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Antibodies are proteins of the immune system that are able to bind to a huge variety of different substances,
making them attractive candidates for therapeutic applications. Antibody structures have the potential to
be useful during drug development, allowing the implementation of rational design procedures. The most
challenging part of the antibody structure to experimentally determine or model is the H3 loop, which
in addition is often the most important region in an antibody’s binding site. This review summarises the
approaches used so far in the pursuit of accurate computational H3 structure prediction.

© 2017 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

1. Introduction

Antibodies are proteins that bind to foreign objects that find
their way into an organism, preventing them from causing harm and
marking them for removal. A huge number of different antibodies can
be produced - estimates vary, but it is thought that humans have the
potential to of produce up to 10'3 different antibodies [1] - making
them capable of binding to a huge range of substances, ranging
from proteins on the cell surface of bacteria to non-biological small
molecules [2]. The substance that an antibody binds to is known as an
antigen, and the specific region of the antigen to which the antibody
binds is called the epitope. Mature antibodies bind with high affinity
and are specific, meaning that they bind to other epitopes only very
weakly, or not at all [3].

The ability of antibodies to bind with high affinity and specificity
to their targets means that they are good candidates for therapeu-
tic and diagnostic applications. Since the first antibody treatment,
muromonab, was approved in 1986 for the prevention of trans-
plant rejection, the market has grown rapidly [4]. By 2012, antibody
therapies accounted for over a third of the total sales in the biophar-
maceutical sector in the US, and they are currently the biggest-selling
class of biopharmaceuticals [5].

Although molecules from biological sources tend to be larger,
more complex and far more difficult to characterise than tradi-
tional small molecule drugs [6], they are promising as therapeutic
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agents [7]. Antibodies have been used for many disease areas:
some currently on the market include infliximab (Remicade) and
adalimumab (Humira) for the treatment of rheumatoid arthritis;
trastuzumab (Herceptin) and bevacizumab (Avastin) for cancer; and
alemtuzumab (Lemtrada) for multiple sclerosis [8].

Knowledge of an antibody’s structure is extremely useful when
developing a novel therapeutic, allowing it to be engineered more
rationally. This knowledge can be used to increase binding affinity
by guiding residues to be mutated, through the use of computational
techniques such as binding affinity prediction [e.g. Ref. 9], epitope and
paratope prediction [10,11], stability measurements [e.g. Ref. 12],and
docking [e.g. Ref. 13]. Computational tools have already been used
successfully to increase the binding affinity of antibodies [e.g. Refs.
14;15;16;17;18]. However, since experimental structure determina-
tion is time-consuming and expensive, the ability to computationally
build accurate models of antibody structures (in particular their
antigen-binding sites) from their sequences is highly desirable. This
has become even more important as next-generation sequencing
(NGS) data for antibodies has become available [1, 19].

2. Antibody Structure and the H3 Loop

Antibodies vary from large, multi-chain and multi-domain com-
plexes, like those found in humans, to small, single domain
molecules, such as nanobodies [20]. However, binding always occurs
in a similar fashion, through interactions between the antigen and a
number of loops on the antibody called complementarity determin-
ing regions (or CDRs). In standard mammalian antibodies, there are
six of these loops; three on the heavy chain and three on the light
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chain (labelled L1, L2, L3 and H1, H2, H3 respectively). In contrast,
for camelid antibodies, which lack a light chain, there are only three.
The CDRs are the most variable parts of the whole antibody struc-
ture, and they govern the majority of the antigen-binding properties
of an antibody.

The conformational diversity of five of the six CDRs (L1, L2, L3,
H1 and H2) is thought to be limited. For these CDRs, only a small
number of different shapes have been observed, forming a set of
discrete conformational classes known as canonical structures [21].
Since its proposal in 1987 [21], the idea has been reinvestigated many
times as the number of known antibody structures has increased [e.g.
Refs. 22-24]. These studies have led to the identification of particular
amino acids at certain positions that are thought to be structure-
determining; the canonical class of a CDR of unknown structure
can therefore be predicted from its sequence with high accuracy.
The least diverse CDR is L2, with around 99% of known structures
belonging to the same class [24].

Unlike the other five CDRs, the H3 loop has not been classified
into canonical forms; a huge range of structures have been observed
(Fig. 1). This is due to how antibody sequences are encoded in the

genome. The complete nucleotide sequence coding for an antibody
heavy chain is created by combining gene segments from different
locations (this is known as V(D)] recombination, after the ‘variable’,
‘diversity’, and ‘joining’ segments). The DNA encoding the H3 loop is
found at the join between the V, D and ] gene segments, which, with
the addition of a process called junctional diversification, leads to a
huge range of possible sequences. H3 loops vary widely in length:
most are between 3 and 20 residues but they are occasionally far
longer (Fig. 1). Bovine antibodies, for example, have H3s that are
50 or even 60 residues in length [26]. For comparison, the canoni-
cal CDRs each have a most 8 different lengths, and are normally far
shorter - the longest canonical form is 17 residues long, but there are
few examples of these five loops with lengths over 15 [23].

The ‘torso’ of H3 loops (the residues nearest to the anchors) has
been observed to adopt one of two conformations, labelled kinked
(or bulged) or extended (or non-bulged — see Fig. 2). The major-
ity of H3 loops are kinked [23,27]. Proposals have been made about
why this is the case, such as the interaction of a basic residue in the
C-anchor with an asparagine located within the loop, which have led
to the development of rules that aim to predict which conformation
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Fig. 1. (a) The frequency of observed loop lengths for the six CDRs. Data shown is calculated from all structures in SAbDab [25] . The H3 loop displays greater diversity in length
than the canonical CDRs. (b) The structures of a set of antibodies with up to 80% sequence identity and a resolution of up to 3 A, as downloaded from SAbDab [25] . Framework
regions are shown in grey, while the CDRs are coloured (L1 — purple, L2 — green, L3 — blue, H1 — yellow, H2 — dark blue, H3 — pink). H3 loops display more conformational
diversity than the other parts of the antibody. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(b)

Fig. 2. The ‘torso’ region of the H3 loop has been observed in two conformations: extended (a) and kinked (b). The backbone of the H3 loop and anchor residues are shown in
stick representation, with carbons in white for the H3 loop and grey for the anchor residues. The majority of H3 structures are kinked.

will be adopted [27,28]. However, as more antibody structures have
become available, these guidelines have been revisited and found to
fail in some cases [23].

It is the H3 loop that is thought to contribute the most to an
antibody’s antigen-binding properties [8]. It is located in the centre
of the binding site, and normally forms the most contacts with the
antigen [29,30]. It has also been shown to have the greatest effect
on the energetics of binding [31], and to be the part of the anti-
body structure that changes the most upon binding [32]. Due to its
location, the H3 loop contributes largely to the topography of the
binding site — long H3s can create finger-like protrusions, and short
H3s create cavities in the antibody surface, with a specific shape that
only allows certain antigens with smaller or protruding epitopes to
bind [33]. Knowledge of H3 structures is therefore extremely useful,
enabling predictions to be made about antibody binding properties
|e.g. Refs. 8,11,14-18,34].

3. H3 Modelling Approaches

H3 structure prediction is a specific case of protein loop mod-
elling. The starting point of a loop modelling problem is a series of
missing residues in a protein structure, where the sequence of the
missing segment is known but the three-dimensional structure of
those residues is not. The protein structure used as input may be an
experimentally-determined one, or a model. Predicting the structure
of the loop requires three main steps: decoy generation, filtering, and
ranking. In a similar way to the prediction of whole protein struc-
tures, where methods can be template-based or template-free, loop
modelling algorithms can be divided into two categories depending
on whether known structures are used in the decoy generation step.
These categories are known as knowledge-based and ab initio.

3.1. Decoy Generation

When predicting any loop structure, the first step is to generate a
set of candidate conformations, or decoys, that connect the residues
on either side of the gap in the protein structure. These neighbouring
residues are termed the anchors; specifically the N-anchor for the
one closest to the N-terminus of the sequence and C-anchor for the
one nearest the C-terminus (Fig. 3).

As previously stated, methods for predicting protein loop struc-
tures are divided into two categories, knowledge-based or ab

initio, depending on how they generate possible conformations
(decoys). Knowledge-based methods rely upon databases of previ-
ously observed protein structure fragments. Structures are selected
according to certain criteria such as fragment length (i.e. they must
be the same length as the target loop), fragment-target sequence
similarity and how closely the anchor geometry of the fragment
matches that of the target loop. Methods of this type are fast, and
can be very accurate when the structure of the target loop is simi-
lar to one previously observed [35]. However, there is not currently
enough structural data to cover the conformational space, espe-
cially for long loops [36]. When a similar loop structure has not
been observed previously, knowledge-based methods either give
poor predictions or fail to return a prediction at all. Examples of
this type of algorithm include FREAD [35,37], SuperLooper [38],
LoopWeaver [39] and Looplng [40].

Ab initio methods do not rely on previously observed structures;
instead, decoys are produced computationally. Ab initio methods
work by exploring the possible conformational space, for example
by randomly sampling the ¢ and ¢ dihedral angles of the loop.
While this allows novel structures to be generated, like knowledge-
based methods ab initio algorithms have their limitations: they are
computationally expensive, since many decoys must be generated
to sample the conformational space sufficiently; and their predic-
tion accuracy decreases with loop length (as the number of degrees
of freedom increases). Ab initio algorithms include PLOP [41], Mod-
eller [42], Loopy [43], LoopBuilder [44], LEAP [45], and the loop
modelling routine within Rosetta [46].

The idea of a hybrid loop modelling algorithm, combining
knowledge-based and ab initio approaches, has been explored.
CODA [37] generates decoys using a knowledge-based method and
an ab initio method separately, then combines the two decoy sets
and makes a consensus prediction. Martin et al. [47], Whitelegg and
Rees [48], and Fasnacht et al. [49] have used similar approaches,
and applied it to modelling H3 loops — initial conformations are
selected from a database of structures, and the middle section is
then remodelled using ab initio techniques. An alternative approach
using Rosetta is described by Rohl et al. [50] — this used a Monte
Carlo-based fragment assembly method, in conjunction with a min-
imisation protocol.

Depending on how the loops are built, the continuity of the pro-
tein backbone may need to be enforced through the implementation
of a closure algorithm. Alternatively, a minimisation step may be
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N

LOOP7 -972.3
LOOP10 -970.1
LoOP21 -969.9
LOOP3 -969.8
LOOPS -969.1
LOOP18 -967.8
LOOP35 -967.4
LOOP4 -964.9
LOOP9 -964.6
LoopPZ -964.0
LOOP32 -962.8
LOOP29 -962.7

Fig. 3. The main steps in an H3 loop modelling algorithm. (a) The inputs to the algorithm are an antibody structure with a missing loop, and the sequence of that loop. (b) Decoy
generation. (c) Filtering of structures that are physically impossible, e.g. ones that clash with the rest of the structure. (d) Ranking and selection of the final prediction.

introduced, where the energy function has a term that penalises
an ‘open’ loop. Three types of loop closure algorithm exist: analyti-
cal, iterative or build-up. Analytical methods calculate the values of
particular degrees of freedom that are required to produce a con-
tinuous backbone (for example, ¢/ angles). This approach was first
introduced by Go and Scheraga [51] — they showed that the ¢/is
values necessary to close a loop can be solved mathematically for up
to six angles. This approach is used to maintain loop closure in the
loop modelling routine within Rosetta, in the algorithm called kine-
matic closure or KIC [52]. Similar algorithms are used in robotics, to
move multi-jointed ‘arms’ to specific locations in space [36].

Iterative methods normally start with an open conformation, and
gradually enforce its closure through a series of steps. A key example
of this type is cyclic coordinate descent, or CCD [53] — starting at
one end of the loop, each ¢ or ¢ angle is altered so that the distance
between the free end of the loop and the fixed anchor is minimised.
This continues iteratively, until the distance between the two ends is
low enough to consider the loop closed. The change in angle required
is calculated analytically; CCD can therefore be thought of as both an
analytical and an iterative method.

Build-up methods attempt to guide loop building such thata closed
loop conformation is automatically generated. RAPPER, for example,

builds loops starting from the N-anchor, and places restraints on each
Caatom added to the structure, limiting the distance they are allowed
to be from the C-anchor [54]. Loop closure is enforced by making the
restriction gradually tighter as more residues are added.

3.2. Filtering

Some of the decoys generated will not be physically possible.
For example, ¢/¢s angles of the structure may be in the disallowed
regions of the Ramachandran plot, or atoms may be too close
together. A filtering step is therefore required to remove these
structures. This step may be combined with the other parts of the
loop modelling process; for example some algorithms combine it
with decoy generation itself. The Direct Tweak loop closure method,
for example, enforces a continuous backbone while monitoring the
loop for clashes [43].

3.3. Ranking
Once all decoys have been generated, a ranking system is needed

to select a final prediction; i.e. the one that is predicted to be clos-
est to the true structure of the target (the native structure). This is a
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vital step; even if decoys close to the native structure have been gen-
erated at a previous stage, an ineffective ranking system means that
the structure chosen as the final prediction will be inaccurate.

For knowledge-based methods, the ranking system may use
properties of the decoy/fragment structure — for example the
similarity between the target sequence and the decoy sequence, or
between the geometry of the decoy anchors and the anchors of the
target. FREAD, for example, ranks the fragments selected from a
database by the root mean square deviation (RMSD) between the
atomic positions of the target and fragment anchor residues [35,37].

More commonly, especially for ab initio methods, an energy func-
tion is used to predict which structures are lower in energy and
therefore more likely to be near-native. There are two main types
of energy function: physics-based force fields and statistical poten-
tials [55]. Force-fields are equations with separate terms for the con-
tribution of different properties to the energetics of a system. These
include bonded interactions, such as bond lengths, bond angles, and
dihedral angles; and non-bonded interactions, like electrostatics and
van der Waals’ forces [56]. Further terms must also be added that
consider the effect of solvation; this can be done using either an
implicit model, which treats the solvent as a continuous medium
(e.g. the Generalized Born model [57]), or the water can be treated
explicitly, meaning that individual water molecules are added to the
system (for example the TIP4P model [58]). The terms are parame-
terised using empirical evidence. Some examples of force fields are
AMBER [59], CHARMM [60] and OPLS [61].

Statistical (or knowledge-based) potentials use pre-observed
structures to infer the relative energy of a protein, based on the
assumption that the distributions of particular structural features
seen in nature reflect energetics [36,55]. For example, the carbon to
oxygen bond in the carbonyl of the protein backbone is regularly
observed in experimentally-determined structures to have a length
of 1.23 A [62] — a decoy with a C-O length of around this value
is therefore likely to be more energetically stable than one with
a C-0 distance of 2 A. Statistical potentials are attractive because
the protein energetics do not necessarily need to be deciphered —
these functions incorporate unknown or poorly-understood interac-
tion terms into their calculation without having to explicitly include
them [55]. In addition, they are often faster to run than force
field calculations, automatically include solvation and the potential
can be smoother — small changes in conformation do not lead to
huge differences in energy. Examples of statistical potentials include
DFIRE [63], DOPE [64], GOAP [65] and SOAP-Loop [66].

4. H3 Structure Prediction: Algorithms and Accuracy

Due to its structural diversity, structure prediction of the H3 loop
is challenging. However, it is possibly the most important part of
the structure to model correctly, since it is thought to be mainly
responsible for the antigen-binding properties of an antibody [8].
While some algorithms exist that do not treat it any differently to
the other CDRs (e.g. ABGEN [67]), this is not usual and a special
approach is normally implemented, using a knowledge-based or ab
initio approach, or some combination of the two. Some algorithms
have tried to use the presence of a kinked or extended conforma-
tion to guide H3 loop modelling, by using a series of rules to predict
which conformation is adopted from sequence. This information can
then be used to either pre-filter a database of solved structures in the
case of knowledge-based methods [49], or limit the conformational
search of an ab initio algorithm [68-70].

The current accuracy of antibody structure prediction is mon-
itored through a CASP-style [71] blind prediction test called the
Antibody Modelling Assessment (or AMA). The first AMA was con-
ducted in 2011 [72] — participants were given the sequences of
several unpublished, high-resolution antibody structures and asked

to model them. More recently, the results of the second assess-
ment (AMA-II) were published [73]. AMA-II featured two rounds: the
first entailed modelling the entire variable region (or Fv) from its
sequence; in the second, the accuracy of H3 structure prediction was
tested in isolation by giving the participants the native structures of
the Fv regions with the H3 loop residues missing. Any errors intro-
duced into the H3 model caused by inaccuracies in the framework
structure are therefore eliminated, giving an impression of the cur-
rent accuracy of H3 prediction. Each group was required to submit
five predictions for each of ten H3 targets, with loop lengths ranging
from 8 to 14 residues.

The group that achieved the best results was Schrédinger, using
the commercial Prime software. The loop modelling algorithm is
freely available under the name PLOP [41]. For eight of the ten
targets, Prime produced the most accurate model. However, as is the
case for all the groups, once all five of the predictions are taken into
account instead of only the best, average RMSDs become far worse.
There are several possible reasons for this: the set of loop models
generated may only contain a couple of good models; or the ranking
system used to select good models is inadequate. Alternatively, the
five predictions for each target may have been purposefully chosen
so that they cover a larger conformational space between them, pre-
venting the submission of five very similar but incorrect models. This
indicates that the ranking method used cannot consistently choose
the best conformations.

The results obtained during AMA-II, as well as some other H3
prediction studies, are shown in Table 1. Reasonable accuracies are
currently being achieved for short H3 loops (up to around 9 residues),
but predictions become far worse for loops beyond that length. There
is an appreciable difference in accuracies achieved modelling H3
loops compared to the other CDRs. For example, the knowledge-
based method FREAD has been shown to produce sub-dngstrém
predictions for the five canonical CDRs (0.81 A,0.42 A, 0.96 A, 0.98 A
and 0.88 A for L1-H2), while the average accuracy for H3 loops is
2.25 A [74]. RosettaAntibody also produces sub-ingstrém predic-
tions for the other CDR loops (0.78 A, 0.54 A, 0.81 A 0.84 A and
0.93 A), while the accuracy of H3 prediction ranges between 1.6 A
and 6.0 A depending on length.

The following sections provide details of the algorithms whose
accuracy is reported in Table 1. Although the algorithms described
are all H3-specific, or have been used to model H3 loops, they give an
overview of the methodologies used for loop modelling in general.

4.1. ABGEN

ABGEN (the AntiBody structure GENeration algorithm) is an anti-
body modelling tool published by Mandal et al. [67]. There are two
parts to the algorithm: ABalign, which selects a template struc-
ture for each part of the structure (i.e. framework and CDRs) by
sequence similarity; and ABbuild, which is responsible for generat-
ing the three-dimensional structure. The CDRs are modelled using
a knowledge-based approach, and the H3 loop is not treated any
differently — candidate templates are found from known antibody
structures and selected based on sequence and length. If no loop
exists of the same length, then the closest is selected. The loops are
grafted onto the framework structure by superimposing the anchor
residues (the two residues on either side of the loop). Residue mis-
matches between the template and target are then dealt with by
replacing the sidechains. Clashes are avoided by iteratively chang-
ing the sidechain torsion angles. Prediction of the whole antibody
structure is reported to take around 5 min [67].

4.2. Accelrys Tools
Accelrys is a software company that has produced an anti-

body prediction tool for commercial use (accelrys.com/products/
collaborative-science/biovia-discovery-studio). Its performance was
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Reported accuracies for H3 prediction achieved by some loop modelling algorithms. Values given are average global RMSDs for the number/length of loops indicated. Some target
sets are the same, indicated by a * or 7 symbol. RMSDs quoted for the AMA-II target set (denoted by *) are carbonyl RMSDs, i.e. calculated over the C and O atoms of the backbone
only. Unless otherwise stated, predictions were made in the crystal environment (i.e. using the antibody structure determined experimentally).

Algorithm Type Key results Ref.
ABGEN KB Model environment: [67]
2.3 A (15 loops, lengths 5-17, model environment)
(1.9 A for up to 10 residues, 3.0 A for over 10 residues)
Accelrys Tools KB+AI Model environment: [49]
Best of top 3 = 3.14 A; average of top 3 = 3.88 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 1.86 A; average of top 5 = 2.89 A (10 loops, lengths 8-14)*
CCG (MOE) KB Model environment: [75]
Best of top 3 = 2.86 A; average of top 3 = 3.69 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 2.09 A; average of top 5 = 3.08 A (10 loops, lengths 8-14)*
FREAD KB 2.25 A (97 loops, lengths 3-19, coverage = 100%) [74]
ConFREAD KB 1.23 A (97 loops, lengths 3-19, coverage = 70%) [74]
H3Loopred KB Model environment: [76]
1.3 A (3 loops, lengths 4-6)f 3.3 A(10 loops, lengths 12-14)f
1.6 A (22 loops, lengths 7-9)f 7.1 A (4 loops, lengths 17-22)F
1.8 A (14 loops, lengths 10-11)f
KotaiAntibody-builder KB+Al Model environment: [77]
Best of top 3 = 2.41 A; average of top 3 = 3.02 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 1.25 A; average of top 5 = 2.43 A (10 loops, lengths 8-14)*
0.18 A (3 loops, lengths 4-6)F 2.38 A (10 loops, lengths 12-14)" [78]
0.70 A (22 loops, lengths 7-9)F 3.63 A (4 loops, lengths 17-22)F
0.67 A (14 loops, lengths 10-11)"
Prime/PLOP Al Model environment: [79]
Best of top 3 = 2.74 A; average of top 3 = 3.60 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 1.12 A; average of top 5 = 2.54 A (10 loops, lengths 8-14)*
Crystal Environment:
1.6 A (3 loops, lengths 4-6)" 3.1 A(10loops, lengths 12-14)F
1.9 A (22 loops, lengths 7-9)f 6.0 A (4 loops, lengths 17-22)F
2.4 A (14 loops, lengths 10-11)f
RosettaAntibody Al Model environment: [78]
1.4 A (3 loops, lengths 4-6)f 3.5 A (10 loops, lengths 12-14)f
2.2 A (22 loops, lengths 7-9)F 7.6 A (4 loops, lengths 17-22)f
2.9 A (14 loops, lengths 10-11)"
Model environment: [79]
Best of top 3 = 2.66 A; average of top 3 = 3.11 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 1.97 A; average of top 5 = 3.22 A (10 loops, lengths 8-14)*
2.0 A (44 kinked loops, lengths 9-19) [70]
SmrtMolAntibody Al Model environment: [69]
Best of top 3 = 3.02 A; average of top 3 = 3.71 A (11 loops, lengths 8-14)*
Crystal environment:
Best of top 5 = 2.41 A; average of top 5 = 3.08 A (10 loops, lengths 8-14)*
WAM KB+AI <1.7 A for 9 out of 11 loops under 10 residues [48]
1.3-2.7 A for loops of 10 residues or more (8 loops, lengths 10-12)
Sphinx KB+AI Crystal environment: [80]

Top prediction = 2.50 A, best of top 5 = 1.52 A (39 loops, lengths 4-22)
Best of top 5 = 1.41 A; average of top 5 = 2.17 A (10 loops, lengths 8-14)*
Model environment:

Top prediction = 3.26 A, best of top 5 = 2.60 A (39 loops, lengths 4-22)

evaluated during AMA-II [49]. Three different methods are used to
predict the H3 loop:

1. a purely knowledge-based approach — templates are selected
from a database like they are for the other CDRs, except the
kinked/extended conformation is also considered.

the loop to be remodelled is chosen by eye.

During the second round of AMA-II (H3 modelling onto the native

antibody structure), method 2 was used. The final decoy selection
is carried out based on clustering — all conformations are grouped
by structural similarity, and the clusters are ranked according to

the energy of its members (calculated using a physics-based energy
function). The lowest energy model from the top-ranked cluster is

given as the final prediction. On average, the algorithm takes 30 min

2. like method 1, with additional remodelling of the most vari- to produce a prediction [49].
able part of the loop using an ab initio approach. The section of

3. like method 2, but with additional sidechain refinement before 4.3. CCG (MOE)
the ab initio modelling — the sidechains of the H3 loop are

mutated to alanine while those of the rest of the structure are

refined.

The protocol used by the (Chemical Computing Group), or

CCG (part of the commercial MOE software, see chemcomp.com/
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MOE-Molecular_Operating_Environment.htm) is a knowledge-based
algorithm, used in conjunction with molecular dynamics [75]. Its
performance was evaluated during AMA-II. Known H3 structures are
scored based on backbone topology, bond lengths and angles, prob-
ability of ¢/ angles, crystallographic occupancies, and temperature
factors. After clustering, the member of the cluster with the high-
est score is put into a database. This database is enriched by running
molecular dynamics (MD) simulations on these structures. Possi-
ble structures are selected from the database depending on anchor
RMSD, using a tight cutoff of 0.25 A, and a final prediction is made
using a score that takes into account H3-specific properties, such as
surface-accessible surface area, ¢ /i angles, and the interaction of the
loop to the rest of the Fv. During the AMA-II, the production of each
full antibody model took around 30 min [75].

4.4. FREAD and ConFREAD

FREAD is a knowledge-based method that selects possible
loop conformations from a database of experimentally determined
protein fragments [35,37]. It is freely available to use online
(opig.stats.ox.ac.uk/webapps/fread/php). It is used as the CDR struc-
ture prediction method within the ABodyBuilder antibody modelling
software [81,82]. Loops are initially selected as potential predictions
according to the separation of their anchor residues compared to that
of the target and their sequence similarity to the target loop. The
fragments are filtered depending on whether their insertion into the
protein structure would cause clashes. These fragments (assuming
some suitable fragments are found) are then ranked by the RMSD
between the anchor residues of the fragment and those of the tar-
get loop; the loop with the lowest RMSD is assumed to have the
most similar structure to the target and is hence returned as the final
prediction. If no suitable fragments are found, however, FREAD does
not produce a prediction. The computational time required varies
with the size of the database being searched, but is normally around
1-2 min.

Research into improving FREAD’s ability to predict H3 loops led
to a new version with an additional filter that considers the contact
profiles of the fragments within the database [74]. Each residue of
each fragment in the database is annotated with a number depend-
ing on the contacts it forms in its native environment: 0 for no
contacts; 1 for external contacts (those to another chain); 2 for inter-
nal contacts (formed with other residues on the same chain); and 3
for both internal and external contacts. The actual contact profile of
the fragment is then compared to its profile when inserted into the
target structure — only fragments with matching pairs are retained.
The final prediction was chosen in the same way as in the original
FREAD algorithm. While this led to an increase in prediction accu-
racy (from 2.25 A to 1.23 A), coverage (the proportion of targets for
which the algorithm could produce a prediction) was significantly
lower (reduced to 70% from 100%).

4.5. H3Loopred

H3Loopred [76] is a knowledge-based method that uses machine
learning to predict which of a set of H3 structures is closest to the
desired target structure. The software is available for download from
biocomputing.it/H3Loopred. A Random Forest model was developed
that uses several features to predict the similarity of a known loop
structure to the structure of the target, using a measure called the
TM score [83]. The features used are a mixture of general and H3-
specific properties: loop sequence, the canonical classes and lengths
of the other CDRs in the antibody, source organism, germline family,
and the similarity scores for each residue and the whole loop. If the
structure from the database that is predicted to be the best has a pre-
dicted TM score of less than 0.5, then this loop is returned as the final
prediction. Otherwise, the top 50 templates are ranked using a score

that considers contacts. The average computation time required is
5 min per target [76].

4.6. Kotai Antibody Builder

Kotai Antibody Builder is a simplified and automatic version of
the software used in AMA-II by the joint Osaka University Astellas
(JOA) team [77,84]. An online server is available at kotaiab.org. In
the second round of AMA-II, H3 decoys were generated using a com-
bination of a knowledge-based approach with molecular dynamics
simulations. Spanner (the knowledge-based algorithm) selects frag-
ments from a database, filtering them using sequence similarity,
secondary structure similarity, a clash score, the geometry of the
anchor residues, and the predicted kinked/extended conformation of
the loop. Minimisation of these structures is carried out using the
OSCAR-loop energy function [45], and the top 20 structures are used
as initial conformations for a series of MD simulations. Snapshots of
the simulations are then grouped into five clusters, with the final set
of predictions including one structure from each.

4.7. BioLuminate and Prime

BioLuminate and Prime are software packages produced by
the Schrodinger company (schrodinger.com/products/bioluminate);
their performance was evaluated in the AMA-II [79]. Prime is the
commercial version of the loop modelling algorithm PLOP (the
Protein Local Optimisation Program, [41]). BioLuminate models anti-
bodies using homology; CDRs (including H3) are modelled by select-
ing templates from a database. Prime, on the other hand, is an ab
initio algorithm. For stage 1 of AMA-II, where H3 predictions were
made onto model frameworks, the three submitted models were
generated in different ways: a straightforward template selection
based on sequence similarity; template selection after clustering
known H3 structures, taking the structure with the highest sequence
similarity from the largest cluster; and ab initio prediction using
Prime. In the second AMA-II round, the ab initio approach was used
exclusively, but the target loop was extended by one residue on each
side to make the terminal residues flexible.

Prime uses a hierarchical approach to model protein loops: a ‘full’
prediction job is made up of many ‘standard’ jobs. Like many other
ab initio methods, in a standard job loops are built by choosing ran-
dom ¢ /i angles from Ramachandran distributions. However, instead
of building loops by adding all residues onto one of the anchors with
subsequent closure, they are built in two segments — half onto the
N-anchor and half onto the C-anchor. Many structures are created
for each half of the loop. All N-anchor segments are then compared
against all C-anchor segments to find pairs that meet in the cen-
tre, thereby forming a complete loop structure. Decoys that have
unrealistic dihedral angles or clash with the rest of the protein are
filtered out, and all remaining loop structures are then clustered, and
the representative structures (those from the centre of each cluster)
undergo energy minimisation.

A full prediction job is then made up of a series of standard jobs,
with the conformational search space becoming narrower at each
stage. By using the predicted best structures generated during pre-
vious stages to constrain the conformational search, the algorithm is
guided towards creating structures of low energy. The final step is
the ranking of all loop structures that were generated from all steps,
according to their calculated energy; the loop with the lowest energy
is returned as the final prediction.

4.8. RosettaAntibody
RosettaAntibody, which was one of the algorithms used during

AMA-II [68], models the H3 loop using an ab initio approach. Loop
modelling in the Rosetta protein modelling software (available from
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rosettacommons.org/software) is carried out using a kinematic clo-
sure protocol, made up of ‘KIC moves’ [46,52]. Prediction begins
with the generation of a random loop structure. During a KIC move,
three Ca atoms of the loop segment are chosen as ‘pivots’, leav-
ing the remaining Ca atoms as ‘non-pivots’. Dihedral angles of the
non-pivots are sampled from Ramachandran distributions. The dihe-
dral angle changes of the pivots required to maintain loop closure
are then calculated analytically. The full protocol, which includes
sidechain optimisation and backbone energy minimisation, involves
carrying out KIC moves iteratively, with different pivot atoms each
time. The lowest scoring model, according to the statistical Rosetta
scoring function, is reported as the final loop prediction.

‘Next-generation KIC' is an new version of this algorithm [46].
This improved protocol includes the sampling of w dihedral angles,
neighbour-dependent ¢ /¢ sampling, and annealing (the weights of
certain terms in the Rosetta energy function are slowly increased so
that they have less of an effect initially, allowing the barriers between
energy minima to be overcome).

For the first stage of AMA-II, models were generated using
next-generation KIC without using any neighbour dependence dur-
ing ¢/ sampling. In stage 2, both this approach and ‘legacy KIC'
were used (the original version published by Mandell et al. [52]),
and for those targets predicted to have a kinked conformation,
constraints were added to enforce it. A more recent paper has
explored this idea further, and has shown that the addition of the
kink constraint improves sampling and therefore overall prediction
accuracy [70].

4.9. SmrtMolAntibody

SmrtMolAntibody, the commercial antibody modelling software
developed by Macromoltek (see macromoltek.com), was also tested
during AMA-II [69]. An ab initio approach is used to model the
H3 loop. Firstly, the first and final three residues of the loop are
modelled according to their predicted kinked/extended conforma-
tion. The remaining residues are then added as dimers, where the
¢/ angles of the two residues have been observed together in
nature. After all decoys are generated, the structures are filtered, by
checking each trimer for non-physical neighbouring dihedral angles,
and finally ranked using a statistical potential. The reported time
required to produce a full antibody model is 30 min [69].

4.10. WAM

WAM (Web Antibody Modelling) uses different approaches to
model H3 loops depending on their length [48]. If the loop is shorter
than eight residues, then a traditional knowledge-based algorithm
is used. Specific databases are used depending on whether the loop
is predicted to have a kinked or extended conformation. For loops
of eight residues or more, the database search is followed by the
remodelling of the middle five residues of the loop using an ab initio
method, CONGEN (Conformation Generator) [85]. CONGEN produces
decoys by calculating ¢/ angles that form a closed structure, using
the work of Go and Scheraga [51]. The decoys undergo minimisa-
tion, and are clustered to remove duplicate conformations. The final
prediction is selected from the pool of decoys using a score that con-
siders surface accessibility, the RMSD of the decoy to known kinked
H3 structures, and the calculated energy (using a physics-based
energy function).

4.11. Sphinx

Sphinx is a recently-developed method that integrates
knowledge-based and ab initio approaches [80]. An H3-specific
version is freely available for use at opig.stats.ox.ac.uk/webapps/
sabdab-sabpred/SphinxH3.php. The algorithm starts with a database

search; loop fragments that are shorter than the target loop are
extracted based on their sequence similarity to the target. The struc-
tural information within a fragment is then used to build decoys
according to the alignment of its sequence to the target’s — i.e. for
residues in the target loop that are matched with a fragment residue
in the alignment, the residue is modelled using the bond lengths,
angles and dihedral angles of the matching fragment residue. If a
target residue is not matched with a fragment residue, then the nec-
essary information is drawn at random from relevant distributions,
as in a straightforward ab initio algorithm. Loop closure is enforced
using the CCD algorithm [53]. Each selected fragment is used to gen-
erate 100 decoys, leading to a large set of possible conformations.
Using a knowledge-based energy function, the number is reduced to
500, and these are subsequently minimised using Rosetta [52] and
ranked using the statistical potential SOAP-Loop [66].

5. Conclusions

While the accuracy of H3 structure prediction has improved in
recent years, as evidenced by the results of the two Antibody Mod-
elling Assessments [72,73], the modelling of H3 loops remains the
biggest challenge in producing accurate and useful antibody mod-
els. There remains a marked difference between the accuracy of H3
prediction compared to that of the canonical CDRs: these five loops
are regularly predicted with sub-dngstrém accuracy while H3 pre-
diction accuracy is much more variable, typically with an RMSD of
between 1.5 and 3 A, but often worse, in particular in the non-
native environment. Since overall, the aim of this research area is
to produce accurate models that can assist in the rational design
of antibody therapeutics, the key results are those reported for
H3 prediction in the non-native environment — it is obvious from
results reported in the literature so far that improvements must
still be made to enable the production of useful antibody models.
An aspect of H3 prediction that is particularly challenging, iden-
tified as difficult by the organisers of AMA-II [73], is the accurate
scoring of decoy structures — even if good conformations are made
during decoy generation, it is often the case these decoys are not
selected as final predictions due to poor ranking. Further devel-
opments in this area, along with continuing improvements to the
accuracy of framework and canonical CDR modelling, would be of
great benefit.

The type of algorithms that were used in the second Antibody
Modelling Assessment, considered to be the state-of-the-art, imply
that there is a general movement away from purely knowledge-
based loop modelling approaches when it comes to H3 structure
prediction. Only one of the six algorithms examined (CCG’s MOE
software) could be classified as a knowledge-based approach, and
this, along with the results shown in Table 1, are an indication that
H3 structures (especially those that are long) are too diverse to
be consistently modelled accurately at the current time using only
previously-observed structures. By using more restrictive selection
parameters, the performance of a knowledge-based algorithm can
be improved (as in the case of ConFREAD), however coverage must
be compromised and some other method must be used to model
loops for which no close structural match can be found in the PDB.
Using an ab initio method alone, on the other hand, means that any
useful structural information that is available is ignored. The next
logical step, then, is a hybrid method which takes advantage of both
approaches. The development of such methods has already begun,
with the prediction software of Accelrys Tools [49] and KotaiAnti-
bodyBuilder [77] being assessed during AMA-II, the latest Rosetta
algorithm, which uses knowledge of H3 structures to constrain the
torso of the loop into a kinked conformation [70], and the more
recent Sphinx algorithm [80]. Further investigations into how the
two approaches may be integrated should lead to more accurate, and
hence more useful, antibody models.
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