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a b s t r a c t

The ex vivo production of platelets from induced pluripotent cells (iPSCs) may offer a safer and sus-
tainable alternative for transfusions and drug delivery systems (DDS). However, the mass production of
the clinically required number of iPSC-derived platelets (iPSC-PLTs) is challenging. Here, we introduce
recent technologies for mass production and the first-in-human clinical trial using ex vivo iPSC-PLTs. To
this end, we established immortalized megakaryocyte progenitor cell lines (imMKCLs) as an expandable
master cell bank (MCB) through the overexpression of c-MYC, BMI1 and BCL-XL, which modulated
megakaryopoiesis and thrombopoiesis. We also optimized a culture cocktail for maturation of the
imMKCLs by mixing an aryl hydrocarbon receptor (AhR) antagonist, SR1/GNF-316; a Rho-associated
protein kinase (ROCK) inhibitor, Y-27632/Y-39983; and a small-molecule compound replacing recom-
binant thrombopoietin (TPO), TA-316. Finally, we discovered the importance of turbulence on the
manufacturing of intact iPSC-PLTs, allowing us to develop a turbulence-based bioreactor, VerMES.
Combination of the MCB and VerMES enabled us to produce more than 100 billion iPSC-PLTs, leading to
the first-in-human clinical trial. Despite these advancements, many challenges remain before expanding
the clinical implementation of this strategy.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Background

The first successful human-to-human blood transfusion was
carried out in 1818 by the British obstetrician James Blundell.
Following the discovery of the ABO blood group in 1901 [1] and the
Rh blood group in 1940e1941 [2,3], blood banks and transfusion
services were established worldwide. To date, blood transfusions
and blood-derivatives save millions of lives per year. However,
these methods depend completely on a consistent supply of
donated blood, which is globally threatened by falling birthrates
and ageing societies. The fragility of this dependence was laid bare
by blood shortages experienced upon the stay-at-home orders in
response to the COVID-19 pandemic. Moreover, concerns persist
regarding the risk of emerging infectious agents and alloimmuni-
zation. Therefore, cell-cultured blood products may offer a safer
and more sustainable alternative to donated blood in the future [4].

PLT products are extremely vulnerable to shortages, having a
shelf life of only 4 days in Japan and 7 days in the US, and need to be
stored in plasma at room temperature (20-24 �C) with gentle
agitation to maintain their hemostatic capacity [5,6]. 2e3 x 1011

PLTs are commonly transfused to prevent or treat bleeding com-
plications in thrombocytopenia [7,8]. However, 5 %e15 % of these
patients are complicated with alloimmune PLT transfusion refrac-
toriness (allo-PTR) caused by alloantibodies against human leuko-
cyte antigen class I (HLA-I) or human PLT antigens (HPAs), which
presumably manifested by random PLT transfusions or pregnancies
[9]. In these cases, compatible donor PLTs are required, even for
patients with rare HLA-I or HPA types.

The first-in-human clinical trial for ex vivo induced pluripotent
stem cell-derived PLT (iPSC-PLTs), the iPLAT1 study (phase 1), was
conducted from 2019 to 2021 as an autologous transfusion to a 55-
year-old Japanese woman diagnosed with severe aplastic anemia
and following allo-PTR due to alloimmunization to HPA-1a [10,11].
The required HPA-1b/1b PLT phenotype is exhibited by less than
0.002 % of the Japanese population [12], and no registered donor
was found in the Japanese Red Cross repository. Autologous iPSC-
PLTs were decided as the complete solution for her life-
threatening scarce supply. The study was conducted in accor-
dance with Japanese regulations of regenerative medicine, and the
autologous iPSC-PLT transfusion products were prepared based on
good manufacturing practice (GMP) with extensive preclinical
assessment.

However, the in vitro production of PLTs suffers from low yields
[13,14]. Although our group reached the clinical-scale production of
more than 2e3 x 1011 of iPSC-PLTs, the yield of iPSC-PLTs per
megakaryocyte (MK) was low compared with the native process
that can generate 800e2000 PLTs per MK in vivo estimated from
endogenous PLT production in mice [15].

In this review, we introduce technologies for the mass produc-
tion of clinically relevant iPSC-PLTs used in the iPLAT study and
remaining issues found in the clinical trial that need solving before
iPSC-PLTs are clinically practical.
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2. Establishment of immortalized megakaryocyte progenitor
cell lines (imMKCLs)

Even though iPSCs may represent a potent source for ex vivo PLT
biogenesis, the extensive expansion and differentiation intomature
MKs to produce 1011-scale PLTs involve laborious, time-consuming,
and costly processes and are nearly impossible to achieve with
consistent quality. To overcome these problems, imMKCLs were
established as a master cell bank (MCB) that displays long-term
expansion capability in liquid culture even after cryopreservation
[16].

imMKCLs were generated through the sequential over-
expression of c-MYC and BMI1 and of BCL-XL in CD34þ multipotent
hematopoietic progenitor cells (HPCs) and differentiated mega-
karyocyte progenitor cells, respectively, under the control of
doxycycline. Although c-MYC overexpression drives cell cycle for
proliferation, its cellular manipulation simultaneously promotes
senescence by activating INK4A/ARF and apoptosis through the
caspase 3/7 pathways [16]. BMI1 is a polycomb group (PcG) protein
that suppresses the INK4/ARF locus encoding the p16INK4A and
p14ARF proteinse key regulators of cellular senescence [17]. BCL-XL
is a critical anti-apoptotic protein for the sustained maturation of
MKs [18]. The overexpression of c-MYC and BMI1 only leads to a
limited exponential proliferation of MK progenitors, presumably
reflecting the increased caspase activities at the later stage of
proliferation. The overexpression of BCL-XL (14e21 days later from
the HPC stage) successfully enables the exponential proliferation of
MK progenitors for more than 5 months by suppressing caspase
activities, thus enabling the establishment of imMKCLs [16].

In the presence of doxycycline, imMKCLs expand through self-
renewal by the overexpression of c-MYC, BMI1 and BCL-XL. Upon
removal of doxycycline, imMKCLs cease to express these trans-
genes, causing the cells to mature with large polyploidization and
yield iPSC-PLTs in 4e6 days (Fig. 1). Because the quick down-
regulation of c-MYC in MKs is required for maturation and PLT
production [19], the doxycycline-controlled expression system
perfectly regulates the self-renewal stage and the maturation and
PLT production stage of imMKCLs by modulating c-MYC expression
levels.

For the iPLAT study, autologous iPSCs were generated from pe-
ripheral blood mononuclear cells (PBMCs) by electroporating
episomal reprogramming vectors, then cultured on mitomycin C-
treated SNL feeder cells, and finally cryopreserved. The cry-
opreserved iPSCs were thawed and verified for their ability to
differentiate into MKs. Then, a selected iPSC clone was differenti-
ated into HPCs by the revised “PSC-sac method.” [20,21]. From the
HPCs, several patient-derived imMKCL clones were established,
and the best clone was selected after examinations of proliferation
and PLT production. Finally, the selected clone was expanded and
cryopreserved as an MCB for the GMP production. To confirm
compatibility with GMP, imMKCLs were extensively tested for
sterility and potential pathogens and confirmed to have DNA



Fig. 1. Schematic overview of PLT production from the imMKCLMCB. (a) AnMCBwas established from iPSCs derived from patient somatic cells by introducing c-MYC and BMI1 at the
HPC stage and BCL-XL at the early MK stage. (b) The addition of doxycycline induces the expression of the transgenes, forcing imMKCLs to self-replicate and expand (self-replication
stage). The removal of doxycycline ceases the expression of the transgenes, allowing imMKCLs to mature and produce PLT-like particles (maturation and PLT production stage).
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identical to the patient's PBMCs based on short tandem repeat
(STR) analysis and HPA genotyping.
3. Clinical-scale production of PLTs from imMKCLs

3.1. Small-molecule thrombopoietin (TPO) alternative

TPO is a glycosylated cytokine primarily produced in the liver.
TPO signaling through its receptor, c-MPL, is critical for hemato-
poietic stem cell (HSC) maintenance, MK lineage differentiation
and PLT production as well as imMKCL expansion. Several non-
peptidyl small-molecule c-MPL agonists have been developed, such
as eltrombopag, an orally administered drug used to treat immune-
thrombocytopenia and aplastic anemia. The advantages of these
small-molecules over recombinant human TPO (rhTPO) include
greater stability, less immunogenicity and lower manufacturing
costs.

Among these TPO receptor agonists, TA-316 was selected.
Notably, TA-316 promotes more megakaryopoiesis and thrombo-
poiesis ex vivo than rhTPO or eltrombopag and has a higher affinity
for c-MPL [22]. It facilitates a 1.5-fold increase of imMKCL expan-
sion during the self-renewal stage and more than doubles the
relative number of iPSC-PLTs produced per single imMKCL cell in
the PLT production stage compared with rhTPO [22].
3.2. MK maturation enhancers e AhR antagonist and ROCK
inhibitor

One of the challenges of ex vivo PLT production is the low per-
centage of thrombopoiesis. The bone marrow (BM) microenviron-
ment, which is constituted of cellular interactions, cytokines and
extracellular matrix (ECM), is primarily maintained by mesen-
chymal stromal cells (MSCs). In terms of PLT production, coculturing
CD34þ cells with BM-derived MSCs was reported to significantly
increase the percentage of proplatelet-producing MKs, and the
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number of PLTs increased from 10 to 28 PLTs perMK comparedwith
other culture conditions [23]. This increase was caused by MSC-
derived suppression of the Aryl hydrocarbon receptor (AhR)
signaling pathway during MK maturation, especially the down-
stream effector CYP1B1 gene, which is a member of the cytochrome
P450 superfamily [23]. A small-molecule AhR antagonist recapitu-
lated thisMSC effect, and a high-affinity AhR antagonist, such as SR1
or GNF-316, was found to promote MK maturation more than the
MSC coculture by its stronger suppression of AhR signaling [23].

Another key signaling pathway involving MK maturation is the
Rho/Rho-associated protein kinase (ROCK) pathway. ROCK is a key
Rho effector that phosphorylates myosin light chain 2 (MLC2) at
Ser19 and the myosin-binding subunit (MBS) of myosin phospha-
tase, thereby inhibiting its phosphatase activity [24e27]. MLC2
phosphorylation is necessary for actin/myosin contractile forces in
a variety of cellular processes such as cytokinesis and membrane
blebbing [26e28]. Inhibition of MLC2 phosphorylation leads to a
significant increase in PLT release but with increased PLT size,
presumably due to the lower contractile forces [29]. During endo-
mitosis, ROCK is inactivated to prevent cytokinesis; otherwise,
RhoA-activated ROCK promotes formation of the contractile ring
and cell division [30]. ROCK inhibitors, such as Y-27632/Y-39983,
accelerate MK polyploidization and promote the demarcation
membrane system (DMS) and proplatelet formation by driving
transcriptional changes [30,31].
3.3. Feeder-independent imMKCL culture system

For scalable ex vivo PLT production, the most straightforward
culture system is a feeder-free suspension culture. The original
imMKCL culture required adhesion condition for PLT production
[16]. To overcome this problem, a chemical screening revealed that
the AhR inhibitor in combinationwith Y-27632/Y-39983 effectively
promotes PLT production under feeder-free conditions [32].
Although the detailedmechanism needs to be investigated, because
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the number of functional PLTs increased almost 20-fold when both
compounds were added compared to either compound alone, syn-
ergistic effects between the two compounds are likely involved.

The discovery of the two compounds enabled a feeder-
independent imMKCL culture system, in which imMKCLs in the
maturation and PLT production stage are cultured with SR1/GNF-
316 and Y-27632/Y-39983 in addition to TPO/TA-316 and stem
cell factor (SCF). This system allows for the mass production of
iPSC-PLTs in a scalable manner in liquid tanks. Accordingly, the
following bioreactor further enabled 1011-order manufacturing.

3.4. Turbulence-based bioreactor, VerMES

The physical conditions of MKs play a crucial role in PLT pro-
duction in vivo. Through the visualization and analysis of PLT
release in mouse BM in vivo by two-photonmicroscopy and particle
image velocimetry (PIV), it was observed that proplatelets of MKs
actively releasing PLTs were exposed to high turbulence at vascular
branching points, whereas resting MKs without PLT releases
resided in laminar flow without turbulence [32]. Mimicking blood
flow in vitro, it was confirmed that laminar flow with only shear
stress and vorticity does not induce efficient thrombopoiesis, but
turbulent flow with optimal levels of shear stress and turbulent
energy dramatically improves the yield and quality of PLTs [32].
This discovery is consistent with both the lung and BM being sites
of PLT biogenesis [15], since the lung has dense vascular branching
with complex turbulent flow produced through respiration.

Optimized turbulent flow promotes the migration of nardilysin
(NRDC) into the plasma membrane upon MK maturation. NRDC
specifically binds to b1-tubulins in a4A/b1-tubulin dimers to be
involved in transmembrane shedding for a higher PLT yield [32].
Tubulin also interacts with HDAC6 to regulate tubulin or cortactin
remodeling through deacetylation. Turbulence promotes the
release of insulin growth factor binding protein 2 (IGFBP2) and
macrophage migration inhibitory factor (MIF) from imMKCLs to
promote the production of several ECM proteins, including vitro-
nectin, fibrinogen, VCAM-1, and von Willebrand factor, for higher
PLT yield [32].
Fig. 2. Turbulence-based bioreactor, VerMES. Vertical reciprocal motion by the mixing imp
improves the yield and quality of the PLTs.
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Based on our in vivo observation of turbulence, we applied
mathematical simulations to a vertical reciprocal motion type
liquid culture bioreactor to examine how turbulent flow facilitates
PLT production. The optimal bioreactor, VerMES, has two oval-
shaped mixing impellers reciprocally moving up-and-down at
adjustable speeds generating turbulence (Fig. 2). The number of
functional CD41þCD42bþ PLTs generated from imMKCLs in VerMES
is ~100 PLTs per MK, which is ~4-fold higher than the flask-shaking
condition and capable of clinical-scale (1011-scale) production.

3.5. Production of iPSC-PLTs for transfusion

A cryopreserved MCB vial was thawed and cultured with TA-
316, SCF and doxycycline. imMKCLs were expanded to 2e4 x 1010

in 23 days by moving the cells from culture plates to rotating flasks
and finally to 20-L WAVE bags. The cells were transferred to 4
vessels of 8-L scale VerMES containing amedium of TA-316 and SCF,
GNF-316 and Y-39983 for feeder-free culture and with KP-457
(ADAM17 inhibitor) to prevent GPIba (CD42b) shedding and
retain PLT adhesion capability (Fig. 3a). After a 6-day culture with
continuous turbulent flow, iPSC-PLTs were purified, washed,
concentrated and packed at approximately 1 � 1011 in 200 mL bi-
carbonate Ringer's solution [33] with 10 % ACD-A and 2.5 % human
serum albumin. Then the iPSC-PLTs were irradiated with 25 Gy g-
rays as in the standard procedure for blood products to eliminate
the potential tumorigenicity of any residual imMKCLs (Fig. 3b).

4. Nonclinical evaluation

iPSC-PLTs are functionally comparable to human donor PLTs
even after 5 days of storage in terms of adhesion, aggregation,
activation, circulation, and hemostasis according to several in vitro
assays and in vivomodels. Stimulationwith ADP and TRAP-6 caused
comparable P-selectin expression, a marker of a granule release,
and PAC-1 binding, a marker for GPIIb/IIIa (CD41a/CD61) activation,
which is required for PLT aggregation [34]. Additionally, ADP and
collagen induced comparable PLT aggregation according to the light
transmission method. Meanwhile, in PLT circulation study, rabbit
ellers with optimized speed produces turbulent flow with optimal shear stress, which



Fig. 3. (a) imMKCL media is supplemented with cocktail A (SCF, TA-316, and doxycycline) during the self-replication stage and cocktail B (SCF, TA-316, AhR antagonist, ROCK
inhibitor, KP-457) during the maturation and PLT production stage. (b) Schema of the iPSC-PLT processing. The post VerMES media is concentrated from 8 L to 1e2 L through a
hollow fiber filtration module. Then, remaining imMKCLs are removed by continuous centrifugation. Washed iPSC-PLTs are resuspended in PLT storage solution (bicarbonate
Ringer's solution with 5 % ACD-A solution plus 2.5 % human serum albumin) and irradiated with 25 Gy g-rays.
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models showed an initial dip in the iPSC-PLT count immediately
after the transfusion followed by a slight increase over 6 h and a
decrease from 8 to 24 h [11]. An IVIS analysis in mice of the patient
imMKCLs showed a substantial accumulation of iPSC-PLTs in the
lungs, whichmay explain the initial dip in the rabbit models [10,11].
In addition, circulating laboratory clone iPSC-PLTs in mice showed a
gradual decrease in their size over time [32], suggesting the iPSC-
PLTs fragmented to an optimal size during circulation in vivo,
which may gradually increase the circulation number.

The autologous iPSC-PLTs for the HPA-1b/1b patient were
confirmed to be negative for HPA-1a antigen. The ultrastructures of
the iPSC-PLTs resembled human donor PLTs but were larger, with
diameters of ~3.5e4 mm compared with ~2.5 mm for donor PLTs.
Furthermore, the surface expressions of CD41a, CD42b, CD61 and
HLA-A/B/C were comparable to that of human donor PLTs, but those
of CD36 and CD49b were lower. Also, ABO antigens were negative
for the iPSC-PLTs even though the patient had type A blood. Since
the expression level of ABO antigens in PLTs varies between in-
dividuals [35], this phenotype must be further investigated.

The safety of iPSC-PLTs was extensively evaluated through a
preclinical assessment, from raw materials through manufacturing
to packaging, following consultation with the Japanese Pharma-
ceuticals and Medical Devices Agency (PMDA). No general toxicity
was observed in single-dose tests on NOG mice and repeated-dose
tests on rats. In vitro proliferation tests confirmed no tumorige-
nicity after irradiation with 25 Gy g-rays. Genetic toxicity tests
confirmed no mutagenic potential. Drug residues were below the
limit stated in the ICH's M7 guideline.

5. Clinical trial

The autologous iPSC-PLTs were transfused to the patient with
three sequentially escalating doses of 1 � 1010, 3 � 1010, and
maximally 1� 1011, as compared to the standard dose of 2e3 x 1011.
There were no observed clinical symptoms or signs of adverse
events from the patient after each transfusion and during the 1-
year observation period after cohort 3. Although slight increases
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in the coagulationmarker D-dimer and white blood cell count were
observed after 24 h in cohort 3, the levels spontaneously returned
to normal and showed no apparent signs of pulmonary embolism
or deep vein thrombosis.

On the other hand, the corrected count increment (CCI) at 1 h
and 24 h were measured as ~0, meaning no increase in PLT count
after the transfusion, which disagrees with the preclinical in vivo
circulation test in rabbit models [36]. Because a few large PLTs were
detected and gradually decreased over time according to a flow
cytometry analysis (3.51 % after 1 h and 1.75 % after 14 days), the
lack of CCI increase may be partly due to the resolution of the
common blood count device, which was not calibrated for large
PLTs. However, the primary cause may lie elsewhere. One hypoth-
esis is that PLT accumulated in the liver, where theywere cleared by
Kupffer cells due to defective glycosylation or sialylation of PLT
glycoproteins [37e39]. Because iPSC-PLTs are shed from iPSC-
derived MKs, which are mostly of the embryonic/fetal phenotype,
they may have some embryonic/fetal characteristics including an
aberrant status of glycosylation or sialylation. Slight PLT activation
by physical stimuli during the processing, such as filtration and
irradiation, could be another cause, as this activation may induce
in vivo micro-aggregation and clearance of the iPSC-PLTs.

6. Future perspectives

The establishment of imMKCLs as an MCB and the development
of a feeder-independent culture system that includes a turbulence-
based bioreactor and novel drugs has enabled the ex vivo
manufacturing of iPSC-PLTs at clinical scale. Through nonclinical
evaluations, the quality, efficacy, and safety of both the MCB and
iPSC-PLTs were confirmed, paving the way for the iPLAT study. The
study validated the safety of the transfusion but revealed a
discrepancy in the circulation between animal models and the
human patient.

For future clinical implementation to be practical, methods that
reduce the manufacturing costs are necessary. Ideally, the pro-
duction efficiency of iPSC-PLTs will reach >800 PLTs per MK, which
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is the estimated rate in vivo. Many conditions reported to enhance
megakaryopoiesis and thrombopoiesis have yet to be tested in our
culture system. Advanced PLT processing technologies are also
needed because the existing purification-washing-packaging pro-
cess results in an approximately 50 % loss of iPSC-PLTs and possibly
an increase of disialylated iPSC-PLTs. At the same time, raw mate-
rials and the culture system itself could be further optimized for
cost effective production.

As a commercial product, allogeneic PLTs with HLA homozygous
haplotype are preferred to autologous PLTs, because the latter
require a long time and high costs for their production and quality
testing for each patient. Alternatively, genetically modified HLA-I
deficient PLTs could be developed as a single off-the-shelf PLT
product. One common knockout target for HLA-I is beta-2-
mirocglobulin (B2M), a component of HLA-I heterodimer and
requirement for HLA-I cell surface expression [40e44]. It should be
noted that HLA-I-deficient products risk activating natural killer
(NK) cells because HLA-I molecules act as inhibitory ligands for
killer immunoglobulin-like receptors (KIRs) and CD94/NKG2 on NK
cells [45,46]. However, HLA-I deficient B2M-knockout iPSC-PLTs do
not elicit an NK cell response in vitro [43]. The compatible result
was obtained in vivowith humanized immune system mice, which
were reconstructed with enough human NK cells to reject B2M-
knockout iPSC-derived hematopoietic mononuclear cells [43]. As
for HPA incompatibility, PLT products for the desired HPA type are
needed because, for instance, most HPAs are derived fromGPIIb/IIIa
(CD41a/CD61), which is required for PLT aggregation.

Additionally, cell-cultured PLT products and their derivatives
have not only in terms of safety and sustainability and meeting
unfilled demands for cases with rare HLA-I or HPA phenotypes, but
also in terms of applications to novel clinical treatments. Recent
studies have revealed the importance of PLTs outside of hemostasis
and maintenance of vascular integrity. For example, PLTs involve
innate immune responses, releasing cytokines and interact with
immune cells to modulate immune responses [47,48]. Conversely,
PLTs involves in pathogenesis of several diseases such as cardio-
vascular diseases [34], cancer metastasis [35], rheumatoid arthritis
[49] and even severe COVID-19 symptoms [36]. PLTs also contribute
to development, homeostasis, and tissue regeneration. PLT-rich
plasma (PRP) has been used for regeneration therapies of bone,
cartilage, tendon, andmuscle damages. Several studies are going on
to leverage engineered PLTs as a drug or drug delivery system (DDS)
[50,51]. Thus, iPSC-PLT products and their derivatives could have a
wide variety of clinical applications beyond the treatment of
bleeding complications.
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