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Abstract

Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the
accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions,
constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do
all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent
specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with
dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus.
The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can
provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each
chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic
mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on
simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared
with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples
demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits
comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest
detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches.
The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better
detection power than that with integer copy number states.
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Background

Copy number alterations are segments of nucleotide sequences

that are amplified or deleted compared to the regular ploidy

number of certain organism. Such structural abnormalities of

chromosomes may be caused by germline alterations, the copy

number variations (CNV), or acquired in somatic mutations,

which is specifically termed copy number aberration (CNA).

Different patterns of the copy number alteration may give rise to

varying phenotypes among individuals or may be the key of

understanding disease susceptibility. Copy number variation have

been reported to be associated with Alzheimer’s disease (AD) [1],

Crohn’s disease [2], autism [3], Parkinson’s disease [4], and

Schizophrenia [5]. In contrast, copy number aberrations were

mostly associated with various cancer types [6,7] [8]. However,

copy number alterations spread over the human genome even in

normal individuals [9]. Most CNVs/CNAs are neutral events that

do not affect any phenotypes. Understanding the distribution of

the copy number events among normal individuals can help to

discover the abnormalities that actually result from copy number

changes. Hence, identifying the accurate position and the type of

copy number changes in the human genome is currently a critical

issue. Many technologies have been developed to detect copy

number alteration, including fluorescence in situ hybridization

(FISH), comparative genomic hybridization (CGH), array com-

parative genomic hybridization (aCGH), SNP array, and massive

parallel sequencing. In this study, we focus on the information

extracted from the Affymetrix SNP 6.0. Other platforms that

retrieve allele-specific signals can fit into the same framework for

copy number detection.

Various algorithms are designed to detect regions of copy

number variation with SNP array data [10–18]. The basic ideas

behind these algorithms can be roughly categorized into segmen-

tation-based, HMM-based, model-based strategies and others that

combine with any of the aforementioned three. The first group of
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detection algorithms are segmentation-based methods, originally

designed for array Comparative Genomic Hybridization (aCGH).

Popular packages include Circular Binary Segmentation [19], and

GADA [14]. The first step of this category involves deciding the

segmentation point of copy number variation regions according to

a criterion or statistical tests. The estimation of copy numbers is

provided as a second step. This type of analysis can only provide

the total copy numbers while ignore the allele specific information.

The algorithms based on HMM include QuantiSNP [11],

PennCNV [10], GenoCN [12], PICNIC [20] and cnvHap [13].

The transition model of the first three algorithms account for the

distance between neighboring loci; the longer the distance between

any two loci, the more likely a state change will occur between

them. QuantiSNP, PennCNV, PICNIC, and GenoCN can

provide allele-specific copy numbers (ASCN), and cnvHap can

further provide haplotypes composed of allelic copy number

change on the same chromosomes. However, the copy numbers

are pre-specified as part of the hidden states and hence can only

consider integer numbers.

Another group of algorithms are model-based methods includ-

ing Copy Number Analysis with Regression And Tree [15]

(CARAT), Probe-Level Allele-Specific Quantitation [16]

(PLASQ). They can infer fractional allele-specific copy numbers

(ASCN) on tumor samples. CARAT and PLASQ methods require

normal samples to train the rules. In the end, the copy numbers

are smoothed across SNPs within each copy number alteration

region. PLASQ can also infer parent-specific copy number

(PSCN) based on the assumption that copy number and probe

intensity are approximately linearly correlated on a log-log scale.

Several recent researches studied allele-specific copy numbers.

The studies of Olshen et al [21]., Chen et al [22] and Tumor

Aberration Prediction Suite (TAPS) [23] are among this category.

TAPS adopts Circular Binary Segmentation (CBS) to detect the

CNV region. It provides allelic imbalance ratio calculation, and

copy number calling. PSCN [22] and PSCBS [21] can further

infer the parent specific copy numbers. That is, they provide the

total copy number on each one of the two chromosomes for the

CNV regions they detect. They reported simultaneous change-

point analysis of paired allele-specific CNV data [21] and log of

total copy number [22]. Both platforms generate contiguous copy

number measures along ordered chromosomal location. However,

the algorithm was developed to solve the issue of copy neutral

LOH and did not function with reasonable accuracies for a

general purpose CNV detection so it is not included in our

comparison. Detailed observations are provided Table S3 in File

S4 and Figure S1–S6 in File S4 to support our suggestion.

Some methods require multiple steps to derive the copy number

variation. Birdsuite [18] is a four-stage algorithm to integrate copy

numbers and genotype calling on CNV regions. The third step of

Birdsuite is also based on HMM to infer copy numbers on CNV

regions with the results of the first two steps. Its final step combines

all information obtained from the preceding steps to estimate the

allele-specific copy number calls for the CNV regions. COKGEN

[17], by contrast, uses an optimization based approach that

depends on an objective function and a searching algorithm.

Simulated annealing is used to iteratively obtain the most accurate

CNV calls. However, both of the strategies provide discrete copy

numbers. Therefore, those strategies cannot provide accurate

information of the primary tumor cells, which are heterogeneous

with mixtures of normal and cancerous cells. To solve this issue,

the Allele-specific copy number analysis of tumors (ASCAT) [24]

provides whole-genome allele-specific copy number and construct

a genome-wide map of loci with alleles that were preferentially

lost, pointing to candidate genes that may drive cancer develop-

ment.

As mentioned above, cnvHap provide chromosome specific

haplotypes. This type of studies include MOCsphaser [25] and the

study of Huang et al. [26]. However, MOCsphaser requires the

CNV regions and the total number copy numbers to be known in

advance. The study of Huang et al. re-organizes the known

haplotypes from reference samples into a pre-specified CNV

region of known total copy numbers. They both need to know

CNV regions in advance.

Most of the aforementioned methods provide certain advan-

tages to others while they still lose information in some manner.

We describe a method, termed HaplotypeCN that adopts the

Hidden Markov Model as the basic framework. This method can

provide fractional allele-specific copy numbers, detect CNV

regions and construct phased haplotypes with haplotype-specific

copy numbers at the same time. To be more specific,

HaplotypeCN can reconstruct the haplotypes composed of allelic

copy number change on the same chromosomes. Haplotypes

consist of alleles of adjacent loci and are transmitted together from

a single parent. They are natural genetic units produced by the

recombination mechanism. It has been reported to help improve

the power of detection in the genome-wide association under some

circumstances. Haplotypes can be inferred from genotypes. This

step is called phasing. Correctly detecting CNA haplotypes helps

to identify the chromosomes that are more susceptible to structure

variation. The formation of tumor is a process of accumulation of

mutations and it is an evolutionary process [27]. Recurrent

amplicons were observed in different types of somatic mutation

[28,29]. Certain haplotypes might be disproportionately shared by

tumors [30,31]. There is no way to comprehensively study the

occurrences if we cannot accurately construct the haplotypes. The

challenge of haplotype phasing for diploid genomes has drawn

considerable attention and achieved significant progress. We did

not adopt the common sliding window methods to determine the

haplotype length. The haplotype lengths are dynamically deter-

mined based on the variable-length Markov chains (VLMC)

model [32].

The proposed HaplotypeCN is compared with several popular

algorithms including PennCNV, QuantiSNP, genoCNV, COK-

GEN, and cnvHap because they have software freely available and

can be applied on Affymetrix SNP 6.0 arrays. The performance is

evaluated on the 270 HapMap samples that have been genotyped

on Affymetrix 6.0 platforms. Copy number variation regions for

those samples have been reported in two studies using different

technology and are treated as, benchmark events for concordance

evaluation. In this study, we also provide simulation data to

compare the haplotype phasing results between HaplotypeCN and

cnvHap. The proposed HaplotypeCN can achieve better accuracy

than cnvHap.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all participants.

This study was approved by the Chang Gung Memorial Hospital

Human Research Ethics Committee (Protocol number 98-3645B).

Initial Input and Allelic States
The algorithm was conducted iteratively with two major steps:

(I) the probabilistic haplotype tree construction and merging, and

(II) the haplotype state recognition from the array intensity data

based on two independent haplotype trees and the emission

probability model. Before the iteration of the two steps, the

CNV Detection with Haplotype Phasing
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initiation requires a rough guess of the genotypes for each sample

and it can be easily derived from any genotype calling algorithm.

We use the probe intensity summary and the genotype calls from

Birdseed, the second step of the Birdsuite package [18], as input of

our program. No information about amplification or deletion is

provided at this stage. When there is no call from Birdseed, we

impute the genotype with the smallest Mahalanobis distance to the

three models of AA, AB and BB. Every locus can be any one of the

three genotypes, AA, AB or BB. The data will be used to initiate

the haplotype tree construction.

Six states are defined for each SNP locus on a single

chromosome. They are A2, A, A+, B2, B, and B+ respectively

representing deletion of A allele, one copy of A allele, amplifica-

tion of A allele, deletion of B allele, one copy of B allele and

amplification of B allele. The normal state A and B can transit to

all six states. The states of loss (A2 or B2) can only transit to either

states of loss, or transit to the normal states (A or B) at the

neighboring locus. By contrast, the states of gain (A+ or B+) can

only transit to either states of gain, or transit to a normal states (A

or B). Consequently, only 28 possible haplotypes exist, rather than

666 = 36 haplotypes between any two consecutive loci. The

restriction is based on a reasonable assumption that acquiring both

DNA loss and gain at the adjacent regions is less likely; although it

is possible biologically, we do not expect it to be common events.

With current computational power in contrast to the enormous

dimension of data, spending the degrees of freedom on rare events

and sacrifice the estimation accuracy is of less interest.

Estimation of Four Haplotype Proportion for All Pairs of
Consecutive Loci

Starting from the genotypes derived from Birdseed, we

construct the initial transition probability between all transferrable

allelic states at every pair of loci by multiplying a state-dependent

scaling factor with the haplotype proportions estimated from the

genotype counts. The nine genotype counts between loci j and j+1

in a sample are Ng,h, where g,h[f1,2,3g and the genotypes AA,

AB and BB are coded as 1, 2 and 3 respectively in either locus.

We first estimate the proportions for the four major haplotypes

A2A, A2B, B2A and B2B from the genotypic data at each pair

of consecutive loci. Eight of the nine genotypic combinations can

be resolved for the haplotypes. For example, the genotype

(AA)j(AB)j+1 between loci j and j+1 is counted for N1,2 times and

each individual with this genotype carries a haplotype A2A and a

haplotype A2B. The only genotype with more than two sets of

possible haplotype combinations is (AB)j(AB)j+1, which is hetero-

zygous at both loci. The haplotype combination for (AB)j(AB)j+1

can be either A2A/B2B or A2B/B2A. We assume the

proportion of the haplotype pair A2A/B2B in the N2,2 samples

to be X1 and estimate it in an iterative process with the estimation

of all the haplotype probabilities. The proportion of the four

haplotypes can be estimated as equation (1) with the initial value of

X1 set to 0.5. The value for X1 is then updated with equation (2).

The iteration between equations (1) and (2) will stopped when the

difference of X1 between any two consecutive iterations is smaller

than 1025. The derived estimates of aA{A, aA{B, aB{A, and
aB{B are used as our input to the estimation of transition

probability.

aA{A~
2|N1,1zN1,2zN2,1zX1|N2,2

2|N

aA{B~
2|N1,3zN1,2zN2,3zX2|N2,2

2|N

aB{A~
2|N3,1zN3,2zN2,1zX2|N2,2

2|N

aB{B~
2|N3,3zN3,2zN2,3zX1|N2,2

2|N

ð1Þ

X1~
aA{A|aB{B

aA{A|aB{BzaA{B|aB{A

ð2Þ

The iterative estimation for the haplotype proportions is only

required at the initiation step. Because we do not have information

about allelic amplification or deletion from the Birdseed genotypic

data, haplotypes consisting of allelic states with amplification or

deletion are implicitly included in the above four haplotypes. That

is, the proportion of haplotype A2A should also consist of

proportions of A2A+, A2A2, A+2A, A+2A+, A22A and A22

A2. Those seven haplotypes belong to the same set and are

denoted as haplotype set A2A. Similarly, haplotype sets A2B, B2

A and B2B all consist of seven haplotypes. After proceeding

through the following steps with one global iteration, the

haplotype phase for the two chromosomes will be resolved

throughout the whole genome and the proportion of the 28

haplotypes between any two loci can be derived. We add the

proportions of seven haplotypes of the same haplotype set to derive

the four group proportions, aA{A, aA{B, aB{A, and aB{B.

Because the haplotype probability represents the joint proba-

bility between two loci, the conditional probability is calculated as

P(locusjz1~ADlocusj~A)~
aA{A

aA{AzaA{B

P(locusjz1~BDlocusj~A)~
aA{B

aA{AzaA{B

P(locusjz1~ADlocusj~B)~
aB{A

aB{AzaB{B

P(locusjz1~BDlocusj~B)~
aB{B

aB{AzaB{B

ð3Þ

Haplotype Tree Construction with Dynamic Branch
Merging

The first step of our global iteration involves constructing a tree

to represent the state transition of either chromosome. The

Figure 1. A haplotype tree with only two loci.
doi:10.1371/journal.pone.0096841.g001
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Figure 2. Tree merging example. Each branch is attached with a conditional probability C from the left node to the right node and a joint
probability J of the haplotype between the left node and the right node. Panel (a) presents a tree before merging Node 2.1 and Node 2.3, and panel
(b) presents the tree after merging.
doi:10.1371/journal.pone.0096841.g002
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haplotype tree we construct is a probabilistic tree in the sense that

the branches of the tree represent the transition probabilities

between states at consecutive loci. Starting from a root node with

no physical meaning, the haplotype tree branches to six nodes

representing the six allelic states defined previously for the first

locus. Each of the six nodes branch further to six or four nodes,

depending on the current states according to the restriction we

place between amplification and deletion states (Figure 1). With

just a few branching steps, it becomes a gigantic tree that requires

incredibly large computations. Fortunately, haplotype construc-

tion from genotypic data has been studied extensively with many

algorithms, such as Variable Length Markov Chain (VLMC),

PHASE and fastPHASE, which are able to handle this problem

efficiently [33,34]. We adopt the Variable Length Markov Chain

(VLMC) proposed by Browning [32] to merge the branches

dynamically. The merged nodes could be positions with higher

recombination rates, and the stretch between any two consecutive

merged points loosely represents a haplotype block.

The merging step was performed on the haplotype sets instead

of on all the branches in Figure 1. Figure 2 depicts an actual

example. The joint probability a’s calculated in Equation (1) are

indicated as J, and the conditional probabilities calculated in

Equation (3) are indicated as C in Figure 2. The binary tree in

Figure 2 was constructed for only two alleles at each locus without

considering any amplification or deletion states. The aberrant

states are implicitly included and will be branched out later. The

nodes with similar branching probability to the next locus are

merged. Using the conditional probabilities calculated in Equa-

tions (3), we derived a similarity score for each pair of nodes at the

same locus by calculating the maximal absolute difference of

conditional probabilities between the parallel descendants. For

example, to compare Node 2.1 and 2.3 in Figure 2(a), the

difference is taken between the conditional probability from Node

2.1 to allele A (Node 3.1) and the conditional probability from

Node 2.3 to allele A (Node 3.5). It is |0.97620.976| = 0. The

difference is also taken between Node 2.1 and 2.3 to Node 3.2 and

Node 3.6 respectively. It is |0.02420.015| = 0.009. The similarity

score between Node 2.1 and 2.3 is the maximum of the two and is

0.009. Let M2.1 and M2.3 represent the numbers of haplotype

counts for the haplotypes starting from the root node and ending

in Node 2.1 and Node 2.3. The threshold for the similarity score is

set at (1=M2:1z1=M2:3)1=2, which is roughly twice the standard

deviation of the absolute difference when the transition is purely

guided by a random process [32]. The pairs of nodes with

similarity scores smaller than their corresponding threshold are

candidates to be merged, and the pair with the smallest similarity

score is merged first. Figure 2(b) demonstrates the tree with Node

2.1 and Node 2.3 merged from the tree in Figure 2(a). Their

descendants are merged in parallel with probability adjustment

described in the next paragraph. Similarity scores will then be

updated again between the new node and all the other nodes at

the same locus. The most similar pair will be merged if the

similarity score is below the threshold. The iteration stops when no

more pairs can be merged or when only one node remains. The

merging step is performed sequentially from the first locus to the

final one. According to the simulation in Browning’s study [32],

90% of the similarity scores are lower than the threshold and the

nodes are merged.

The conditional probabilities from the merged node to the

descendants are essentially the weighted average of the conditional

probabilities of each individual node before the merge. The

weights are the haplotype counts for each original node. For

example, the conditional probability P(ANode3.1 | ANode2.1) in the

merged node of Figure 2b is calculated as [M2.1P(ANode3.1 |

ANode2.1) + M2.3P(ANode3.5 | ANode2.3)]/(M2.1+ M2.3) in the nodes

of Figure 2a, and the conditional probability P(BNode3.2 | ANode2.1)

in the merged node in Figure 2b is calculated as [M2.1P(BNode3.2 |

ANode2.1) + M2.3P(BNode3.6 | ANode2.3)]/(M2.1+ M2.3) in the nodes

of Figure 2a. The results are displayed in Figure 2b.

After the tree merging process at the haplotype set level, the tree

is branched out for all the amplification or deletion states. That is,

the conditional probabilities are distributed to the transition

probabilities for haplotypes in the same haplotype set by

multiplying an empirically derived factor. In this step, we consider

the adjustment with distance effect according to the assumption

that the longer the distance between the two loci is, the less likely

the copy number status will stay at the same condition. Similar to

previous studies [10,11], we assume that the decreasing rates

follow an exponential function of distance, e{d=D, where d is the

distance in terms of nucleotides between the neighboring loci (10)

Figure 3. Branching to derive the amplification or deletion state. The thick lines are marked with the formula of transition probabilities, while
the thin lines can be calculated accordingly.
doi:10.1371/journal.pone.0096841.g003
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and D decides the exponentially decreasing rate. Hence, the

increasing rate is the complement (1{e{d=D). The transition

probabilities are defined as follows.

tD{6 !e{d=108
|P(locusjz1~6Dlocusj~D)

tDz{6z~tD{{6{!e{d=105
|P(locusjz1~6Dlocusj~D)

tD{6z ~tD{6{ !0:5|(1-e{d=108
)|

P(locusjz1~6Dlocusj~D)

tDz{6
~tD{{6 !(1-e{d=105

)|P(locusjz1~6Dlocusj~D)

ð4Þ

where D or 6 can be either A or B and the superscript + or –

stands for the amplification or deletion state. For example, the

conditional probability P(A | A) is distributed to the transition

probabilities tA{A~updated P(A | A), tA{Az~P(A+ | A) and

tA{A{~P(A2 | A) with proportion e{d=108
, 0:5|(1{e{d=108

)

and 0:5|(1{e{d=108
). The transition probabilities tAz{A~P(A

| A+) and tAz{Az~P(A+ | A+) share the same conditional total

P(A | A) with proportion e{d=105
and 1{e{d=105

. Similarly, the

transition probabilities tA{{A~P(A | A2) and tA{{A{~P(A2 |

A2) also share the same conditional total P(A | A) with proportion

e{d=105
and 1{e{d=105

. Figure 3 provides a branching example

for the merged Node 2.1 in Figure 2b. The number D is selected

as 108 and 105 for the normal allelic state and the variant copy

number state, respectively. The assumption behind the setting lies

on the observation that the stretch of a normal genomic sequence

is considerably longer than the aberrant sequences with either

amplification or deletion. The number D is set as fixed in our

implementation based on the empirical studies of several datasets.

Emission Probability
Observations derived from SNP arrays are the probe intensities

summarized for the signal of Allele A and Allele B at each locus.

Hence, each observation is a two dimensional data with paired

signal (sA, sB) at each locus. Our recognition process is based on

the Hidden Markov Model (HMM). The transition states are the

36 genotypes (A2, A, A+, B2, B, B+)6(A2, A, A+, B2, B, B+) at

each locus and are constructed from an independent multiplica-

tion of two haplotype trees.

The emission probability model is assumed to be a bivariate

normal distribution for each genotypic state. At the initiation step,

the models at each locus are seeded with three emission probability

models for genotype AA, AB and BB from the genotype-calling

module of Birdseed, in which the package provides the mean

vector and the covariance matrix for the bivariate normal

distribution. The three models are extended to 11 models

according to the grouping in Table 1 and Figure 4. The model

parameters are assigned in Table 2. Each group collects genotypes

with close signal distribution and they share the same emission

probability model. The parameters of each model are updated

after each iteration of recognition. The copy number estimation

and the procedure of parameter update are described in the next

section.

Detection of Copy Number Alteration, Haplotype
Phasing, Model Parameter Update, and Copy Number
Estimation

With the above emission probability models and the

transition probability, the best sequence of hidden states that

represent the combination of the two phased haplotypes is

derived by the Viterbi algorithm [35]. Because the number of

all genotypic states is too large to handle, we consider only the

group of genotypes with the smallest Mahalanobis distance

from the model center, (mA
M ,mB

M ), to the observed intensity pair

(sA,sB) at each SNP locus. The distance measure is calculated as

Table 1. Groups of genotypic states with respective characteristics.

Emission probability
model Description Genotypic States

M0 Allele A is present in both chromosome with total copy number greater than two, and
Allele B is not present in either chromosome.

A+A+,A+A, AA+

M1 Allele A is present in at least one chromosome with total copy number close to two, and
Allele B is barely present in either chromosome.

AA,A2A+, A+A2, A+B2, B2A+

M2 Allele A is present in one chromosome with copy number greater than one, and Allele B is
present in the other chromosome with one normal copy.

A+B, BA+

M3 Both chromosomes present events of gain. A+B+, B+A+

M4 Allele A is present in one chromosome with one normal copy, and Allele A or B is present in
the other chromosome with less than one copy.

AB2,B2A,AA2,A2A

M5 Allele A is present in one chromosome with one normal copy, and Allele B is present in the other
chromosome with one normal copy. It is a normal heterozygote.

AB, BA

M6 Allele B is present in one chromosome with copy number greater than one, and Allele A is present
in the other chromosome with one normal copy. This is a symmetric model of M2 with flipping alleles.

AB+, B+A

M7 Both chromosomes present events of loss. B2B2,A2A2,A2B2, B2A2,

M8 Allele B is present in one chromosome with one normal copy, and Allele A or B
is present in the other chromosome with less than one copy. This is a symmetric model of M4.

A2B, BA2, BB2, B2B

M9 Allele B is present in at least one chromosome with total copy number close to two and, allele A is
barely present in either chromosome. This is a symmetric model of M1.

BB, B2B+, B+B2, B+A2, A2B+

M10 Allele B is present in both chromosome with total copy number greater than two, and allele A is
not present in either chromosome. This is a symmetric model of M0.

B+B+, B+B, BB+

doi:10.1371/journal.pone.0096841.t001
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Table 2. The mean vector and variance component assignment of the emission probability models at the initiation step.

Emission probability model (M) Mean (Mean of A signal, Mean of B signal)
Covariance (Variance of A signal, Covariance between
A and B signal, Variance of B signal)

M0 (2|mA
AA,j{mA

AB,j ,m
B
AA,j ) 1

2
(nAA

AA,j ,n
AB
AA,j ,n

BB
AA,j)

M1 (mA
AA,j ,m

B
AA,j) (nAA

AA,j ,n
AB
AA,j ,n

BB
AA,j )

M2 (mA
AA,j ,m

B
AB,j ) 1

4
((nAA

AA,jznAA
BB,j ),(n

AB
AA,jznAB

BB,j),(n
BB
AA,jznBB

BB,j ))

M3 (mA
AA,j ,m

B
BB,j) 1

4
((nAA

AA,jznAA
AB,j),(n

AB
AA,jznAB

AB,j),(n
BB
AA,jznBB

AB,j))

M4 (mA
AB,j ,m

B
AA,j ) 1

4
((nAA

AA,jznAA
AB,j),(n

AB
AA,jznAB

AB,j),(n
BB
AA,jznBB

AB,j))

M5 (mA
AB,j ,m

B
AB,j ) (nAA

AB,j ,n
AB
AB,j ,n

BB
AB,j)

M6 (mA
AB,j ,m

B
BB,j ) 1

4
((nAA

AB,jznAA
BB,j),(n

AB
AB,jznAB

BB,j),(n
BB
AB,jznBB

BB,j))

M7 (mA
BB,j ,m

B
AA,j) 1

4
((nAA

AA,jznAA
BB,j ),(n

AB
AA,jznAB

BB,j),(n
BB
AA,jznBB

BB,j ))

M8 (mA
BB,j ,m

B
AB,j ) 1

4
((nAA

BB,jznAA
AB,j),(n

AB
BB,jznAB

AB,j),(n
BB
BB,jznBB

AB,j))

M9 (mA
BB,j ,m

B
BB,j ) (nAA

BB,j ,n
AB
BB,j ,n

BB
BB,j)

M10 (mA
BB,j ,2|mB

BB,j{mB
AB,j ) 1

2
(nAA

BB,j ,n
AB
BB,j ,n

BB
BB,j)

The assignments of M1, M5 and M9 are extended to all the other models.
doi:10.1371/journal.pone.0096841.t002

Figure 4. Centers of the eleven emission probability models. The green, blue and red circles represent the observed samples with genotype
AA, AB and BB according to the genotypes identified by Birdseed. The stars are the centers of the three initial groups. All the other centers are
assigned according to the grids passing through the stars. M0 and M10 are extended from M1 and M9 so that distance between centers of M1 and
M0 is equal to the distance between centers of M1 and M4, and the distance between centers of M9 and M10 is equal to the distance between
centers of M9 and M8.
doi:10.1371/journal.pone.0096841.g004
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(sA{mA
M ,sB{mB

M )0S{1
M (sA{mA

M ,sB{mB
M ) where SM is the co-

variance matrix of model M, and the model with the smallest

distance to (sA,sB) is selected. The haplotypes are phased only

for the genotypes in the selected group. When all the 36

combinations are considered, the computation load is very

heavy. In order to reduce the computational time, we use

Mahalanobis distance to group genotypes. For each group we

use Viterbi algorithm to choose the best genotype. The shaded

region was designed to reduce the false positives. Compared

with the full model using 36 combinations, this heuristic rule

does not reduce the detection accuracy a lot. We will explain it

with more details later.

After the haplotype-phasing step, we have potential copy

number alteration regions generated with genotype calls for allelic

gain or loss at each SNP locus. Further filtering criterions are

applied on the regions to avoid overly fragmented results. Firstly,

any copy number alteration region with a single SNP will be

excluded. Secondly, If only one or two SNPs exist between two

predicted regions of the same direction of copy number change

(both plus or both minus states), the two copy number alteration

regions will be merged into one by including the middle loci that

were not reported in the beginning. Thirdly, we mark SNPs within

copy number alteration calls as low confidence if their signals

(sA,sB) fall into the shaded region of Figure 5. Because the region

includes most of the probe signals from the three normal

genotypes, AA, AB and BB, a predicted copy number alteration

region consisting of a moderate number of SNPs in this shaded

region indicates only mild deviation from the normal sequence

and, hence, is removed to reduce false positives. If a predicted

region contains more than 4/5 of the SNPs marked as low

confidence, the region is excluded. When a predicted copy

number alteration region consists of less than four SNPs, none of

the intensity pairs are allowed to be in the shaded region.

Although all of our emission models are extended from M1, M5

and M9 at the initiation, parameters of all the eleven models need

to be updated in the following iterations. The mean vector is

Figure 5. The shaded region applied to filter unreliable CNV prediction.
doi:10.1371/journal.pone.0096841.g005

Figure 6. A toy example of simulation. The two male samples in the figure both provide their X chromosomes with their original amplifications
or deletions. The chromosome from sample 1 carries amplifications from SNP1 to SNP3 and deletions at SNP6 and SNP7. The chromosome from
sample 2 carries amplification at SNP3 and deletions at SNP5 and SNP6.
doi:10.1371/journal.pone.0096841.g006
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updated by averaging the SNP signals belonged to each model

across samples and the sample covariance matrix is calculated

accordingly. When the samples belonged to a specific group are

less than two, we will use the extension from new M1, M5, and M9

to update the mean and covariance as the initiation step. The

transition probabilities are updated after the filtering step. The

conditional probabilities in Equation (3) are now calculated

according to the phased haplotype counts at all pairs of loci.

Because the haplotypes throughout the genome are phased in

the recognition step, the genotypic states are assigned to each SNP

locus. The states defined in the HMM process do not specify the

explicit copy numbers for each individual at each SNP locus. They

are estimated at a post-processing step by interpolation and

extrapolation relative to the centers of model M1, M5, and M9.

Fractional numbers are provided because our algorithm aims at

determining copy number aberration in tumor samples, where the

heterogeneity of cells usually leads to different copy number status

among cells. A fractional copy number estimation can provide a

quantitative measurement of how large the aberration is in the

sample under evaluation.

The allele-specific copy number (CA,CB) for each SNP locus is

estimated as

CA~1z
sA{mA

AB

maxf(mA
AA{mA

AB),(mA
AB{mA

BB)g ð5Þ

CB~1z
sB{mB

AB

maxf(mB
BB{mB

AB),(mB
AB{mB

AA)g

The estimation of copy number is based on interpolation or

extrapolation from the heterozygous group, which has one copy

for either the A allele or the B allele. Ideally, the difference

between mA
AA{mA

AB and mA
AB{mA

BB should be similar and so is the

difference of mB
BB{mB

AB and mB
AB{mB

AA. When there is significant

difference, the larger one is used as the divisor in equation (5) as a

conservative approach. The total copy number for each predicted

copy number alteration region is calculated by averaging the copy

number estimates of all the containing SNPs and is provided in our

package.

To summarize the outputs of HaplotypeCN, we use the result

from the real data analysis as an example. In the first step, HMM

performs as a classifier to retrieve the regions with CNV events

and separate the amplification from the deletion status. For

example, we can produce haplotypes at this stage

as
BzAz

A B

� �
AABBA

BABBB

A B A

B{A{B{

� �
. There are two

CNV regions,
BzAz

A B

� �
and

A B A

B{A{B{

� �
. Based on equation

(5), HaplotypeCN provides estimated copy numbers of A and B

allele on each locus in the first CNV region as A(0.96, 2.31) and

B(1.64, 1.15). The allele specific copy numbers for the second

CNV region are A(0.92, 0.02, 1.06) and B(0.001, 0.87, 0.11). We

will attach the copy numbers for either haplotype as

Bz Az|fflfflfflfflfflffl{zfflfflfflfflfflffl}
CN~1:975

A B|fflfflfflfflffl{zfflfflfflfflffl}
CN~1:055

and

A B A|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
CN~0:95

B� A� B�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
CN~0:0436

by averaging the allelic specific copy numbers

on the same haplotype. The average copy numbers for the first

CNV region are 1.975 and 1.055. The copy numbers are 0.95 and

0.0436 for the second CNV region.

As mentioned above, there are two heuristic rules embedded in

our algorithm. One is to constrain the states within the group of

the shortest Mahalanobis distance, and the other is to adopt the

shaded region in Figure 5. To evaluate the effect of either step, we

conducted a comparison on chromosome 22 in the benchmark

data of McCarroll’s. There are four conditions considered in the

comparison. The concordance rates for the full model (36

genotypic states) with shaded region is 0.472 (26/55), and the

concordance rate for the full model without shaded region is 0.44

(35/79). The concordance rates with and without the shaded

region under the constraint of the shortest-distance groups are

0.47 (24/51) and 0.469 (31/66), respectively. Although the full

model with shaded region led to the best result, it spent too much

time and memory. Hence, the reduced model with shaded region

strategy is recommended.

Real Data Set
The 270 HapMap samples were genotyped with Affymetrix 6.0

arrays. The set consists of 30 Caucasian father-mother-child trios

(CEU), 30 Yoruba trios (YRI), 45 unrelated Japanese individuals

(JPT) and 45 unrelated Han Chinese (CHB). The allelic intensity

for each SNP locus was summarized with the Birdseed algorithm.

Although we choose Birdseed to demonstrate our algorithm, any

algorithm that provides signals for both A and B alleles performs

the same job.

We follow most relevant studies to compare the accuracy of the

segmentation regions and the copy number estimates. If the

segmentation and the copy number estimation are more favorable

Table 3. Comparison of concordant events across the four
algorithms using the benchmark events published by Kidd et
al (2008).

Method Concordance Rate1 Sensitivity

PennCNV 212/584 (36.3%) 212/1989 (10.65%)

COKGEN 151/440 (34.3%) 151/1989 (7.59%)

GenoCNV 550/6002 (9.2%) 550/1989 (27.65%)

QuantiSNP 373/1617 (23.1%) 373/1989 (18.75%)

1Concordance Rate = number of concordant events/number of predicted
events. The concordant events refer to the predicted segments that overlap
with the benchmark events for least one SNP loci.
doi:10.1371/journal.pone.0096841.t003

Table 4. Comparison of concordant events across the three
algorithms using the benchmark events published by Kidd et
al (2008).

Method Concordance Rate1 Sensitivity

HaplotypeCN 24/63 (38.1%) 24/1746 (1.37%)

PennCNV-SNP 61/170 (35.9%) 61/1746 (3.49%)

cnvHap 89/365 (24.4%) 89/1746 (5.10%)

1Concordance Rate = number of concordant events/number of predicted
events. The concordant events refer to the predicted segments that overlap
with the benchmark events for least one SNP loci.
doi:10.1371/journal.pone.0096841.t004
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than or at least as favorable as the most popular algorithms that

provide only standard information, the additional message of

haplotype phasing can then be integrated in the association study

with high confidence. Similar to other studies [36], we used two

published reports as our benchmark data. They both record

detailed copy number events on the HapMap individuals.

Although the CNV events derived from those two reports were

not comprehensive and were not experimentally validated, they

were treated as high-confidence datasets to evaluate the six

algorithms.

The first dataset is from the study of Kidd et al. [37]. The

chromosome structural variations in eight samples from the

HapMap project are detected by a fosmid end-sequence-pair

(ESP) analysis. They provide chromosome copy number variation,

insertion, and inversion events. The data were downloaded from

the Database of Genomic Variant [38]. There are 1989 autosomal

CNV events in at last one of the 8 HapMap individuals.

The second study we used is from McCarroll et al. [36]. They

report copy number polymorphisms from the 270 HapMap

individuals. Data were downloaded from the supplementary

information in the original paper [36]. A total of 1292 copy

number polymorphic (CNP) regions on autosomes were published

for the 270 HapMap individuals. All the published events are

more likely to be copy number polymorphisms (CNP) because no

common diseases have been indicated for those individuals, and all

the reported regions are observed in multiple unrelated samples.

The data provide not only the regions, but also the sample-specific

integer copy numbers on each CNP region of the 270 HapMap

samples.

The algorithms we compared in this study include QuantiSNP,

PennCNV, GenoCNV, COKGEN and cnvHap. Some of them

were designed originally for the Illumina format. Hence, our first

step involves using PennCNV-Affy (http://www.openbioinformatics.

org/penncnv/penncnv_tutorial_affy_gw6.html) to extract LRR and

BAF from Affymetrix SNP 6.0 array for the input files of QuantiSNP,

PennCNV, GenoCNV and cnvHap. To generate canonical

genotype clusters required for PennCNV-Affy, the 270 HapMap

samples are used for training. QuantiSNP version 2.3 was used to

processes the files individually on the HapMap 270 samples.

GenoCN was downloaded as the R package version 1.06. The

cnvHap was downloaded as the java package version v1.033. The

input of PennCNV, COKGEN, GenoCNV and QuantiSNP

includes both copy number (CN) probes and SNP probes. By

contrast, HaplotypeCN and cnvHap make use of only SNP probes.

Simulation Data
To better confirm our observation from the above analysis and

to evaluate the haplotype phasing, we provide simulation study to

support our conclusions. We consider only those methods that can

predict CNVs without CN probes. PennCNV-SNP is thus

included to make a fair comparison. The simulated phase-known

datasets were generated from 44 CEU males, 45 CHB/JPT males,

and 49 YRI males using only the X chromosome. We first

excluded the pseudoautosomal regions, PAR1 and PAR2, which

are homologous regions to the Y chromosome[39]. The remaining

region forms a haplotype that can be easily detected and correctly

constructed from most popular CNV calling software. By sampling

with replacement, two chromosomes from different individuals

were randomly chosen to make a new diploid within each ethnic

group. The procedure created 90 pairs of chromosomes for each

of the three ethnic groups. Since some chromosomes have

acquired amplification or deletion, our pairing strategy mimics

the copy number variation patterns of autosomal chromosomes as

a consequence of random mating. There were 448 CNV events in

the simulated data. For each pair of chromosomes selected, their A

allele summaries derived from PennCNV-Affy were added up and

so were the B allele summaries. The next step was to transform

them into Log R Ratio (LRR) and B Allele Frequency (BAF) for

each SNP site. The details of the simulation are provided in File

S2.

In Figure 6, we use a toy example of eight SNPs to explain it.

The original data was from the male X chromosome so each

sample consists of only one chromosome. Sample 1 is a

chromosome amplified from SNP1 to SNP3 and sample 2 is a

chromosome amplified at SNP3 only. When the two chromosomes

are paired together to form a diploid sample, the amplified region

is still SNP1 to SNP3. The total copy numbers for the three SNPs

are 3, 3, and 4 in the sequential order. However, we want to be

able to tear apart different amplified regions in either chromosome

in our method. The proposed method will declare SNP1 to SNP3

jointly to be an amplified region while the copy numbers will be

estimated separately. Similarly, the second CNV region consists of

SNP5, 6 and 7. The total copy number in this case would be 1, 0,

Table 5. Comparison of concordant events across the four algorithms using the benchmark events published by McCarroll et al
(2008).

Method Concordance Rate1 Sensitivity

PennCNV 12166/21069 (57.7%) 12166/42017 (28.83%)

COKGEN 8930/14624 (61.1%) 8930/42017 (31.65%)

GenoCNV 29866/212398 (14.1%) 29866/42017 (71.08%)

QuantiSNP 19665/53800 (36.6%) 19665/42017 (46.80%)

1Concordance Rate = number of concordant events/number of predicted events. The concordant events refer to the predicted segments that overlap with the
benchmark events for least one SNP loci.
doi:10.1371/journal.pone.0096841.t005

Table 6. Comparison of concordant events across the three
algorithms using only SNP probes events published by
McCarroll et al (2008).

Method Concordance Rate1 Sensitivity

HaplotypeCN 1235/2586 (47.76%) 1235/22844 (5.41%)

PennCNV-SNP 3206/6759 (47.43%) 3206/22844 (14.03%)

cnvHap 4087/22702 (18.0%) 4087/22844 (17.89%)

1Concordance Rate = number of concordant events/number of predicted
events. The concordant events refer to the predicted segments that overlap
with the benchmark events for least one SNP loci.
doi:10.1371/journal.pone.0096841.t006
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and 1 for the three SNP sites. We evaluate the accuracy in four

levels:

1. The number of predicted CNV regions that overlap with the

448 simulated events. PennCNV-SNP, HaplotypeCN and

cnvHap were evaluated.

2. The number of predicted CNV regions with correct total copy

numbers. PennCNV-SNP, HaplotypeCN and cnvHap were

evaluated.

3. The number of SNP sites with correct allele-specific copy

numbers. SNP sites in the predicted CNV regions of correct

total copy numbers were evaluated for HaplotypeCN and

cnvHap.

4. The number of SNP sites with correct haplotype phasing. SNP

sites in the predicted CNV regions of correct allelic specific

copy numbers were evaluated for HaplotypeCN and cnvHap.

All of the above criterions were compared by calculating the

ratio between those numbers and the total numbers of detection.

They are represented as Rregion, Rtotal, Rspecific and Rhap,

respectively, in the following discussion.

Results

In this section, we first summarize the predicted CNV calls from

the output of the six algorithms. We then compare the sensitivity

according to the consistency with the published CNV regions,

from Kidd et al. (2008) and McCarroll. We also used the deletion

events in the 1000 genome project as the benchmark. The results

are roughly parallel to what we observed with the above two sets

and are reported in Table S1 in File S1 document. Simulation

results will be provided in the end to compare the phasing

accuracy.

Summary Statistics of the CNV Calls
After analyzing the Affymetrix SNP array 6.0 data from

HapMap 270 individuals, we summarize the outputs of these CNV

calls in Table S2 in File S3. HaplotypeCN and cnvHap use only

the SNP probes to infer the haplotype phases so we did an extra

experiment on PennCNV with only SNP probes as input. It is

termed PennCNV-SNP in this report. Since HaplotypeCN

provides fractional allelic copy numbers, and any number between

0.5 and 1.5 will be rounded to 1 for comparison, a normal diploid

could have an estimated total copy number from 1.5 to 2.5.

HaplotypeCN will report CNV events when the estimated copy

numbers are greater than 3 or smaller than 1. Table S2 in File S3

includes the median number of CNV calls, the median size of

CNV calls, and the median number of markers within each CNV

call per sample. We find that GenoCNV tends to obtain a lot more

events with shorter length relative to the other four methods.

HaplotypeCN is more conservative of calling CNVs, and the

predicted regions are of comparable length to cnvHap.

The statistics are reported for different ethnic groups separately.

Research has shown that the gene diversity of African population

is larger than the other two ethnic groups. Table S2 in File S3

exhibits more CNV calls with shorter regions in YRI population

relative to other ethnic groups, regardless of which algorithm we

use.

Comparing the CNV Calls Detected in the Eight Samples
According to the Data of Kidd et al. (2008)

In 2008, Kidd et al. [37] published the structural variation

events in eight samples detected by a clone-based method. We

treat the published events as benchmark CNVs to match the

events predicted by the six algorithms in this study. A predicted

region is defined as a concordant event if it overlaps a benchmark

CNV region. We first compare the proportion of true positives

among the predicted events in Table 3 across the four algorithms

that use both SNP probes and CN probes. The total number of

predicted events varies considerably across the four algorithms.

QuantiSNP and GenoCNV derive more than a thousand calls for

the eight samples, while COKGEN and PennCNV are at the scale

of a few hundreds. PennCNV has the best concordance rate

among the four in this and other comparisons we do not show

here. Hence, we compared PennCNV-SNP with cnvHap and the

proposed HaplotypeCN in Table 4. It is worth some note here that

data from Kidd et al. consist of mostly large CNVs and hence

might benefit methods that tend to detect long stretches.

Comparing the CNV Calls with the Benchmark Events
Published by McCarroll et al. (2008)

McCarroll et al. published 1292 autosomal CNP regions for 270

HapMap individuals. It is the second benchmark set in our

comparison. The concordance rates for the four algorithms that

use both SNP and CN probes are compared in Table 5 and the

other three are listed in Table 6. The conclusion is similar to what

were observed in the previous benchmark data. HaplotypeCN has

the highest concordance rate. The results provide the evidence

that the regions detected by HaplotypeCN are as accurate as most

popular packages.

The results from Table 3 to Table 6 convey the critical message

that CNV detection based on array platforms still has considerable

space for improvement. The proposed method performs compa-

rably well to those popular packages for the CNV detection, while

it provides extra information of phased haplotypes. There is no

experimentally derived benchmark data to compare the phasing

accuracy. Therefore, we conducted a simulation study as follows.

Comparing the CNV Calls with Simulation Data
The detection accuracies for CNV regions and copy number

estimation across the three algorithms are shown in Table 7. Both

HaplotypeCN and cnvHap provide allele specific copy numbers

for individual sites. The cnvHap and HaplotypeCN are both

Table 7. Comparison across the three algorithms in terms of overlapping regions, total copy numbers and allele specific copy
numbers.

Method Rregion Rtotal Rspecific

HaplotypeCN 97.345% (110/113) 92.72% (102/110) 85.29% (800/938)

PennCNV-SNP 91.163% (196/215) 92.85% (182/196) NA

cnvHap 64.305% (236/367) 85.16% (201/236) 72.25% (2382/3297)

doi:10.1371/journal.pone.0096841.t007
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constructed under the HMM framework. cnvHap adopts a two-

stage procedure to segment the region first and then generate the

CNV haplotype. It provides discrete copy numbers while our

HaplotypeCN provide fractional copy numbers that can better

address somatic mutations. The estimated allelic copy numbers of

HaplotypeCN were rounded to the closest integer for comparison.

The total copy number was averaged across SNP sites of the same

region. The number was also rounded to the closest integer to

derive Rtotal. To be consistent to the above comparison, the

number between 1 and 3 was deemed a normal event. In Table 7,

HaplotypeCN predicted 113 CNV events while 110 were true.

Among the 110 correct regions, 102 were resulted in the right total

copy numbers. There were 938 SNPs sites in those 102 regions

and 800 of them got the right allelic copy numbers for both A and

B. Although HaplotypeCN has the least number of CNV calls, its

detection accuracy is the best.

Haplotype phasing is a novel feature that is only provided in

cnvHap and HaplotypeCN. For SNPs with the right allelic copy

numbers, the phasing accuracy is compared. Among the 800 SNP

sites found to have correct allelic copy numbers in HaplotypeCN,

645 were arranged in the right haplotype phase. The accuracy of

haplotype phasing (Rhap) is 80.63% (645/800), better than the

77.04% (1835/2382) of cnvHap.

Application to Oral Cancer Samples
We demonstrate the detection of allelic copy numbers on

patients with oral cavity squamous cell carcinoma (OSCC). There

were a total of 112 OSCC samples genotyped with the Affymetrix

SNP Array 6.0 platform, and the copy number amplification

events on chromosome 8q22.2 to 8q24.3 were reported to be

associated with extracapsular spread and second primary tumor

development [40]. The data are available in Gene Expression

Omnibus database under the accession number GSE25104. We

evaluated the allelic copy numbers again with HaplotypeCN on

the same region and associated the new measures with various

clinical outcomes. Among the copy number alteration regions

detected in our analysis, we select the region with the most events

to demonstrate the results. The fractional copy numbers were

associated with the time to relapse using Cox regression. The

hazard ratio is 2.992 with p-value 0.017 compared to the hazard

ratio 2.806 with p-value 0.039 in the original study. In addition,

the copy number difference between patients with and without

extra capsular spread is significant with p-value 0.016 using t-test

compared to the p-value 0.028 using chi-squared test in the

previous study. These results were consistent with the previous

study on which traditional Hidden Markov Model (HMM) were

performed [40] and both showed better significance. The

prognostic stratification of patients based on our copy number

measurements may facilitate risk-adapted management of OSCC

patients.

Conclusions

We presented a copy number alteration detection method that

was successfully applied to the whole genome genotyping arrays.

The HMM-based algorithm can provide fractional copy numbers

and reconstruct the allelic haplotypes within the regions of copy

number alteration. The quantitative outputs provide refined

information of the status of the sample. This is especially critical

for the assessment of cancer samples that are extremely

heterogeneous with different proportions of cells acquiring

different somatic mutations. Hence, understanding the effect of

specific allele with numeric association on various clinical

measurements provides higher statistical power for the biomarker

detection. The clinical association carried out with our fractional

estimate of copy numbers in the cancer samples provides better

detection power than that with integer copy number states.

The performance of HaplotypeCN in terms of detection of copy

number alteration regions was demonstrated on the 270 HapMap

samples with benchmark events from two published studies. The

accuracy of haplotype phasing was also demonstrated on the

simulation data. Our concordance rates are comparably well to

the most popular tools in the genomewide summary even though

we used considerably less information than all the other methods.

In addition, HaplotypeCN provides the copy number haplotypes

capable of inferring the chromosome that is more susceptible to

aberrant recombination events. Chromosome cut points are

crucial and may be guided by certain alleles around the

segmentation point. Hence, it is of major interest for biologists

to clarify which chromosome acquires the amplification or

deletion events.

The proposed algorithm requires the bi-allelic information to

type the copy number genotypes as well as haplotypes. Because

most genotyping arrays include a large number of random probes

designed for copy number detection only, they do not carry allelic

information and are not integrated into our current study model.

A potential remedy involves integrating a hypothetical second

allele composed of the same probe intensity and assigned a fixed

genotype in the recognition process. We are currently working on

this particular approach. This study does not aim at a

comprehensive comparison for all CNV detection schemes and

HaplotypeCN is not the best one in terms of the detection

accuracy among our comparison. Our purpose was to provide a

tool with relatively good performance on the detection of CNV

regions while at the same time provide haplotype phasing, which is

not a common function in other CNV detection tools.

Availability
HaplotypeCN is available from the following website:

http://www.stat.nthu.edu.tw/,wphsieh/HaplotypeCN.htm
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