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Exploring amino acid functions in a deep
mutational landscape
Alistair S Dunham & Pedro Beltrao*

Abstract

Amino acids fulfil a diverse range of roles in proteins, each utilising
its chemical properties in different ways in different contexts to
create required functions. For example, cysteines form disulphide
or hydrogen bonds in different circumstances and charged amino
acids do not always make use of their charge. The repertoire of
amino acid functions and the frequency at which they occur in
proteins remains understudied. Measuring large numbers of muta-
tional consequences, which can elucidate the role an amino acid
plays, was prohibitively time-consuming until recent developments
in deep mutational scanning. In this study, we gathered data from
28 deep mutational scanning studies, covering 6,291 positions in
30 proteins, and used the consequences of mutation at each posi-
tion to define a mutational landscape. We demonstrated rich rela-
tionships between this landscape and biophysical or evolutionary
properties. Finally, we identified 100 functional amino acid
subtypes with a data-driven clustering analysis and studied their
features, including their frequencies and chemical properties such
as tolerating polarity, hydrophobicity or being intolerant of charge
or specific amino acids. The mutational landscape and amino acid
subtypes provide a foundational catalogue of amino acid func-
tional diversity, which will be refined as the number of studied
protein positions increases.
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Introduction

Amino acids fulfil a diverse range of roles in proteins, each utilising

its chemical properties in different ways in different contexts in

order to create required protein functions. Classically, amino acids

split into five broad groups based on their physicochemistry:

aliphatic, aromatic, polar, positively charged and negatively

charged. In addition, proline and glycine uniquely form a backbone

loop and lack a side chain, respectively. However, the same amino

acid can have different effects in different contexts. For example,

consider three tyrosine contexts: Tyr197 in the active site of NADPH

dehydrogenase, a tyrosine phosphosite and Tyr198 in inositol

polyphosphate multikinase. The first two use the hydroxyl group in

divergent ways, forming a stabilising hydrogen bond to the enzymes

substrate and covalently bonding to the new phosphate group

during phosphorylation. The final example uses a completely dif-

ferent property, the aromatic ring, to form a stabilising interaction

with a sulphur atom in a nearby methionine (Weber & Warren,

2019). Even in the narrow context of catalytic sites, the same amino

acids have been shown to perform a range of active roles across the

proteome (Ribeiro et al, 2020). The role an amino acid fills at a

given position is defined by its chemical environment, which is

determined by many factors including nearby amino acids,

secondary structure, post-translational modifications and bound

ligands. Taking account of this environment helps predict whether a

site is functional, thus demonstrating the environment’s importance

(Rice & Eisenberg, 1997; Torng & Altman, 2019).

An amino acid’s role affects the consequences of different substi-

tutions at that position, known as the position’s mutational profile.

Evolutionary conservation data confirms this, with models of substi-

tution likelihood that account for protein context performing better

than universal models (Rice & Eisenberg, 1997; M€uller et al, 2001;

Huang & Bystroff, 2006). Similarly, on a gene-by-gene level, alanine

scanning experiments have shown the power of mutations to infer

positional functions in proteins using mutations, for example

mapping hGH receptor interactions (Cunningham & Wells, 1989)

and the CD4-binding site (Ashkenazi et al, 1990). This association

between mutational consequences and an amino acid’s contextual

properties is biologically important, both for understanding protein

chemistry and in predicting the consequences of mutations.

Given the strong link between a position’s structural and func-

tional role and mutational consequences, the landscape of muta-

tional profiles across the proteome can be used for an unbiased,

proteome-wide exploration of the functional diversity of amino acid

roles. This analysis would give us an insight into the range and

frequency of biochemical roles beyond what can be achieved by

analysing individual proteins. Until recently, experimentally charac-

terising this landscape was difficult, but the new deep mutational

scanning technique (Fowler & Fields, 2014) measures mutational

profiles at very high throughput. These experiments directly

measure fitness for all possible variants in a protein or region by
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generating a comprehensive mutant library and subjecting it to

selection where survival is dependent on the target protein’s func-

tion. Sequencing the library before and after selection determines

the fitness of variants by measuring whether they have been

enriched or depleted relative to the wild type during selection. Data

from these experiments have been used to explore properties of the

genes being studied, to determine general properties of insertion

types (Gray et al, 2017) and for training variant effect predictors

(Gray et al, 2018).

Here, we explore the combined mutational landscape of 30 genes

using 33 deep mutational scans from 28 studies. We show that

multiple datasets can be meaningfully combined and use them to

explore the diverse functions of each amino acid. First, suitable

studies were selected and their scores normalised to a common

scale. Second, we derived and analysed their combined mutational

landscape, relating it to a range of biophysical properties. Finally,

we explored the diversity of amino acid roles using the mutational

landscape, clustering each amino acid into typical subtypes and

demonstrating these subtypes represent meaningful biological

groups.

Results

A unified deep mutational scanning landscape

The first step to utilising a dataset drawn from many deep muta-

tional scanning studies is combining them in a meaningful way,

allowing scores to be compared. We selected 33 deep mutational

scans from 28 studies covering 6,291 positions in 30 proteins across

nine species (Fig 1A, Dataset EV1). These proteins have a broad

range of structures and functions, meaning the analysis applies to

general protein properties rather than those of a single protein or

protein family. We required that studies applied selection pressures

directly related to natural function and that their fitness scores could

be transformed to a common scale. To prepare each study (Fig 1B),

we first averaged replicates. When multiple selection pressures were

measured, we either averaged comparable conditions or preferred

those selecting for broader aspects of protein function. For example,

when processing data on BRCA1 from Starita et al (2015), we used

measurements of overall E3 ubiquitin ligase activity rather than

BARD1 binding because it may reflect protein function more gener-

ally. Conditions were considered comparable when they test similar

aspects of protein function and have correlated results, for example

different drug types in Melnikov et al, (2014). Some studies gener-

ated sequences with multiple variants, so when individual

substitutions were not explicitly measured, we averaged across vari-

ant sequences containing each substitution, after validating that this

produces approximately correct scores for explicitly measured vari-

ants (Appendix Fig S1). Next, substitution fitness scores were trans-

formed into a common enrichment ratio (ER) score, which

measures the enrichment of a variant during selection relative to the

change in the wild type. Thus, positive ER scores mean the variant

is advantageous, zero is neutral and negative scores deleterious. We

normalised scores from each study against the median of the lowest

10% of scores, reasoning that the worst substitutions (e.g. nonsense

mutations) result in complete loss of function and are comparable

between studies. We excluded 626 positions (9% of the starting

dataset) with scores for < 15 of the possible 20 nonsynonymous

substitutions (including nonsense) to focus on positions with suffi-

cient data and then imputed the remaining missing data (see Meth-

ods). This resulted in complete sets of normalised ER scores for

substitutions to all 20 amino acids at 6291 unique positions across

30 genes, with 98.16% of nonsynonymous ER scores experimentally

measured and the remaining 1.84% imputed. We refer to the vector

of a position’s ER scores as its mutational profile and the combined

mutational profiles for all positions and proteins as the mutational

landscape.

Three genes were covered by multiple studies (Fig 1C and

Appendix Fig S2). These were HSP90 (a protein chaperone), TEM1

(a GTPase involved in mitosis) and ubiquitin (UBI), which is added

to proteins by ubiquitin ligase enzymes as a function altering post-

translational modification. The scores from these results were suffi-

ciently correlated (HSP90 r2 = 0.4038, TEM1 r2 = 0.994, UBI

r2 = 0.4676) to suggest scores are robust and represent variants’

biological properties. Some of the differences between these are

likely due to the selection criteria. For example, one study measured

UBI fitness via surface display and E1 ubiquitin ligase activity

(Roscoe & Bolon, 2014) and the other used growth in the absence of

WT UBI (Roscoe et al, 2013). The two TEM1 studies were so similar

to each other that only the most recent was used. On the other

hand, the HSP90 and UBI studies were sufficiently different that

they could all be retained and used to check consistency of later

results. The fact that scans under different selection criteria and

experimental conditions correlate suggests many protein properties

are somewhat independent of conditions, for instance relating

instead to the basic structure of the protein.

Deep mutational scanning results should relate to evolutionary

conservation, as natural selection also samples variants and enriches

them based on fitness. We validated our approach to combine DMS

datasets by showing this relationship was maintained in bulk statis-

tics and for individual variants in our data. Substitution matrices,

▸Figure 1. Combining deep mutational scanning studies.

A Proteins in the combined dataset, with the structure used, number of positions with mutational profiles and the percentage of these in the structure model.
B Normalisation pipeline.
C Correlation between ER scores from two deep mutational scans on ubiquitin, both from the Bolon Lab (r2 ¼ 0:4676, Pearson’s correlation coefficient t-test:

P<2:2�10�16). A simple linear regression best fit is shown, with a 95% confidence interval in grey shading.
D Relationship between mean normalised ER score for an amino acid substitution and corresponding BLOSUM62 score. The scores for missense variants strongly

correlate (r2 ¼ 0:4194, Pearson’s correlation coefficient t-test: P<2:2�10�16). A simple linear regression best fit is shown, with a 95% confidence interval in grey
shading.

E Correlation between normalised ER score and log10SIFT4G score in each study based on Pearson correlation coefficient. The number of variants considered for each
gene is indicated above each column. Error bars indicate the confidence interval for Pearson’s ρ based on Fisher’s Z transform. P-values are calculated using Pearson’s
correlation coefficient t-tests.
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such as BLOSUM62 (Henikoff & Henikoff, 1992), measure how

frequently each amino acid is mutated to any other, aggregated across

a large number of sequence alignments. The mean ER score for each

missense substitution type (A → C, A → D, . . .) in our dataset corre-

lates well with BLOSUM62 (Fig 1D, r2 ¼ 0:4194, P<2:2�10�16).

BLOSUM62 also provides substitution scores for synonymous substi-

tutions, which measure the average conservation of positions of each

amino acid. While synonymous substitutions tend to have close to 0

ER in deep mutational scans (92% have |ER| < 0.05 in this dataset),

it is possible to estimate the impact of mutating away from each

amino acid by calculating the mean ER score for all substitutions

away from that amino acid. This score correlates with synonymous

BLOSUM62 scores (r2 ¼ 0:3191, P¼ 0:009452). Secondly, we used

SIFT4G (Vaser et al, 2015) to predict the impact of specific substitu-

tions at each position. SIFT4G uses an alignment of homologous

sequences to predict the deleterious impact of a substitution based on

how often the alternate amino acid is observed at the mutated posi-

tion in the alignment. It outputs a probability score ranging from 0 to

1 with scores below 0.05 suggesting the variant is likely to be deleteri-

ous. As expected, the experimentally determined ER scores for speci-

fic substitutions correlate with the predicted impact based on the

log10SIFT4G scores (Fig 1E). The varying correlation with SIFT4G

scores between studies suggests that the different experimental selec-

tion pressures vary in the degree they mirror natural evolutionary

pressures.

The combined dataset gives us a large number of mutational pro-

files, together constituting a subset of the overall proteome muta-

tional landscape. While it covers a relatively small subset of the vast

proteome space, the dataset does cover a reasonably varied and

representative sample, with proteins covering a range of species,

functions and environments. Thus, we generated an approximation

for the mutational landscape of proteins that can be used to analyse

the range and frequency of amino acid roles in an unbiased manner.

Biophysical relationships in the deep mutational landscape

The link between mutational consequences and amino acid’s roles

means the mutational landscape we have derived is a quantitative

representation of the diverse roles amino acids can play in proteins.

Clustering all protein positions by their mutational outcomes is

expected to identify positions across different proteins that have

similar mutational properties and therefore likely share similar

biophysical properties. The relationships between protein positions

can be visualised by dimensionality reduction of the mutational

landscape using UMAP (preprint: McInnes et al, 2018) and PCA

(Fig 2). In this representation, two protein positions are closer

together when they have similar mutational profiles. If the dif-

ferences in mutational outcomes were strongly determined by

experimental approach, positions would group by protein or study

of origin. Instead, all studies are distributed across UMAP space,

suggesting there is not a strong study bias in the normalised muta-

tional profiles (Appendix Fig S3). In contrast, the same protein posi-

tions assayed in different studies are significantly more similar and

closer together in UMAP space, on average, than random pairs of

positions (Appendix Fig S4, mean 2.105 units closer, one-tailed

Mann–Whitney U-test: P¼ 1:141�10�13), which suggests the

method is replicable and validates our approach to building a

combined dataset.

The relationship between the mutational landscape and the

biophysical properties of protein positions is most clearly illustrated

by highlighting protein domains in UMAP space (Fig 2A) and

observing separation by function. In this case, we highlight posi-

tions in three transmembrane proteins (ADRB2, CCR5 and CXCR4)

and show they divide primarily by the solvent environment they are

exposed to either lipid membrane or hydrophilic intra/extracellular

solvent. Quantitative properties can be also demonstrated in the

landscape, the strongest of which is the link to mean normalised ER

and its link to overall evolutionary conservation at a position. The

first UMAP dimension strongly correlates with mean normalised ER

(r2 ¼ 0:9036, P<2:2�10�16) and more weakly with mean

log10SIFT4G score (r2 ¼ 0:2169, P<2:2�10�16, Fig 2B), which is a

measure for evolutionary conservation. Indeed the first principal

component (46.7% of the variance, Appendix Fig S5) essentially is

mean normalised ER (r2 ¼ 0:9991, P<2:2�10�16).

We computationally derived each position’s physical properties

from its sequence and structure (Dataset EV2) and demonstrated

strong patterns in UMAP space. Positions segregate on the mean

hydrophobicity of their wild-type amino acid (Bandyopadhyay &

Mehler, 2008) (Fig 2C) and show a strongly related pattern in their

surface accessibility (Hubbard & Thornton, 1993) (Fig 2D). FoldX

(Schymkowitz et al, 2005) uses a physics derived force field to esti-

mate ΔΔG changes in folding energy after mutation, breaking the

result down into components from different physical sources (Van

der Waals, electrostatics, etc). The average ΔΔG from each compo-

nent across all substitutions at a position is indicative of the physi-

cal effects of the wild-type amino acid, but with the opposite ΔΔG
sign because substitutions disrupt wild-type interactions. For

example, positive hydrogen bond ΔΔG values for most substitu-

tions suggest that the wild type makes stabilising hydrogen bonds

that are disrupted by mutations. These measurements of positions’

physical properties also display strong patterns in UMAP space

(Fig 2E and F).

We show that the mutational landscape has rich and complex

relationships with a range of biophysical properties and expect there

to be others not highlighted in our analysis. Therefore, a position’s

location in this landscape indicates the likely properties it has, creat-

ing a quantitative map of the diverse functions of amino acids in

proteins. This makes the landscape a useful tool for analysing new

data, identifying likely positional and protein properties and high-

lighting outlying positions with unusual mutational consequences.

Since positions with similar roles or in similar environments group

together in the landscape, as seen in domains of ADRB2, CCR5 and

CXCR4, reduced dimensionality representations of the mutational

landscape are a good space to evaluate the diversity of amino acid

roles. It is noteworthy that creating this combined landscape across

a range of protein chemistry would not be possible without combin-

ing multiple studies.

Mapping the diversity of amino acid subtypes

Next, we used the mutational landscape to study the diverse roles

played by each amino acid, utilising the broad range of proteins in

our dataset to cover as much biochemistry as possible. We have

shown that positions with similar properties, and therefore likely

similar roles, cluster in this space so an approach to mapping role

diversity would be to split positions of each amino acid into typical
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subtypes. This would give an overview of typical functions played

by each amino acid, their relationships to other amino acids and

how frequent they are. We clustered the mutational profiles of each

amino acid’s wild-type positions independently (Fig 3A, Materials

and Methods), in order to study each amino acid’s roles in an unbi-

ased manner.

Clustering mutational profiles was dominated by the position’s

mean ER score, which prevented separation by other properties. To

avoid this, we clustered using the principal component representa-

tion of mutational profiles, excluding PC1 because it correlates

strongly with mean ER. Permissive positions have low magnitude

ER scores for all substitutions and so the balance of other principal

components is noisy. To account for this, we split positions where

the magnitude of all ER scores is < 0.4 into a permissive subtype for

each amino acid. Finally, we use hierarchical clustering and hybrid

dynamic tree cutting (Langfelder et al, 2008) to identify subtypes

(Dataset EV3), which we label XP, XO, X1, X2, . . . for permissive

positions, outliers and the main subtypes (in frequency order) of

amino acid X. This means, for example, the subtypes labelled 1 are

the most frequent for each amino acid, as opposed to sharing
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A Separation of sites in the extracellular, transmembrane and cytoplasmic domains of three transmembrane proteins (ADRB2, CXCR4 and CCR5).
B Mean log10SIFT4G score, showing how SIFT4G predictions become increasingly deleterious along the first UMAP component ðr2 ¼ 0:2169, Pearson’s correlation
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F Mean Van der Waals clashes term from all FoldX substitution ΔΔG predictions at a position.
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A Subtype clustering pipeline.
B Frequency of each subtype and total number of positions of each amino acid. Subtypes are numbered from most to least frequent within each amino acid, with P

and O representing permissive and outlier positions.
C The central heatmap shows the clustering of the Pearson correlation between subtypes’ mean mutation profiles. The surrounding heatmaps show the mutational
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functional roles. This approach gave us subtypes with distinct mean

mutational profile patterns and therefore different properties. We

find between 1 and 8 subtypes for each amino acid, along with

permissive positions for all 20 and outlier positions not consistent

with any subtype for all but glutamine (Fig 3B). In total, this defines

100 amino acid subtypes, including permissive positions for each

amino acid. Histidine is the one amino acid where we only found a

single subtype, suggesting it tends to fulfil a similar role in most

positions.

We tested the robustness of identification of amino acid

subtypes, finding 31 of 66 positions covered by multiple studies

were assigned to the same subtype and many others were in two

functionally similar subtypes, despite differences in experiments

(Appendix Fig S6). This result is extremely unlikely by chance (one-

tailed binomial test versus random assignment: P¼ 3:397�10�4),

which suggests the procedure is robust. However, some subtype dif-

ferences might correspond to differences in properties revealed by

changes in experimental conditions or selection pressure. To ask

how complete is this set of 100 amino acid subtypes, we first

observed that the frequency of each successive subtype

(Appendix Fig S7A) decreases exponentially across all amino acids

( f ¼ e�0:56197�0:01655�N , r2 ¼ 0:9359, P<2:2�10�16), suggesting that

increasing the size of the dataset would primarily identify less

common subtypes. Reclustering the dataset with an increasing

number of positions (Appendix Fig S7B) suggests we are not close

to identifying all of the subtypes. While the number of subtypes of

most amino acids steadily increases as more positions are added

that of cysteine and histidine plateaus and tryptophan only increases

very slowly (Appendix Fig S7C), suggesting additional subtypes for

those amino acids may be less common. Altogether this suggests

that a larger dataset would very likely lead to discovery of several

more subtypes that are probably rarer than those observed here.

Conversely, it is relevant to note that the identification of any mean-

ingful number of subtypes would not be possible without perform-

ing the combined analysis of several proteins.

To allow for the future expansion of this study, we have devel-

oped the DeepScanScape R package (github.com/allydunham/dee

pscanscape) to apply the data processing, deep landscape analysis

and subtype assignment to aid analysis of future deep mutational

scans. This tool also allows for the mapping of positions from a new

study to this reference landscape allowing for the predictions of

some structural properties.

Properties and frequency of amino acid subtypes

The DMS datasets combined here allow us to identify and determine

the frequency of amino acid subtypes. We then clustered the aver-

age mutational profiles of the subtypes (Fig 3C) finding groups with

similar mean mutational profiles. These groups of subtypes repre-

sent cases where positions from different amino acids have similar

mutational properties. For example, they may generally tolerate or

select against a specific type of amino acid, for example requiring

small aliphatic amino acids or tolerating everything apart from

proline (referred to as the small aliphatic group and not proline

group, respectively). Subtype groups occupy different regions of

UMAP space, thus tending to have different physical properties as

well as different mutational profiles (Fig 3D). The most striking

example is the “not proline” group, whose positions’ only role

appears to be not restricting backbone conformation. These

subtypes have a very consistent profile and are found in 14 of the

19 non-proline amino acids, occurring in up to 20.5% of amino acid

positions. Methionine (20.5%) and glutamine (20%) have the most

“not proline” positions and larger amino acids, such as aromatics

(mean 2.9%) or leucine (4.6%) tend to have fewer (Fig 3E). They

are often observed to occur in and around secondary structural

elements, in particular having a significantly higher likelihood of

occurring in alpha helices (mean 1.24 times as likely, one-tailed

Mann–Whitney U-test: P¼ 1:7�10�5), based on secondary structure

predictions by Porter5 (preprint: Torrisi et al, 2018). Another

notable group of subtypes only tolerate small aliphatic amino acids.

Cross-referencing their positions in UMAP space with our property

map (Fig 2) reveals these positions tend to be highly conserved,

buried, moderately hydrophobic and lead to Van der Waals clashes

when mutated, which is exactly what would be expected of posi-

tions that specifically require small amino acids. The other subtype

groups identified follow similar patterns, tolerating certain specific

groups of amino acids (aliphatic, negative, not aromatic etc.). These

subtype groups capture the major divisions of classic amino acid

chemistry but, importantly, not all subtypes of each amino acid fall

into the group matching their classical chemistry. For example, Y1

and Y3 are in the aromatic subtype group but Y2 tolerates

hydrophobicity more broadly, and R1 selects for positive charge but

R2 positions primarily select against negative charge rather than

requiring the positive charge itself.

The frequencies of the most selective subtype, with the highest

mean ER score, and the permissive subtype, defined to be positions

with all jERj<0:4, vary widely between amino acids (Fig 3E), indi-

cating how often each amino acid fills either highly specific or very

general roles. For example, the most selective subtype of cysteine,

methionine and tryptophan all occur in at least 65% of their posi-

tions in our data, meaning these amino acids are very often used for

specific functions. Conversely, a much smaller proportion of glycine

positions are the most selective subtype (27%) but that subtypes’

mean ER profile (Fig 3F) shows those positions are some of the

most selective in the dataset; it is not common for a glycine to be

highly selected but when they are they fulfil a very specific role. The

frequency of permissive positions varies between amino acids as

well. Hydrophobic amino acid positions (e.g. aliphatic and

aromatic) tend to be permissive significantly less frequently than

other amino acids (mean 0.42 times as likely, one-tailed t-test:

P¼ 0:0001264, Cohen’s d¼ 1:37), with this effect being particularly

strong for aromatic amino acids (all < 4% frequency). This may be

because they tend to occur in positions that at least require

hydrophobicity, such as the core of the protein, and therefore

strongly hydrophilic substitutions are selected against. Permissive

subtype positions also tend to be more surface accessible in general

(mean 28.9Å2 greater accessible surface area, one-tailed t-test

P<2:2�10�16, Cohen’s d¼ 0:61). The fact that hydrophobic amino

acids are often experimentally tolerated on the surface but selected

against in nature suggests the experiments may be missing some

natural selection pressures.

Characterising amino acid subtypes

The results so far show that broad subtype analysis can shed light

on general trends in amino acid roles, but more targeted analysis is
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required to understand subtypes’ specific properties. We have

chosen three groups of subtypes to cover in detail. Firstly, cysteine

positions are divided between two main subtypes. The larger

subtype, C1 (65% of positions), is generally intolerant to substitu-

tions with aromatics being the most tolerated, whereas C2 (26.3%)

tolerates any hydrophobic residue (Fig 4A). C1 positions tend to be

involved in cysteine-specific functions, in particular disulphide

bonds (Fig 4B) and various ligand binding interactions (Fig 4C).

Conversely, the majority of C2 positions are buried (Fig 4D) and

primarily utilise hydrophobic properties. Both subtypes also appear

to be involved in interactions with aromatic residues via their π-
orbitals (Orabi & English, 2016) (Fig 4E).

Another interesting set of subtype groups is those of the charged

amino acids: negatively charged aspartate and glutamate and posi-

tive arginine and lysine. These visually split into 12 subtypes that

fall into five broad categories (Fig 5A), with the frequency of

charged amino acid positions falling in each category noted: selec-

tive for each of the two charge polarities (26.7% negative and

21.1% positive); selective for general polarity (7.83%); selection

against negative charge (6.18%); and selection against proline only

(12.2%), leaving 26.1% in rarer subtypes, permissive positions and

outliers. These groups are quantitatively differentiated by the aver-

age electrostatic force they contribute to the protein (Fig 5B). The

two groups that require charge tend to have the strongest forces,

then the polar subtype group and the two selecting against proper-

ties have the weakest. A number of examples illustrate the typical

roles of these different subtypes. Positions in the polar subtype

group frequently interface with solvent (Fig 5C). Positive and nega-

tive positions together form ionic bonds (Fig 5D) and independently

bind substrates such as DNA (Fig 5E) or ions (Fig 5F). Positions

selecting against negative charge are often near negative charges

that would repel them, either other residues in the protein or bound

substrates such as RNA (Fig 5G) and, as is generally typical, posi-

tions selecting against proline occur where fold topology is impor-

tant, particularly at the ends of secondary structures (Fig 5H) or in

loops connecting them. The division of roles between subtypes is
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Figure 4. Cysteine subtype examples.

A Mutational profiles of the two cysteine subtypes, C1 (red in other panels) and C2 (blue).
B Number of positions of each subtype in a disulphide bond, based on FoldX prediction.
C Examples of C1 positions involved in zinc ion (left, GAL4, PDB ID: 3COQ) and haem (right, CBS, PDB ID: 4L0D) ligand binding.
D All atom absolute surface accessibility of cysteine subtypes.
E Examples of C1 (left, NP, homology model on PDB ID: 2Q06) and C2 (right, CCR5, PDB ID: 6MET) interacting with aromatic groups.
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not absolute but the majority of cases of each role examined in

structural models fall into the appropriate subtype, which is also the

case with other examples mentioned (see Dataset EV4).

The final example covers groups of subtypes requiring different

sized hydrophobic amino acids, with one group of subtypes select-

ing for aromatics (F1, W1, Y1), one larger aliphatic amino acids (I2,

L2, M1) and one small amino acids (A1, G2, P3; Fig 6A). The

frequency that positions of each amino acid fall into these groups

varies a lot. For example, 36.5% of phenylalanine positions and

34.8% of tyrosine positions are in the “aromatic” group compared

with 67.8% of tryptophan positions, suggesting tryptophan posi-

tions more commonly primarily utilise aromatic characteristics. The

typical roles these subtypes have are illustrated by the average

structural consequences of mutations at their positions, based on
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Figure 5. Polar subtype examples.

A Mutational profiles of polar subtype groups. The group name is shown to the left of the profile and the subtypes that make it up to the right, coloured by subtype
number and therefore frequency within positions of that amino acid.

B Boxplots showing the distribution of the mean electrostatic component of FoldX substitution ΔΔG at each position of the subtype group. The box extends from 1st to
3rd quartile with a band at the median. The whiskers extend to the furthest point up to 1.5 times the interquartile range away from the nearest quartile, with any
further points marked as outliers.

C Polar position on the protein surface (TEM1, PDB ID: 1M40).
D Example ionic interaction between positive and negative subtype positions (CBS, PDB ID: 4L0D).
E Positive subtype position interacting with the DNA backbone (GAL4, PDB ID: 3COQ).
F Negative subtypes binding an ion ligand (TEM1, PDB ID: 3COQ).
G “Not negative” subtype positions surrounding bound RNA (PAB1, PDB ID: 6R5K).
H “Not proline” position at the end of an alpha helix (APH3II, PDB ID: 1ND4).
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components of FoldX’s substitution ΔΔG predictions. Firstly,

subtypes requiring small amino acids make a bigger contribution to

entropy minimisation during folding, having fewer possible configu-

rations and helping the protein fold efficiently (Fig 6B). They also

frequently occur in cramped spaces within the proteins, resulting in

clashes when mutated (Fig 6C). On the other hand, larger amino

acids, both aromatic and aliphatic, contribute more Van der Waals

forces (Fig 6D), highlighting the trade-off between Van der Waals

forces, packing the correct folds and entropy minimisation when

selecting for amino acids in the hydrophobic core. Finally, aromatic

positions are more likely to be surface accessible than either

aliphatic position (Fig 6E, mean 16.8 �A2 greater accessible surface

area, one-tailed t-test: P¼ 8:909�10�6), including when the slightly

polar tyrosine is excluded. This potentially occurs because the

aromatic ring interacts somewhat with water through its delocalised

π-orbitals (Slipchenko & Gordon, 2009). Together, these examples

illustrate some properties and typical roles of subtypes and show

that the subtypes have biological and structural features in specific
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Figure 6. Different sized aliphatic subtypes.

A Mutational profiles of size conscious aliphatic subtype groups. The groups are named on the left, coloured to match the boxplots in (B–E), and the constituent
subtypes of each group are on the right, again coloured by subtype number.

B–D Boxplots showing the distribution of mean FoldX substitution ΔΔG across positions of each subtype group, for various FoldX terms. The box extends from 1st to 3rd

quartile with a band at the median. The whiskers extend to the furthest point up to 1.5 times the interquartile range away from the nearest quartile, with any
further points marked as outliers. (B) Sidechain entropy and an example showing why mutations at small aliphatic group positions increase entropy more. (C) Van
der Waals clashes and an example showing alanine positions in a helix bundle demonstrating why clashes occur on mutation of small residues. (D) Van der Waals
forces and an example showing internal aromatic groups making Van der Waals interactions.

E Boxplot showing the distribution of all atom absolute surface accessibility between groups and an example of surface aromatic groups. The boxes and whiskers are
defined in the same way as (B–D).
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cases as well as in bulk statistics. In total, we have found 100

subtypes, characterised in Appendix Fig S8–S27 and described quali-

tatively with examples in Dataset EV4.

Discussion

We have demonstrated the utility of combining deep mutational

scanning studies for performing proteome scale analyses, even

when the experiments differ between studies. While the results of

these studies are strongly related to evolutionary conservation, they

also provide quantitative information about rare variants that would

require prohibitively large sample sizes to measure through

sequencing of different species. As we demonstrate here, this makes

them useful for analysing mutational profiles because these

frequently include rare variants. While this dataset only covers a

small slice of the protein universe, and so only forms the start of a

reference landscape, many findings relate to common protein

features and so we expect that it may apply to a wide range of other

proteins. For example, fundamental features such as secondary

structure folds, ionic bonding and ligand binding chemistry are simi-

lar across the proteome. On the other hand, features specific to the

studied proteins will not necessarily generalise and many protein

properties will not be represented, particularly those specific to

underrepresented categories, for example prokaryotes or metabolic

enzymes. In addition to changes in the mutational landscape driven

by the addition of a growing number of positions, it is also impor-

tant to note that the selection pressures imposed during DMS experi-

ments can also vary. In the future, it will also be relevant to

measure the extent by which such a joint analysis of DMS results

may be influenced by changes in selection criteria.

The mutational landscape we describe clearly demonstrates the

link between mutational profiles and biophysical properties across a

range of different proteins. It is a potentially powerful tool for data-

driven characterisation of a position’s likely properties using muta-

tional profiles or conversely estimation of mutational profiles from

properties. This can be thought of as a continuous form of subtypes,

where each position is described by a vector of properties, such as

the principal components or UMAP transformation of its mutational

profiles, and these vectors indicate biophysical properties of the

position. These representations could also be useful for predictive

models, especially if the landscape was developed with more data

and more sophisticated methods linking it to properties.

The discrete classification of positions into amino acid subtypes

provides similar power in a clearer form, providing a mapping

between types of position and mutational profiles, as well as provid-

ing unique benefits such as the ability to more clearly quantify the

range of diverse functions each amino acid fulfils and their frequen-

cies. In this work, we identify 100 subtypes, including permissive

positions of each amino acid but excluding outlier positions. The

average ER scores for the subtypes were found to be typically either

neutral (tolerating some mutations) or negative (not tolerating) and

only rarely positive (preferring; see Fig 3C). This relates to the fact

that mutations in these datasets generally destabilise rather than

stabilise function, as seen in the example distributions in Fig 1C.

We think this is in line with the biological expectation that muta-

tions away from the natural protein sequence are more likely to

destabilise the function of the protein than improve it.

One key aspect that depends on the joint analysis of multiple

proteins is determining the differences in the frequency of these

roles. As examples, we have discovered how often each amino acid

is used in proteins for their most specific purposes (Fig 3E), includ-

ing that cysteine positions seem to utilise cysteine-specific properties

in 65% of positions or that charged residues only rely heavily on

their charge in 21–27% of positions. The identification of amino

acid subtypes, their characterisation and quantification of how often

they are used in proteins is only possible when combining data from

many proteins. This allows us to quantify patterns across proteins

and highlight recurring patterns that are not apparent when consid-

ering each protein individually. For example, if we had studied

1,000 protein positions, which is larger than a typical single protein,

we would have only been able to identify 17 subtypes

(Appendix Fig S7). To allow for the future extension of this work,

we make the DeepScanScape R package available, allowing others

to apply our landscape and subtypes analysis to new DMS studies.

Subtype characterisation also breaks down typical roles of amino

acids and their frequencies, which helps quantify the spread of func-

tions across the proteome. The subtypes we identify include both

amino acid-specific functions like ion binding and general roles,

such as selection against proline or for hydrophobicity. This high-

lights another way to view some subtypes; they are shared between

amino acids, and so an alternative approach would be to combine

these subtypes, either after subtypes have been generated or by

clustering all amino acids together. Such an analysis could help

further quantify amino acid diversity by explicitly identifying posi-

tions where several amino acids share the same properties.

The relationship between deep mutational scanning and evolu-

tionary conservation suggests that a similar mutational landscape

analysis could be performed using sequence alignment data. We

experimented with applying a conservation-based analysis to our

dataset, based on positions SIFT4G score profile. The SIFT4G-based

mutational landscape captures many of the same properties as that

based on deep mutational scanning, although not the positioning of

transmembrane protein domains (Appendix Fig S28). However,

subtypes produced using the same algorithm on log10SIFT4G score

profiles fail to capture many of the roles that ER base subtypes do.

For example, disulphide bonds are shared evenly between the two

SIFT4G-based cysteine subtypes, “not proline” type subtypes are not

identified and aspartate positions binding ligands are not separated

as clearly. In addition, ER-based subtypes average profiles are more

differentiated from other subtypes of the same amino acid than

SIFT4G-based subtypes (Appendix Fig S29, mean 0.13 greater cosine

distance, one-tailed Mann-Whitney U-Test: P<2:2�10�16). This

suggests that conservation-based subtypes are a potentially power-

ful future direction, allowing coverage of a much larger portion of

the proteome, but lack the resolution and detail provided by deep

mutational scanning approaches. A method combining both data

types could also be powerful.

Exploring how to combine and use this type of data will be

important in future because many more deep mutational scanning

experiments are expected. The most recent DepMap release (Meyers

et al, 2017; Tsherniak et al, 2017; preprint: Dempster et al, 2019)

suggests 7,293 genes are essential in at least one cell line and thus

directly targetable by deep mutational scanning. This suggests data

from 1,000s of genes could be available in future, ideally from more

standardised experiments. While we have data from a diverse range

ª 2021 The Authors Molecular Systems Biology 17: e10305 | 2021 11 of 14

Alistair S Dunham & Pedro Beltrao Molecular Systems Biology



of proteins and have amassed as large a dataset as possible, we are

ultimately limited to data from 6,291 positions, a very small slice of

the proteome. Although the fact that our analysis largely relates to

protein biochemistry rather than specific protein functions suggests

our results may still be broadly applicable across the proteome, this

is part of the reason we do not, and did not expect to, identify clear

novel amino acid functions from our data; we only had access to

data from a limited range of well-studied proteins. Potentially, a

larger range of proteins would contain enough examples of rare,

unstudied interactions to identify novel roles.

A larger dataset has potential for both extending this work and

exploring other areas, for example a proteome-wide analysis of dif-

ferent types of substitution in different contexts (i.e. focussing on

the mutant amino acid rather than the wild type). For our work, a

larger dataset has the potential to expand the range of roles discov-

ered, with rarer subtypes either completely missing or too rare to

identify in our data. The 100-amino acid subtypes need to be consid-

ered a lower bound estimate of amino acid roles in proteins that can

be derived in this way. A form of subtype we would expect to find

with more data is post-translational modification sites such as phos-

phosites. However, we currently only cover 52 phosphosites (The

UniProt Consortium, 2019), and these are not all necessarily

conserved, active sites. These sites would potentially tolerate other

phosphorylatable residues and phosphomimetic amino acids.

Another potential outcome is dividing subtypes we have identified

into more specific forms, for example splitting C1 into disulphide

bonding and ligand binding positions. Thus, our estimates form

lower bounds for subtype numbers, although with diminishing

returns as you add more data. Finally, all the subtypes we identify

are spread between at least 7 fairly dissimilar genes, suggesting we

are not identifying roles specific to classes of protein, for example in

active sites, which could be discovered with more data giving more

examples of such specific functions.

Overall, our analysis shows three key points. Firstly, deep muta-

tional scanning data can be combined from disparate studies into a

meaningful dataset that relates to real biology. Secondly, the muta-

tional landscape is a powerful tool for analysing protein positions,

with rich relationships to biophysical properties, enabled by

combining data from many proteins. And finally, positions of each

amino acid can be broken down into typical subtypes using these

profiles, allowing us to quantitatively map the diverse range of func-

tions each amino acid plays across the proteome and the frequency

of their usage.

Materials and Methods

Combining the data

First, we selected as many deep mutational scanning studies

(Dataset EV1) as we could find that fulfilled the following criteria:

• Available data.

• Selection criteria matching the proteins’ natural function.

• Scores that cannot be transformed to the standard

log2ERmut ¼ log2
fmut
post= f

mut
pre

fwtpost= f
wt
pre

form, where f
mut=wt
pre=post is the frequency of

variant mut or the wt before or after selection.

This included searching MaveDB (Esposito et al, 2019) and

searching the literature. Each study was then processed into a stan-

dard state, with a complete set of variant scores for single substitu-

tions at each position.

Some studies generated multiple mutations to individual

sequences, without generating all single substitutions as well. In

these cases, we used the average ER score of sequences including

each substitution that was not directly tested, limiting the average

to sequences with a maximum number of variants, depending on

the deviation from known single substitution scores and resultant

variant coverage (Appendix Fig S1, Dataset EV1). In studies with

multiple comparable replicates, either direct replicates or in equiva-

lent conditions, we averaged across conditions, and when multiple

incomparable conditions were available, we chose the most repre-

sentative of proteins’ natural functions (Dataset EV1). Studies were

then filtered if they had very poor correlation with SIFT4G scores,

indicating unrealistic selection criteria or experimental oddities, or

low coverage of substitutions at each position.

The scores for each study were transformed onto the standard

scale, with a different transform required in each case (Dataset

EV1), and normalised by dividing all scores by the median score of

the lowest 10%. This threshold was chosen heuristically to encom-

pass the typical ER scores of nonsense mutations. These scores were

put together into a combined dataset, from which positions with

< 15 of the 20 missense and nonsense substitutions were filtered

and remaining missing data were imputed using the median of that

substitution type (A → C, A → D,. . .) across all normalised scores.

Some studies include variant codons and so measure synonymous

variants’ ER but where not measured synonymous substitutions

were imputed to be 0 because 58% of study values were exactly 0

and 92% have absolute values less than 0.05.

We identified the best structural model for each protein in SWISS-

MODEL (Waterhouse et al, 2018), selecting higher resolution and

coverage where possible, as well as favouring experimental models

over homologymodels. Themodels used are detailed in Dataset EV1.

Analysing the mutational landscape

The combined mutational landscape data were annotated with addi-

tional biophysical data from a number of tools:

• SIFT4G – substitution effect scores (with a custom patch to output

SIFT4G scores to 4.d.p).

• FoldX – substitution ΔΔG predictions.

• naccess – surface accessibility measurement.

• Porter5 – secondary structure predictions.

The different physical components of the FoldX ΔΔG predictions

were averaged across all substitutions at a position in most analy-

ses, giving a measure of the importance of different structural effects

at that position. The UMAP (preprint: McInnes et al, 2018; Melville

et al, 2020) and principal component dimensionality reductions

were calculated and cross referenced with those factors.

Identifying amino acid subtypes

We tried a number of methods to cluster amino acid positions, using

various algorithms, distance metrics and profile formulations. Our
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final algorithm, which performed by far the best, was as follows,

applied independently to positions of each amino acid:

• Separate permissive positions (jERj<0:4 for all substitutions).

• Apply hierarchical clustering to the remaining positions, with

average linkage and cosine distance to profiles consisting

of PC2–PC20 (calculated across the whole mutational land-

scape).

• Use hybrid dynamic tree cutting (Langfelder et al, 2008) to assign

positions to subtypes, using deepSplit = 0 or 1 depending on the

amino acid.

We decided to use principal component space, with PC1

excluded, and cosine distance to remove the influence of mean ER

score, which otherwise dominated clustering. Splitting positions by

overall functional importance would also be an interesting analysis,

but masks differentiation based on biophysical role, which is what

we were interested in. Using PC2 to PC20 achieves this because PC1

captures the variation in mean ER. Using the cosine distance also

helps because it measures the angle between the vectors formed by

two profiles in multidimensional space, which is independent of

their overall magnitude. However, using this metric means the

distance between low magnitude positions is very noisy, since their

“direction” is largely random. To combat this, we manually separate

these positions before clustering.

The deepSplit parameter to the dynamic tree cutting algorithm

determines how much to split the dendrogram. We vary this param-

eter between amino acids, increasing it to 1 for amino acids that

appear to under-split using 0, based on profile consistency in the

resultant subtypes. This is potentially partially required due to the

amount of data we have, and more data could allow us to optimise

this parameter across the dataset as a whole.

Subtypes were characterised using the averages of the various

statistics and metrics we previously annotated the mutational land-

scape with, as well as their average ER score profiles.

The number of subtypes identified with variable numbers of

positions was determined by applying the clustering algorithm to

increasingly large subsets of 100 positional shuffles of the main

dataset. 1,000 positions were initially included in each and then

increased in increments of 200.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Combined landscape data: Dataset EV2.

• Subtype assignments: Dataset EV3.

• Dataset processing, landscape analysis and clustering code:

GitHub (https://github.com/allydunham/aa_subtypes).

• DeepScanScape R Package: GitHub (https://github.com/allyd

unham/deepscanscape).

DeepScanScape allows users to process new DMS studies

using the methods presented here and analyse them based on

the deep landscape dataset. This lets you identify unusual prop-

erties of studies and positions, visualise data on the deep

landscape and assign amino acid subtypes to positions to predict

potential properties.

Expanded View for this article is available online.
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