"] = 1. The third and fourth terms describe the mechanical
oscillator driven by the intracavity radiation pressure, where g is the single-photon optomechanical coupling
coefficient. The position and momentum operators of the mechanical oscillator are normalized by the natural
length go = +/f/(mS2) and momentum py = ~/ im§2 so that the dimensionless position and momentum opera-
tors of the mechanics § and p satisfy [, p] = i. Hgiss which accounts for dissipation and decoherence represents
the incoherent interaction of the optomechanical system with the optical reservoir at zero temperature and the
mechanical bath at finite temperature T. Finally, Hey describes the coupling between the momentum of the
mechanical oscillator and an external force to be measured. In this setup, the external force changes the dynamic
variables for the mechanics, and subsequently the phase of the output optical field through the optomechanical
interaction. In this manuscript, we assume a weak external force where the effects on the optomechanical sys-
tem is similar to other noise levels. Hence, we focus only on the generic quantum noise generated by the force
measurement process.

Output field from the optomechanical cavity. Mean fields. The semiclassical equation of motion for
the cavity field derived from Eq. (1) can be written as

& = (iAeg — k/2) + /Kin®in, (2)

where the classical mean field amplitude for the cavity field is denoted by « = (a) and the effective detuning is
defined by Ao = A 4 +/2g0(q). We assume for simplicity that there are no other loss channels except that from
the cavity input port. Therefore, the total dissipation rate for the cavity field is simply the loss rate of the input
port mirror, k = Kin. In the case where there are other loss channels, such as cavity internal loss, one can expect
limited quantum enhancement of the measurement sensitivity*>*. Then the steady-state solution for the mean
cavity field amplitude in the long-time limit can be obtained as

JR

Qg = —— -«
—iAef + /2

in- (3)
The steady-state position for the mechanics can be similarly obtained as (q)ss = —~/2g0|atss|?/ 2. Invoking the
input-output relation, oyt = din — +/Kind, results in the steady-state coherent amplitude for the cavity output
field as

—iAe —K/2

“ideg 420 )

Qout =
Notice that the magnitude of the coherent amplitude is the same for the cavity input and output fields, but there is
a difference in phase depending on the optomechanical interaction. This phase shift of the optical field accounts
for various static optomechanical effects, for example, the static optomechanical spring effect and the optical
bistability*”*%. In this paper, we assume that the effective detuning is zero so that the steady-state intracavity field
amplitude is simply ags = 2ain /+/k and the classical amplitude of the input and output field is 180° out of phase,
Qout = —Uin. As is well-known, zero effective detuning does not lead to various dynamic optomechanical effects
including optomechanical cooling or amplification of the mechanical oscillator**-*!, entanglement between the
mechanical motion and cavity fields®, and optomechanically induced transparency™, to mention just a few.

Quantum fluctuations. So as to better capture the steady-state features of the quantum fluctuations in the
optical and mechanical fields, we transform to a displaced frame where the expectation values of the optical
field operator and the mechanical oscillator position operator are zero. Performing the displacement operation,
a— ag +d,q — (q)ss + Q, the Heisenberg-Langevin equations of motion for the quantum fluctuations of the
optical field and the mechanical oscillator can be approximated as*®

A K A~ A
X = _EX + \/EXina (5a)
2 K A N A
Y:—EY-}—ZgQ—{—\/EYm, (5b)
Q= QP (5¢)
P=—-QQ—TP+2¢X + V2IPy, (5d)
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where the intrinsic nonlinear optomechanical coupling is neglected in the weak coupling regime, g = gooss is
the field-amplified optomechamcal coupling strength, and I' is the mechanical dissipation rate. The operators
X=1 (dT + d) andY = f (d T d) represent the quantum fluctuations of the amplitude and phase quadrature
for the 1ntracav1ty field, and Xin and Vin are the input field noise operators for the two quadratures of the cavity
field. Finally, P, = = Fi + Fext represents the force acting on the mechanical oscillator where Fy, and Foxt are the
operators for the thermal force and the external force of interest, i.e., force to be detected, with units of /Hz.

Now that the Heisenberg equations of motion for the quantum fluctuations are linear with respect to the
field operators, it is convenient to solve them in the frequency domain exploiting the Fourier transform for the
operators,

~ _ L iwt A
O(w) = m/dte O(t). (6)

With the input-output relation in the frequency domain, Elout (w) = fAiin(w) — \/I?gl (w), the fluctuations in the
quadrature for the output field are obtained as

~ X5 4
Xout(@) = — == Xin (@), (7)
Xo
N XF 4 N o
Yout(w) = — 70 in(®) + 4GX:2XmXin(w) — 2~ ZFGX:XmPin(w)- (8)
o

Here, we have defined the measurement strength
G =g’k = 4gyP/(hwy), 9)

where we used the definition of the amplified optomechanical strength g = goas, the steady-state intracavity field
amplitude oy = 2ain /K for resonant driving, and the coherent amplitude of the input field ain = /P/(hwr).
Note that while the intracavity photon number is inversely proportional to the cavity linewidth, the measurement
strength G is independent of the cavity linewidth since it is directly related to the photon number in the output
field. The optical and mechanical susceptibilities are given by

1
Xo —ma (10)
Q
Xm = (11)

Q2 — w? — il

As can be inferred from Fig. 1, the quantum noise in the input field of the optomechanical system derives

from the coherent superposition of the vacuum fluctuations dy and squeezed vacuum fluctuations dsq. Since

the squeezed vacuum undergoes a reflection at BS1 there is a relative phase of 90° between the two fields, i.e.,
din = (dy + zdsq) /~/2. The quantum fluctuations in the quadrature of the output field then become

~ 1
Kout(@) = — ﬁ))‘(" %@ - Tq@)], (12)

g Xe
out(W) = — E)T
o

It is important to note that the external force is imprinted only on the phase quadrature of the output field. This
consequence can be attributed to having zero effective detuning which leads to the amplitude quadrature of the
output field containing no information of the mechanics™. Thus, in order to capture information with regard
to the external forces of interest one must measure Yoy (w). The additional quantum fluctuations are inevitably
introduced in the measurement of the phase quadrature of the output field.

N N 1 N ~ A~
To(@) + Rq(@)] + 546270 [(@) = T@)] = 200G snPine. (13

Balanced homodyne detection with a local oscillator field. We first explore a scheme based on a
balanced homodyne detection with a local oscillator (LO) field which may be considered more prototypical,
as depicted in Fig. 1b in order to better appreciate the performance of our proposed balanced Mach-Zehnder
measurement scheme which optimally utilizes quantum interference effects. As shown in Fig. 1b, the output field
from the optomechanical cavity is coherently mixed with a LO field at BS2. The optical fields a4, a_ at the two

output ports of BS2 can be described as
a+ _ L 1i aout
()= () (). w

where ar o is the bosonic annihilation operator for the LO field. If the amplitude of the LO field is sufficiently
larger than that of the cavity output field, the LO field can be treated classically. The quantum fluctuations in the
photon flux difference between the two output ports I = a' a_ — ﬁi?ur, can now be approximated as
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81 = —v2|a101(Yout cos ¢ + Xout sin @), (15)

where a0 = |oro e is the complex amplitude of the LO field. Since the force we want to detect is only depend-
ent on Yoy, see Eq. (13), setting ¢ = 7 for maximum amount of information gives rise to

81 = V2Jaro| Your. (16)

It should be kept in mind that 81 does not contain interference between ¥,y and additional quantum fluctuations
since the LO is treated classically. The role of the LO field in this scheme is to choose the appropriate quadrature
for measuring the output field, Yo, without adding additional quantum fluctuations.
In this situation, the unbiased estimator for the external force of interest reads
SI(w)

Feg() = ——
© 4a1olVT G xm

where F(w) is the quantum noise introduced in this force measurement scheme and can be written as

= ﬁ(w) + ﬁ‘ext(w)> (17)

F(w) = cy, Yo (@) + cx, Xiq(@) + cx, Xy (@) + ey, Viq (@) + Fin (@) (18)
with
1 G ., (19)
Yy = /== Xq = X =\ T Xo> CYq = —CX-
4T GxoXm ‘ re ‘

It is apparent from Eq. (19) that the quantum fluctuations in the the phase quadrature of the vacuum field are in
phase with those in the amplitude quadrature of the squeezed vacuum field. Contrarily, the quantum fluctuations
in the amplitude quadrature of the vacuum field are perfectly out of phase with those in the phase quadrature of
the squeezed vacuum field. Additionally, we can deduce that in the weak-driving regime the quantum noise in
the phase quadrature for the vacuum field and the amplitude quadrature for the squeezed vacuum field will be the
dominant sources of detection noise, since cy, and cx,, are inversely proportional to the square root of the meas-
urement strength. On the other hand, since both cx, and cy,, are proportional to the square root of the measure-
ment strength, the quantum noises in the amplitude quadrature for the vacuum field and the phase quadrature for
the squeezed vacuum field will be the dominant sources of detection noise in the strong-driving regime. Finally,
the thermal fluctuations of the mechanical oscillator are independent of the measurement strength, as expected.
We are now in a position to calculate the sPSD of F(w) relevant to the homodyne detection

Srr(w) = %[SFF((U) + Srr(—w)], (20)

where Sgr(w) is the self-PSD of F(w) and is defined by
0 A A
Srr(w) = / do'(F' (=) F (). (21
—00

Since F(w) has the dimension of 1 /~/Hz, Sgr(w) is thus dimensionless in the unit system used in this manu-
script. Note that 2I'mhQSgr (w) with units of newtons squared per hertz should be used when comparing with
experimental measurements in the laboratory. Assuming that the vacuum fluctuations, the squeezed vacuum
fluctuations, and the thermal fluctuations of the mechanics have no memory effect and are uncorrelated with
respect to each other, the derivation of the sPSD of F(w) is rather straightforward and is presented in “Methods”
section. The resulting sPSD of F(w) can be decomposed into contributions from the vacuum, squeezed vacuum,
and thermal fluctuations as

SFF (w) = Sv(w) + 3sq (w) + Sth(w)’ (22)

where the contribution from the vacuum noise is

Sy(@) = = [lex, I* + ley, 1] (23)

| =

the contribution from the squeezed vacuum noise

1 1 . .
Seq(@) = = cosh(Zr) [|stq 2 + Yy |2] + 3 sinh(2r) [cos@(lcxsq 12— vy, |2) — sin 0 Re[2cx,, cisq]],

(24)
and the contribution from thermal fluctuations of the mechanics

Sth(w) 5 |:”th(w) + ] (25)

with 7y, (0) = [exp(hw/kgT) — 117! being the mean phonon occupation number in thermal equilibrium with
the mechanical reservoir at finite temperature T.
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Figure 2. (a) sPSD of F(w) as a function of scaled measurement strength G/ Q3 (red solid curve) along with
the photon counting noise (blue dotted curve), radiation pressure backaction noise (black dot-dashed curve)
and the standard quantum limit (gray dashed curve). (b) Standard quantum limit as a function of the scaled
detection frequency. The parameters used are k / Q = 10%,T/Q = 1073,

Standard quantum limit. In the case when the squeezing strength is zero, Sgr(w) is given by

! Glxol | | (@) + > (26)
—|n w — .
160G~ T @™ 2

Srr(w) =

The first term, stemming from Yy (w) and X,q (@), is known as the photon counting noise. The second term is
known as the radiation pressure backaction noise and derives from Xy (w) and Ysq (). Notice that the optical
susceptibility affects the photon counting noise and the radiation pressure backaction noise in an inversed man-
ner. Roughly speaking, a large cavity linewidth decreases the intracavity photon number, and therefore increases
the photon counting noise while decreasing the radiation pressure backaction noise. Figure 2a shows the sPSD
of F(w) as a function of the scaled measurement strength at w = . This plot depicts the common behavior that
the photon counting noise is the dominant source of fluctuations at weak measurement strengths while the back-
action noise becomes dominant at strong measurement strengths. For this reason, the sPSD can be minimized
with respect to the measurement strength where one balances between the photon counting noise and radiation
pressure backaction noise to reach the SQL

w

_ 1
S -,
sqQL(®) A ] + 20 (27)

with the mechanical bath at zero temperature and the measurement strength
1

Gsqu = ———.
4|X0|2|Xm|

(28)
The first term in Eq. (27) comes from the quantum nature of the optical field and the second term results from
the zero-point fluctuations of the mechanics. It is interesting to point out that the radiation pressure backaction
gives rise to the dependence of the response function of the mechanics in the first term. Figure 2b shows the SQL
as a function of the scaled detection frequency w/ €2 with a fixed mechanical damping rate. Since the mechanical
susceptibility is maximized at the mechanical frequency, x,(2) = i/ I, the sPSD for the measurement noise
reaches the lower bound which is unity in the unit system used in this manuscript.

Beating the SQL with squeezed vacuum. In the case where r # 0, one can exploit the quantum correlation in
the squeezed vacuum fluctuations to increase the sensitivity beyond the SQL. It is obvious from Eq. (24) that the
sPSD resulting from the squeezed vacuum fluctuations has two contributions. The first term in Eq. (24) repre-
sents the photon counting noise and the radiation pressure backaction noise which increase with the squeezing
strength while are independent of the direction of squeezing. The second term is associated with the quantum
correlation of the squeezed vacuum fluctuations and is subject to both the direction and strength of squeezing.
Therefore, the sSPSD can be minimized with respect to the angle of squeezing as well as the squeezing strength.
With broadband and frequency-dependent squeezing®, the optimization procedure is rather straightforward
and is presented in “Methods™* section. By applying the optimal squeezing strength and squeezing angle at a
given frequency, the minimized sPSD can be found as

1 Glxo* o o
2 2 t5t5
320Gl xo 2 xm] 2 40 Q

- _ 1

Srr(w) = |:”th (@) + 5} (29)
The first and second terms introduced by the vacuum fluctuations characterize the photon counting noise and
radiation pressure backaction noise, respectively. Notice that the sPSD due to the photon counting noise and
radiation pressure backaction noise are halved compared to those in Eq. (26) since the photon counting and
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Figure 3. (a) Optimal measurement strength as a function of scaled detection frequency w/ €2 for the case
where the output field interferes with a classical LO field (red solid curve) and a MZI reference field (blue dashed
curve). (b) Optimized squeezing strength as a function of the scaled detection frequency. The parameters used
arex/Q = 10%and '/ Q = 1073,

radiation pressure backaction noise in Eq. (29) result from only the vacuum fluctuations. The third term results
from the squeezed vacuum fluctuations and is optimized with respect to both the squeezing strength and direc-
tion, but surprisingly depends only on the detection frequency scaled to the mechanical frequency. Finally, by
balancing the photon counting and backaction noise the sPSD can reach an optimized lower bound

_ 1 3w
Sopt — i
L T PRIPTS

(30)

with the mechanical bath at zero temperature, the optimum measurement strength
Gopt = GsqL» (31)

the optimum squeezing direction
Gopt = 5) (32)

and the optimum squeezing strength
(33)

Notice that the optimum measurement strength is the same as that for the SQL in that the optimized photon
counting and radiation backaction noise scale in the same manner as that for the SQL. In addition, 0, is inde-
pendent of the physical parameters of the optomechanical system as well as the detection frequency. This under-
lies the fact that the optimized squeezing is along the 77 /4 direction in phase space so as to lead to a maximum
negative correlation between quantum fluctuations in the amplitude and phase quadratures'. In contrast to the
squeezing direction, ropt relies on mechanical parameters such as the quality factor of the mechanical oscillator
and the detection frequency.

Figure 3a,b show the scaled optimal measurement strength and the optimal squeezing strength as a function
of scaled detection frequency w/ Q2 with a fixed cavity linewidth and mechanical damping rate (red solid curve),
respectively. When the detection frequency is the same as the mechanical frequency, the mechanical susceptibility
is maximized and both the optimum measurement strength and squeezing strength are minimized. In this on-
resonance case, the optimal squeezing strength is zero, indicating that the squeezed vacuum field can not assist
in beating the SQL for enhanced sensitivity. As the detection frequency moves off resonant from the mechanical
frequency, the mechanical susceptibility decreases so that Gopt and 7opt increase in a monotonic fashion. It should
be kept in mind that force measurements of dc fields or frequencies much larger than other system parameters
are out of scope in this manuscript since the optimum squeezing strength approaches infinity. This condition
breaks the essential assumption for the linearization of the optomechanical interaction, i.e., the amplitudes of
the quantum fluctuations are much smaller than the relevant classical expectation values*”.

Figure 4a shows the optimum sPSD along with the SQL as a function of the scaled detection frequency,
displaying that the optimum sPSD is always lower than the SQL except on resonance. Figure 4b presents the
optimum sPSD normalized with the SQL, indicating that S;gt (w) is one half of the SQL when the detection
frequency is far off-resonance. In the case of far off-resonance, the contribution from the squeezed vacuum
fluctuations can be considered to be negligible leading to the vacuum field contribution in Eq. (30) to be halved
compared to that in Eq. (27).

Balanced Mach-Zehnder interferometer. In this section, we present the sPSD corresponding to
the quantum noise introduced in the measurement process described in Fig. la. In this scheme the coherent
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Figure 4. (a) Optimum sPSD of F(w) as a function of scaled detection frequency w/ 2 (red solid curve) along
with the SQL (black dashed curve). (b) Optimum sPSD of F(w) normalized to the SQL as a function of the
scaled detection frequency. The parameters used are '/ Q = 1072,

hght experiences a reflection at BS1 where the quantum fluctuations in the reference field can be written as
dref = (idy + dsq)/~/2. Subsequently, the output field from the optomechanical cavity is coherently mixed with
the reference field at BS2. The optical fields a, a_ at the two output ports of BS2 can be written as

a L (11 (Gou
£)- 50D E)

where the additional i in front of the field operator for the reference field accounts for a reflection at BS1. The
quantum fluctuations of the balanced signal between the two output ports I canbe approximated as

5t = V2 am< ot — Xf) (35)

where we have used the fact that the reference field is ahead of the input field in relative phase by 90°, aref = ictin,
and the output field is 180° out of phase relative to the input field, ¢out = —in. Xref = (—Yyv + qu)/\/i repre-
sents the quantum fluctuations in the amplitude quadrature of the reference field. Notice that the quantum
fluctuations in the phase quadrature of the output field interfere with those in the amplitude quadrature of the
reference field destructively. Owing to the fact that the term for optical shot noise in the phase quadrature of the

output field is given by — % );(—“ <17 + )A(Sq> from Eq. (13), the resulting optical shot noise in 81 can be described
by —ain X Zza)Y + Kqu Overall, the unbiased estimator for the external force of interest can be obtained as
Fa(@) = ——2D  _ Pw) + Py (@), (36)

40in VT G Xm

where F(w)is the quantum noise concomitant in this force measurement scheme and can be written in the form
of Eq. (18) with the relevant coefficients

iw K G
Y, = = Xy = 5OV X, = —\/ S Xos Yy = —CX,- (37)
2JTGom 2iw VT

While cy, = cx, ,in Eq. (19), the destructive interference between Yoyt () and X, (w) at BS2 results in a different
scaling between Yy () and Xgq(w). Keep in mind that the contribution from the squeezed vacuum fluctuations
manifests itself in the regime where the cavity linewidth is much larger than the detection frequency, therefore,
we limit ourselves to the regime where @ < k. Comparing this balanced MZI based scheme with the conven-
tional balanced homodyne scheme, we observe that the optical shot noise now displays quantum interference
between the cavity output field and the reference field. On the other hand, the coeflicients associated with the
fluctuations in the amplitude quadrature of the vacuum field and the phase quadrature of the squeezed vacuum
field are the same for the two schemes, so that the contribution from the radiation pressure backaction noise and
the thermal noise remain the same. In other words, the quantum interference between the cavity output field and
the reference field alters only the photon counting noise which differentiates the two schemes.

Before exploiting the quantum correlation in the squeezed vacuum field, it is helpful to consider the case
where r = 0 for completeness. In this case, the sPSD of F(w) is given by
1 n Glxol?
8T Gl Xol* | xm* r

_ w 1

S w) = + — n w) + —|. 38
FF (@) Q|:th() 2] (38)

As expected, the radiation pressure backaction noise contribution and thermal noise contribution are the same

as those in Eq. (26). However, the photon counting noise is doubled compared to that in Eq. (26) due to the

presence of optical shot noise in the reference field. This result entails that we should not expect any additional

benefits by exploiting quantum interference in the case of zero squeezing strength.
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Beating the SQL based on squeezed vacuum and quantum interference. We now turn to the case where r # 0
to explore the effects of quantum interference and quantum correlation in the squeezed vacuum field on the
detected quantum noise. As mentioned before, minimizing the sPSD of F(w) with respect to the squeezing
strength and direction leads to

w? G|Xo|2 Q)K|X0|2

8CGlxml2 = 2T 4QT

Ik
2

w? — Q?

Srr(w) =

w | _ 1
+ o) |:nth(w) + 5} (39)

It is instructive to discuss the key features following the quantum interference in Eq. (39), which we note is
absent in Eq. (29). First, notice that while the radiation pressure backaction noise and the thermal noise are the
same, the photon counting noise is different when compared to Eq. (29). A large cavity linewidth compared to the
detection frequency leads to increased photon counting noise and decreased radiation pressure backaction noise
in Eq. (29). However, in Eq. (39), a relatively large cavity linewidth decreases the radiation pressure backaction
noise but does not alter the photon counting noise. Second, the term due to the squeezed vacuum fluctuations,
i.e., third term in Eq. (39), is minimized at frequency

r
Q = \/92+7", (40)

whereas in Eq. (29), this term is independent of the optical cavity parameters. As before, balancing between the
photon counting noise and radiation pressure backaction noise can suppress the sPSD of F(w) to reach a lower
bound

R | Xol CUK|X0|2 2 2 '« @
Sp (@) = — "= Q= — |+ =, 41
Fr (@) 2T | xml 4Qr 2 2Q (41)
with the mechanical bath at zero temperature, the optimum measurement strength
G 1)
t= 42
P 2ol “2)
the optimum squeezing direction
2 _ 2
o w° —Kk“/4
Bopt = cOs ‘a)Z B e 0 (43)
Xo(®) 4 xm(w)
and the optimum squeezing strength
L | @Kol tml|0? — 97 — ¢
Topt = Esech ! |: SLELAL ‘Q 21|, (44)

In this scenario, as shown in Fig. 3a, the optimal measurement strength is lower than that for the scheme using
a classical LO, indicating that the optimum sPSD will be obtained with weaker input powers. Additionally, the
optimal squeezing direction relies on both the detection frequency scaled to the cavity linewidth and the phase
difference between the optical and mechanical susceptibilities. The optimal squeezing direction is displayed
in Fig. 5 as a function of the scaled detection frequency in the low-frequency regime (w < «). The optimum
squeezing angle monotonically decreases from 7 with the detection frequency, except in the vicinity of the
mechanical resonance. At resonance the optimum squeezing angle peaks to a value close to 7. In this case, the
phase quadrature operator of the squeezed vacuum field is squeezed.

Figure 6a,b show the optimal squeezing strength as a function of the scaled detection frequency in the low-
frequency regime. Figure 6b clearly depicts the locally minimized optimal squeezing strength at w = €, and that
which approaches infinity at 2 (gray dashed line). Even though the squeezing strength for light in the laboratory
is rapidly being advanced?®, we consider cases when we want to measure external forces at frequencies near 2 to
be outside the scope of this manuscript in addition to the extreme cases mentioned before, i.e., dc field external
forces and forces oscillating at relatively high frequencies with respect to system parameters. When the detec-
tion frequency is close to 2, the amplitude of the quantum fluctuations is much larger than the relevant classical
expectation values violating our initial assumptions.

Figure 7a shows the optimum sPSD of F(w) as a function of the scaled detection frequency for fixed optical
and mechanical linewidths. The SQL is marked by a black dashed curve, and Fig. 7b illustrates a more detailed
plot in the vicinity of the mechanical resonance with added curves representing contributions from vacuum
fluctuations (orange solid curve) and squeezed vacuum fluctuations (blue dashed curve). When w = 2, the
optimum sPSD becomes

Q/2 k2/8 1
+ st
V24 k24 P2 +KP/4 2

In the re time where Q « «, the contribution from the squeezed vacuum fluctuations becomes dominant, result-
ingin Spp; () ~ 1 + Q/«. Therefore, no added benefits will be observed by utilizing the quantum correlations of

$PQ) = (45)
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Figure 5. Optimum squeezing direction as a function of the scaled detection frequency at the optimum
measurement strength (a) across the low frequency regime and (b) enlarged in the vicinity of the mechanical
resonance. The parameters used are k / Q2 = 105T/Q =1073.

(b)

(@)

=0

Sk

104,

1000 +

100+

10

N TN I oL—— v e
0.05 0.10 0.50 1 5 10 wiQ 0.90 0.95 1.00 1.05 1.16}')/Q

Figure 6. Optimum squeezing strength as a function of the scaled detection frequency at the optimum
squeezing direction and measurement strength (a) across the low frequency regime and (b) enlarged in the
vicinity of the mechanical resonance. At w = s, ropy approaches to infinity (gray dashed line). The parameters
used are k/ Q2 = 10%,T/Q = 1073,
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Figure 7. Optimum sPSD of F(w) as a function of scaled detection frequency /2 (red solid curve) along

with the SQL (black dashed curve) (a) across the low frequency regime and (b) enlarged in the vicinity of the
mechanical resonance. The contribution from the vacuum fluctuations (orange solid curve), the squeezed
vacuum fluctuations (blue dashed curve), and the thermal fluctuations (green dot-dashed curve). The
parameters used are k / Q2 = 10%2and "/ Q = 1073,

the squeezed vacuum with quantum interference when on resonance. However, for the case of off-resonance, a
significant suppression of the noise can be observed when utilizing squeezed vacuum fluctuations in the balanced
MZI scheme. It is also found that the optimum sPSD of F(w) is flat across a frequency window of @ < w < €;
sustaining its minimum SQL value. This is well illustrated in Fig. 7b where the contribution from the vacuum fluc-
tuations (orange solid curve) increases with the detection frequency on the blue side of the mechanical resonance,
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Figure 8. Optimum sPSD of F(w) normalized with the SQL as a function of scaled detection frequency
w/ 2 (a) across the low frequency regime and (b) enlarged in the vicinity of the mechanical resonance. The
parameters used are k/ Q = 10>and '/ = 1073,

while the contribution from the squeezed vacuum fluctuations (blue dashed curve) decreases with detection
frequency until reaching €2;. Indeed the two competing contributions are generally not exactly symmetric within
this frequency window implying that the sPSD might not be completely flat with zero slope. However, when the
contribution from thermal fluctuations (green dot-dashed curve) is added, the sPSD becomes perfectly flat at
a constant minimum value. In practice, although the observation of the flat sSPSD near €2; is difficult even with
state-of-the-art technology, the flat sPSD near 2 can be observed™. Note that the width of the flat sPSD window
is determined by the product of the optical and mechanical linewidths, see Eq. (40).

Finally, in order to highlight the benefit of using the balanced MZI scheme, we present Fig. 8 showing the
optimum sPSD normalized to the SQL. Recall that in the case where we use a classical LO field, the sPSD can
be optimized to half of the SQL when off-resonance. On the other hand, as shown in Fig. 8, the sPSD can be
optimized to be suppressed by multiple orders of magnitude below the SQL when off-resonance. In the later
case, destructive interference engineers the photon counting noise in the balanced detection signal where its
effect manifests itself in the regime when the detection frequency is much smaller than the cavity linewidth.

Conclusions

In summary, we have explored the quantum noise introduced to the force measurements based on a balanced
MZI and standard optomechanical cavity. We have employed the coherent superposition of coherent light and
squeezed vacuum field to enhance the measurement sensitivity beyond the SQL. The reference field destructively
interferes with the output field of the optomechanical cavity so that the photon counting noise is suppressed in
the low frequency regime. We analytically find the input parameters for which the sPSD of the detected noise
is minimized below the SQL. The optimal parameters include the measurement strength, squeezing direction,
and squeezing strength. The force detection scheme based on a balanced MZI introduced in this manuscript
shows better sensitivity compared to that based on a balanced homodyne detection with a local oscillator field
in the low frequency regime. The sensitivity of the optomechanical sensor introduced in this study is enhanced
by quantum correlations in squeezed states of light as well as coherent quantum-noise cancellation developed in
QND measurements. These results show the potential gains in sensitivity of MZI based optomechanical quantum
sensors for a variety of weak forces and fields such as Casimir force, gravitational waves, and magnetic fields.

Methods

Symmetrized power spectral density. This section presents the details of the procedure for obtaining
Eq. (22). In order to calculate the self-PSD of the quantum noise introduced in the force measurement scheme,
one needs the correlation functions for the vacuum field, the squeezed vacuum field, and the thermal fluctua-
tions of the mechanics in the frequency domain. We first begin with the two-time correlation functions in the
rotating frame at frequency wy, for the squeezed vacuum field of strength of the squeezing r and squeezing direc-
tion 6°7

(dsq (t)dsq (t)) = M*5(t — 1), (462)
(dly (dl () = Ms(t — ), (46b)
(dl, (tdsq(t)) = N&(t — 1), (46¢)
(dsq (1, () = (N + D)8t — ), (46d)

where M = cosh(r) sinh(r)e??, N = sinh?(r). Transforming the two-time correlation functions into the frequency
domain by Eq. (6), we have
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(dsq (@)diq (@) = M*8(00 + &), (47a)
(dly (@)dl (@) = M8 + o), (47b)
(dly (©)dsq (@) = N§( — o), (47¢)
(dsq (@)dl (@) = (N + Db(@ — o). (47d)

Interchanging w and «’ and using the even parity of the delta-function, we have the correlation functions for
quantum fluctuations in the quadrature operators for the field, Xsq(w) = % (d;rq(—a)) + dsq(w)) and

f/'sq (w) = ﬁ (agq(—a)) — asq (w)), in the frequency domain as

(X{ () Xsq (@) = %[cosh(Zr) + sinh(2r) cos 818 (w + ), (482)
(X (o) Yiq(@) = %[i — sinh(2r) sin 018 (w + &), (48b)
(7, (/) Raq @) = S =i = sinh (1) sin015(@ + ), (480)
(V] (o) Yiq(@)) = %[cosh(Zr) — sinh(2r) cos 0]8(w + ). (48d)

Therefore, the associated PSDs defined by Spo (@) = f_oooo dw' (O (=)0 (w)) for the squeezed vacuum field
can be obtained as

1
SXoqXeq (@) = 3 [cosh(2r) + sinh(2r) cos 0], (49a)
1
St Yeq (@) = 3 [cosh(2r) — sinh(2r) cos 0], (49b)
. . .
Sququ (w) = 5[1 — sinh(2r) sin 0], (49¢)
.. .
SyigXeq (@) = E[_I — sinh(2r) sin 0]. (49d)

where Sx, x,, and Sy, v, are the self-PSDs of the amplitude and phase quadrature operators, respectively. Sx,, v,
and Sy, x,, are the cross-PSDs between the two quadrature operators. As expected, the PSDs are independent of
frequency since the associated two-time correlation functions are assumed to be delta-correlated. Furthermore,
one can find the PSD of the vacuum field if the squeezing strength is zero and thus the associated PSDs for the
vacuum field read

1 i
Sx,x, (@) = Sy, v, (@) = > Sx,v, (@) = =Sy, x, (@) = 7 (50)

Finally, if the two-time correlation function for ﬁth is®

~ A 1 o0 ,
(Fn(Fn () = ey dw e Dol + g ()], (51)

where 7y, (@) is the mean phonon occupation number in thermal equilibrium, one can easily find the PSD of Fu
in a similar way presented above. The PSDs of the thermal noise read

 _ o _
SFpFy (—@) = ﬁnth(w)> SFyFy (@) = §[nth(w) +1]. (52)
When F(w) is written as
F(w) = ¢y, V(@) + cx, Xsq (@) + cx, Xy (@) + cy,, Vg (@) + Fin (), (53)

The self-PSD of (w) can be obtained as
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Spp(@) = lex, I7Sx,x, (@) + lev, I2Sy, v, (@) + c¥, cx, Sy, x, (@) + ¢&, cv, Sx, v, (@)

+ lex,g [PSx,g X (@) + Loy, Sy, v, (@) + CXyq CVag SXiq Yiq (@) F €¥, €Xq SYigXiq (@) + SEy iy, (@),
(54)
where we have assumed that the vacuum, the squeezed vacuum, and thermal fluctuations are uncorrelated to
each other and have used Egs. (49a), (49b), (49¢), (49d), (50), and (52). The sPSD relevant to the homodyne
detection reads

_ 1 1
Sep(@) = - [lex, 1> + ley, IP] + 5 cosh(2r) [lexgg * + levyy 7]
1. .
+ 5 sinh(2r) [cos@(lcxsql2 — |Cqu|2) — sin 9Re[2cxsqc§‘{sq]} (55)
+ w |_ (@) + 1
—|n —1.
Q| TS

Optimization of Ssq(®). Tt should be kept in mind for Eq. (24) that the sPSD stemming from the squeezed
vacuum Sgq () relies on the measurement strength, squeezing strength as well as direction. Since Sgq (@) has a
global minimum with respect to each of the independent parameters (G, r, and ), the order of optimization
procedure does not matter. However, the degree of complication regarding the calculation depends significantly
on the order. We choose to first minimize Ssq (w) with respect to the angle of squeezing. The terms in the bracket
in the second term can be minimized with respect to the angle of squeezing as

2 2 : — |2 2
[cos O(lcxq " — lev,|7) — sin eRe[ZCXSqCY;‘q]]min = ’ X T Yy | (56)
and the optimum direction of squeezing is
—lex,g I* + ley,, I?
Oopt = cos™! | —————— (57)

2 P
‘stq + ¢y

Here, we have used the fact that

acos@—bsin@g—\/m, (58)

where
& ?, b= Rel2ex, 1 (59)

a = lex |7 — leyg

The resulting sPSD due to the squeezed vacuum fluctuations at the optimum direction of squeezing depends on
the squeezing strength and the measurement strength and is thus given by

i 1 1.
Ssq (@) =5 cosh(2r) [|cxSq 1>+ |Cqu|2] —5 smh(Zr)‘c)z(sq + ciq , (60)

90}7(

where it follows from the minus sign of the second term in Eq. (60) that the contribution from the quantum
correlation behaves in the opposite way to those of the photon counting and radiation pressure backaction noise.
Therefore, the sPSD owing to the squeezed vacuum fluctuations can further be minimized with respect to the
squeezing strength as

Sa@)| = [mmlex et (61)

Topt ,gopt

at the optimum squeezing strength

2 2
1 1| lexg 1 leyg |
ropt = = cosh™1 | kel T el

) (62)
Z‘Im[cxschsq]‘
Here, we have used the fact that the inequality
a’ cosh(2r) — b’ sinh(2r) > Va2 — b2, (63)
holdsifa’ > b > 0, where
r_ 1 2 2 12 2
@ = Slex +lenaPl b= 3feh, + | (69

and the condition @’ > b’ is guaranteed by the triangle inequality. Notice that the sPSD from the squeezed vacuum
fluctuations at rop and Oypy is independent of the measurement strength since the fluctuations in the amplitude
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and phase quadrature of the squeezed vacuum depends on the measurement strength in the opposite way, see
Egs. (19) and (37). The resulting sPSD can therefore be written as

_ w|_ 1
Srr(w) = + = |:nth(Q) + E:| (65)

[lox, 2+ lex, 2] + [Imlex 5, 1| + o

1
2
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