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ABSTRACT—Early warning prediction of traumatic hemorrhagic shock (THS) can greatly reduce patient mortality and

morbidity. We aimed to develop and validate models with different stepped feature sets to predict THS in advance. From the

PLA General Hospital Emergency Rescue Database and Medical Information Mart for Intensive Care III, we identified 604

and 1,614 patients, respectively. Two popular machine learning algorithms (i.e., extreme gradient boosting [XGBoost] and

logistic regression) were applied. The area under the receiver operating characteristic curve (AUROC) was used to evaluate

the performance of the models. By analyzing the feature importance based on XGBoost, we found that features in vital signs

(VS), routine blood (RB), and blood gas analysis (BG) were the most relevant to THS (0.292, 0.249, and 0.225, respectively).

Thus, the stepped relationships existing in them were revealed. Furthermore, the three stepped feature sets (i.e., VS,

VSþRB, and VSþRBþ sBG) were passed to the two machine learning algorithms to predict THS in the subsequent

T hours (where T¼3, 2, 1, or 0.5), respectively. Results showed that the XGBoost model performance was significantly

better than the logistic regression. The model using vital signs alone achieved good performance at the half-hour time

window (AUROC¼0.935), and the performance was increased when laboratory results were added, especially when

the time window was 1 h (AUROC¼0.950 and 0.968, respectively). These good-performing interpretable models demon-

strated acceptable generalization ability in external validation, which could flexibly and rollingly predict THS T hours (where

T¼0.5, 1) prior to clinical recognition. A prospective study is necessary to determine the clinical utility of the proposed THS

prediction models.

KEYWORDS—Interpretability, machine learning, prediction window, shock index, time series, traumatic hemorrhagic shock

ABBREVIATIONS—95% CI—95% confidence interval; AUPRC—area under the precision-recall curve; AUROC—area

under the receiver operating characteristic curve; BE—base excess; BP—blood pressure; DBP—diastolic blood pressure;

EMR—electronic medical record; Hb—hemoglobin; Hct—hematocrit; HR—heart rate; IQR—interquartile range; Lac—

lactate; LOS—length of stay; MBP—mean blood pressure; MIMIC III—the Medical Information Mart for Intensive Care III;

PaCO2—partial pressure of carbon dioxide; PaO2—partial pressure of oxygen; PLAGH-ERD—the PLA General Hospital

Emergency Rescue Database; PLT—platelets; RESP—respiration rate; SBP—systolic blood pressure; SHAP—Shapley

additive explanation; SI—shock index; TCO2—total carbon dioxide; TEMP—temperature; THS—traumatic hemorrhagic

shock; WBC—white blood cell count
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INTRODUCTION

Traumatic hemorrhagic shock (THS) is a type of hypovole-

mic shock caused by severe trauma and is one of the main

causes of death in severely injured patients (1–3). Compared

with acute massive hemorrhage, the detection of THS is often

delayed by occult bleeding. If THS could be detected at an early

stage and even in advance, timely and effective interventions

could be implemented, which could greatly reduce patient

mortality and morbidity and improve the outcome of severe

trauma (4).

Despite substantial advances in the management of hemor-

rhage (5), it remains the primary cause of preventable death

(40% of trauma-related fatalities) (6–8). This is not only

related to the characteristics of traumatic injury but also partly

to the limited ability of humans to process information.

Machine learning techniques excel in the analysis of complex

signals in data-rich environments (9), and thus provide a

powerful tool for early warning prediction of THS. A variety

of signals are good indicators for THS, including increased

shock index, decreased blood pressure, decreased hemoglobin,

or blood transfusion in a short period of time, which provides a

medical basis for the early warning prediction of THS. Cur-

rently, although there have been many clinical decision support

studies on trauma patients worldwide (8), most of these inves-

tigations considered survival/death as the endpoint to make

predictions (10–13), with little attention paid to the early

warning prediction of THS (14, 15).

In this work, we developed a new approach to predict

THS in advance on the basis of medical knowledge, data

analysis, and start-of-the-art ML techniques, thus making it

possible for clinicians to proactively prepare the necessary

treatment resources. To improve the accuracy and speed of

THS prediction, the electronic medical records of injured

patients were analyzed to determine the important relation-

ships between different types of indices and THS. In combi-

nation with the guidance of medical knowledge and

experience, we analyzed the contributions of the indicators

to prediction accuracy, and we grouped the indicator set

into different indicator combinations to adapt to different

scenarios.
METHODS

Data sources and study population

The study population was from the PLA General Hospital Emergency
Rescue Database (PLAGH-ERD) (16) and the Medical Information Mart for
Intensive Care III (MIMIC III) (17). The PLAGH-ERD has the depersonalized
information of 22,941 patients from 2014 to 2018. This database was one of the
first special databases in the field of first aid with independent intellectual
property rights in China. Its advanced nature is representative of the first aid
field in China and recognized by peers both in China and abroad. The MIMIC
III is a public dataset, including non-private medical records of more than
50,000 patients at Beth Israel Deaconess Medical Center (BID) in Boston,
Massachusetts, USA from 2001 to 2012 (18–20).

This research was aimed at patients with traumatic hemorrhagic shock.
Studies have shown that the shock index and mean arterial pressure are
commonly considered as good indicators to assess the severity of shock in a
clinical setting (21–26). First, all adult patients aged 18 years or older who were
admitted to the hospital due to trauma were included from the PLAGH-ERD
and the MIMIC III. Second, shock was defined as simultaneous shock index�1
and mean arterial pressure�70. To accurately identify THS patients, traumatic
hemorrhagic shock was defined as meeting at least one of the following
conditions in addition to shock:
1)
 blood transfusion,

2)
 hemoglobin� 90 g/L at admission (if no pre-existing cause of chronic

anemia was present, including malignant tumors, hematological diseases,
chronic kidney disease, and chronic liver disease), or
3)
 a hemoglobin decrease by 20% (baseline values were those at admission)
(27–29).
Patients with one of the following conditions were excluded:
1)
 age< 18 years,

2)
 hospital admission not for trauma,

3)
 had one or more surgical treatment records,

4)
 suffered from septic shock, cardiogenic shock, or anaphylactic shock

according to the ICD diagnosis codes, antibiotics, and blood cultures, or

5)
 died before shock or at discharge.
We developed Oracle SQL scripts to query the research cohort.
The study was approved by the Research Ethics Commission of the PLA

General Hospital (S2020-129-01), and the requirement for informed consent
was waived by the Ethics Commission.

Study variables and processing

Demographic characteristics such as age and sex were collected. Vital signs,
such as blood pressure, heart rate, respiratory rate, and temperature, were
included. In total, 39 laboratory measures, including routine blood, blood gas
analysis, blood biochemistry, coagulation function, and routine urine, were
collected (Supplemental Digital Content 1, http://links.lww.com/SHK/B357).

Continuous measurements were recorded every few seconds in PLAGH-ERD;
therefore, the dataset contained more observations at a higher temporal resolution
than MIMIC-III. The data was resampled to a 30-min resolution. If the index data
contained multiple values within 0.5 h, the median value was taken. Cluster
imputations were applied through Python to impute the missing data (Fig. 1B1).
Considering the low resolution of laboratory measures, the cross-sectional data of
the latest observations T hours (T¼ 1, 2, 3 h) before THS (or discharge) were
collected. The missing data in laboratory measures were processed using multi-
variate imputationvia chained equations implemented by the R mice package (30,
31). The features in this work with at least 50% data completeness were
considered as predictors and were used for model establishment (32) (Fig. 1B2).

Outcome

The onset of THS during hospitalization was taken as the outcome. In the
case of multiple times of occurrence, the first time was considered in the THS
group. If THS did not occur, patients were classified as the non-THS group.

Statistical analysis

Differences in age, gender, body trauma sites, and lengths of hospital stay
between THS and non-THS groups were analyzed using SPSS version 22.0. For
continuous variables, the Mann–Whitney U test was utilized to compare the
differences between the two groups. For binary variables, the chi-square test
was employed for statistical analysis. All P values were two-sided, and values
below 0.05 were considered significant.

Extreme gradient boosting (XGBoost) is derived from the gradient boosting
decision tree and was proposed by Chen et al. (33). Several weak classifiers
(i.e., decision tree) are transformed into a strong classifier to improve
performance, which is achieved by an iterative computation of weak classi-
fiers. Regularization is used to control the complexity of the tree to obtain a
simpler model and avoid overfitting (20). Moreover, the algorithm ranks the
importance of candidate predictors to reflect the contribution of each variable
in classifying the THS versus the non-THS groups. Thus, individual predic-
tions in XGBoost can be represented by decomposing a decision path into one
component per feature. In this way, a decision can be tracked through the tree
and used to explain a prediction through the contributions added in each
decision node. In this work, a XGBoost model was employed to select
variables predictive of THS using last cross-sectional data before shock.
The feature importance was calculated and analyzed to determine the rela-
tionship between different feature types and THS, thereby providing a
theoretical basis for the classification of stepped features to adapt to different
scenarios (both pre-hospital and in-hospital). Furthermore, to enhance the

http://links.lww.com/SHK/B357


FIG. 1. Model development overview. (A) Data extraction and processing. Data including admission diagnosis, demographic information (e.g., age and
sex), vital signs, and laboratory results were extracted from PLAGH-ERD. Patients were divided into THS and non-THS groups. (B1) Imputation for the time-series
data of vital signs based on cluster. (B2) Imputation for the time-series data of vital signs based on multivariate imputation via chained equations. Features with
missing rates greater than 50% were removed. (C) Feature importance was calculated based on the average gain of XGBoost to analyze the relationship between
the features and THS. (D) Training time-window prediction models. (i) The data set was divided into 10 groups using 10-fold cross-validation, with nine of the
groups serving as training data and one as test data. (ii) The construction and tuning of time-window prediction. (iii) Evaluation. The AUROC, AUPRC, F1.5,
precision, recall, accuracy, and 95% confidence interval (CI) values were utilized to evaluate the performance of each model for different stepped feature sets and
time windows. (iv) Comparison of results from XGBoost and logistic regression. AUPRC, area under the precision-recall curve; AUROC, area under the receiver
operating characteristic curve; THS, traumatic hemorrhagic shock; XGBoost, extreme gradient boosting.
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interpretability of the results, SHAP (SHapley Additive exPlanations) values
were used to illustrate the effect of each feature on the classifier output:
positive and negative SHAP values indicated an increase or decrease in the
prediction score, respectively (34).

The PLAGH-ERD and MIMIC III were adopted to develop and validate the
time-window prediction models, respectively. The negative samples were
randomly partitioned into 10 equal-sized subsamples to overcome the problem
of class imbalances. In the training set (80% randomly selected samples from
the PLAGH-ERD), XGBoost, and logistic regression models with different time
windows (T¼ 0.5, 1, 2, 3 h) were implemented by the xgboost and scikit-learn
packages in Python 3.6. For the XGBoost models, the best hyperparameters
consisting of eta (step size shrinkage used in the update process to prevent
overfitting), the maximum depth of a tree, and subsample (the proportion of the
subsamples used for training the model to the whole sample set) were deter-
mined by grid search with 10-fold cross-validation. For LR models, Lasso
regularization was applied to prevent overfitting. In the test set (the remaining
20% of the sample from the PLAGH-ERD), we computed the prediction
performance of each model derived above. Additionally, to validate the
generalization ability of the model, MIMIC III was used for external validation.
In terms of model evaluation, the following indicators were used: accuracy,
recall, precision, F1.5, the area under receiver operating characteristic (AUROC)
curves, and precision-recall curves (AUPRC). We compared AUROCs using
DeLong’s test for the THS prediction models (35–37), which were performed
using R package pROC, version 1.17.0.1. A two-sided 0.05 significance level
was applied to general comparisons. All outcomes were compared and analyzed
to select the models with the best performance (Fig. 1C).
RESULTS

Patient characteristics

In total, 604 patients from the PLAGH-ERD were obtained,

102 of whom developed THS (Fig. 2A). The proportion of male



FIG. 2. Panel (A) shows the extraction process for the study cohort in the PLAGH-ERD. Panel (B) shows the extraction process for the study cohort in
the MIMIC III. MIMIC III, the Medical Information Mart for Intensive Care III.

SHOCK JANUARY 2022 TIME-WINDOW PREDICTION MODEL FOR TRAUMATIC HEMORRHAGIC SHOCK 51
trauma patients was greater than that of female patients

(Table 1). The median time interval from admission to shock

was 4.91 h. Compared with patients of non-THS, patients with

THS had longer median lengths of hospital stay (1.03 vs.

0.38 days). The proportions of trauma sites in the abdomen

(21.6% vs. 12.7%), pelvis (7.8% vs. 5.2%), and limbs (5.9% vs.

3.0%) were also higher. There were 1,614 patients in the

MIMIC III that exhibited patterns similar to those of the

PLAGH-ERD (Fig. 2B).

Relative sequence importance of features and analyses

After excluding the features with serious data loss, 27

features were obtained from both the PLAGH-ERD and the

MIMIC III. The ranks of feature importance of these features

were output (Supplemental Digital Content 2, http://link-

s.lww.com/SHK/B357, Table 1). Vital signs accounted for

the largest proportion of feature importance (0.292), followed

by routine blood (0.249), blood gas analysis (0.225), blood

biochemistry (0.147), and coagulation function (0.087).
TABLE 1. Baseline statistical charact

The

Characteristics THS (n¼102)

Age (years; median, IQR) 43.98 (31.92–58.8

Gender, n (%)

Female 20 (19.6)

Male 82 (80.4)

Injured body part, n (%)

Head 32 (31.4)

Chest 12 (11.8)

Abdomen 22 (21.6)

Pelvis 8 (7.8)

Limbs 6 (5.9)

Other 64 (63.7)

Hospital LOS (days; median, IQR) 1.03 (0.44–1.90)

Time interval from admission to shock (h; median, IQR) 4.91 (1.97–12.14)

IQR, interquartile range; LOS, length of stay; THS, traumatic hemorrhagic s
*Statistically significant difference between the experimental and control gro
Among them, the total feature importance of the top three

types, which are easily obtained in a clinical setting, reached

76% (Supplemental Digital Content 2, http://links.lww.com/

SHK/B357, Table 2).

Therefore, these three feature types were grouped into three

stepped feature sets: vital signs alone, vital signsþ routine

blood, and vital signsþ routine bloodþ blood gas analysis

(Table 2). As vital signs are high-resolution indicators with

strong timeliness and rapidity, and they are easy to obtain even

in pre-hospital or other rough conditions, the time-series data of

vital signs were used for short time-window prediction (T¼ 0.5,

1, 2 h). Considering the low resolution of routine blood and

blood gas analysis, the cross-sectional data were used for

relatively longer window prediction (T¼ 1, 2, 3 h).

To identify how a single feature influenced the outcome of a

prediction model, we depicted the SHAP dependence plot of

XGBoost (Fig. 3). The y-axis values indicated the SHAP values

of the features, and the values of features for the x-axis were in

the SHAP dependence plot. We visualized how the features’
eristics of the study population

PLAGH-ERD The MIMIC III

Non-THS (n¼502) THS (n¼244) Non-THS (n¼1,370)

7) 49.41* (35.56–63.01) 52.10 (36.13–72.16) 50.11* (31.61–73.36)

110 (21.7) 82 (33.6) 438 (32.0)

396 (78.3) 162 (66.4) 932 (68.0)

239 (47.6) 156 (63.93) 897 (65.5)

63 (12.5) 72 (29.51) 241 (17.6)

64 (12.7) 55 (22.54) 254 (18.5)

26 (5.2) 38 (15.57) 78 (5.7)

15 (3.0) 60 (24.59) 204 (14.9)

164 (32.7) 19 (7.79) 152 (11.1)

0.38* (0.18–0.82) 11.01 (5.77–20.18) 4.54* (2.58–7.75)

– 13.35 (4.66–50.84) –

hock.
ups.

http://links.lww.com/SHK/B357
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TABLE 2. The stepped feature sets used for prediction

Forecast indicator

dataset – 1

(vital signs)

Forecast indicator

dataset – 2

(vital signsþ
routine blood)

Forecast indicator

dataset – 3 (vital signsþ
routine bloodþ

blood gas analysis)

HR HR HR

SBP SBP SBP

DBP DBP DBP

RESP RESP RESP

TEMP TEMP TEMP

PLT PLT

WBC WBC

Hb Hb

RBC RBC

Hct Hct

BE

Lac

pH

TCO2

PaCO2

PaO2

BE, base excess; DBP, diastolic blood pressure; Hb, hemoglobin; Hct,
hematocrit; HR, heart rate; Lac, lactate; PaO2, partial pressure of oxygen;
PLT, platelets; RESP, respiration rate; SBP, systolic blood pressure;
TEMP, temperature; WBC, white blood cell count.

FIG. 3. Partial SHAP dependence plots for features of vital signs, routin
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attributed importance changed as the values varied in the plot.

SHAP values for specific features exceeding zero indicate an

increased risk of THS.

Development of time-window prediction models of THS

We used the scikit-learn implementations of machine learn-

ing models to predict THS and optimized the parameters of

each model by grid search with 10-fold cross-validation. The

hyperparameters of XGBoost are listed in Supplemental Digital

Content 2, http://links.lww.com/SHK/B357, Table 3. Each

prediction model achieved good performance on different

stepped feature sets and prediction windows, and the perfor-

mance of XGBoost was significantly better than logistic regres-

sion (Table 4). For time-series data of vital signs when the

timestep was 3, each model achieved good performance on

each prediction window (T¼ 0.5, 1, 2 h) (see Table 3 and

Fig. 4). When the time window was 0.5 h, the F1.5 score of

the THS prediction model based on XGBoost was up to 0.849,

and the AUROC value was up to 0.935 (95% confidence

interval [95% CI]: 0.911–0.959). Furthermore, the generaliza-

tion ability of our model was verified by external validation.

The F1.5 score was 0.704, and the AUROC value was 0.785

(95% CI: 0.769–0.801).
e blood, and blood gas analysis. SHAP, SHapley Additive exPlanations.

http://links.lww.com/SHK/B357


TABLE 3. Validation of time-window prediction models for traumatic hemorrhagic shock

Internal validation External validation

Machine learning model Prediction dataset F1.5 acc pre rec AUROC AUPRC F1.5 acc pre rec AUROC AUPRC

0.5 h in advance

XGBoost VS 0.849 0.865 0.866 0.847 0.935 0.943 0.704 0.665 0.571 0.804 0.785 0.720

LR VS 0.794 0.835 0.853 0.778 0.875 0.887 0.701 0.661 0.558 0.801 0.797 0.773

1 h in advance

XGBoost VS 0.793 0.833 0.853 0.773 0.927 0.920 0.695 0.649 0.551 0.804 0.769 0.697

VSþRB 0.866 0.883 0.889 0.860 0.950 0.943 0.834 0.841 0.851 0.827 0.913 0.915

VSþRBþBG 0.900 0.903 0.898 0.903 0.968 0.962 0.804 0.822 0.847 0.787 0.901 0.908

LR VS 0.775 0.819 0.836 0.755 0.878 0.897 0.703 0.652 0.549 0.815 0.792 0.761

VSþRB 0.863 0.875 0.867 0.863 0.889 0.883 0.834 0.846 0.863 0.822 0.916 0.928

VSþRBþBG 0.872 0.875 0.872 0.875 0.930 0.932 0.841 0.856 0.882 0.824 0.916 0.929

2 h in advance

XGBoost VS 0.781 0.859 0.873 0.760 0.937 0.905 0.679 0.653 0.558 0.777 0.772 0.699

VSþRB 0.863 0.873 0.886 0.858 0.947 0.950 0.807 0.836 0.881 0.778 0.924 0.911

VSþRBþBG 0.869 0.870 0.856 0.880 0.934 0.914 0.798 0.830 0.876 0.770 0.922 0.914

LR VS 0.730 0.806 0.779 0.730 0.866 0.849 0.687 0.659 0.555 0.780 0.783 0.747

VSþRB 0.835 0.847 0.875 0.828 0.905 0.898 0.835 0.846 0.862 0.823 0.909 0.924

VSþRBþBG 0.860 0.847 0.813 0.887 0.912 0.891 0.832 0.847 0.870 0.817 0.913 0.926

3 h in advance

XGBoost VSþRB 0.857 0.888 0.935 0.828 0.946 0.959 0.703 0.766 0.842 0.658 0.842 0.840

VSþRBþBG 0.863 0.873 0.886 0.858 0.957 0.950 0.807 0.836 0.881 0.778 0.924 0.911

LR VSþRB 0.838 0.864 0.905 0.815 0.919 0.943 0.775 0.793 0.815 0.758 0.856 0.876

VSþRBþBG 0.835 0.847 0.875 0.828 0.905 0.898 0.835 0.846 0.862 0.823 0.909 0.924

VS represents vital signs; VSþRB represents vital signsþ routine blood; VSþRBþBG represents vital signsþ routine bloodþblood gas analysis.
AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; BG, blood gas; RB, routine blood; VS,
vital signs.
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When controlling the same time window, routine blood and

blood gas analysis data were added as prediction features along

with vital signs, and the performance of the prediction models

was improved. When the time window was 1 h and the cross-

sectional data of the vital signs and routine blood were used, the

F1.5 score reached 0.866, and the AUROC was 0.950 (95% CI:

0.932–0.969). In external validation, the F1.5 score was 0.834,

and the AUROC value was 0.913 (95% CI: 0.905–0.922).

Likewise, when using vital signs, routine blood, and blood

gas analysis in internal validation, the F1.5 score was up to

0.900, and the AUROC was 0.968 (95% CI: 0.956–0.980). In
TABLE 4. The P-value of the DeLong’s test compared the significant

difference between performance of models with different stepped

feature sets of the PLAGH-ERD and time windows

XGBoost LR P value

0.5 h in advance

VS 0.935 0.875 <0.001

1 h in advance

VS 0.927 0.878 0.028

VSþBR 0.95 0.889 <0.001

VSþBGþBR 0.968 0.93 <0.001

2 h in advance

VS 0.937 0.866 <0.001

VSþBR 0.957 0.905 <0.001

VSþBGþBR 0.934 0.912 <0.001

3 h in advance

VSþBR 0.946 0.919 0.016

VSþBGþBR 0.957 0.905 <0.001

BG, blood gas; PLAGH-ERD, the PLA General Hospital Emergency
Rescue Database; VS, vital signs.
external validation, the F1.5 score was 0.804, and the AUROC

value was 0.901 (95% CI: 0.887–0.915).
DISCUSSION

In this study, we constructed a series of good-performing

prediction models based on XGBoost that could predict THS in

advance using medical data combined with high-resolution

time-series dynamics of vital signs and low-resolution labora-

tory indicators. Prediction performance was inversely propor-

tional to the prediction window length and directly proportional

to the number of features. F1.5 scores for the XGBoost model

decreased as the prediction window lengthened from 0.5 to 3 h,

and the feature types decreased from 3 to 1; however, they still

provided acceptable performance.

Both internal and external validations were utilized to test the

reliability of the prediction models. Most early warning pre-

diction models are only internally validated, which could result

in an insufficient ability to provide new input data for practical

applications (38–40). Damen pointed out that disease predic-

tion models in the future should be externally validated (38).

From the external validation results, we determined that the

models established in this study had a certain generalization

ability (Table 3).

This study made full use of the advantages of machine

learning in the medical field. In the early 2000s, early warning

prediction of diseases was pursued using entropy-based (e.g.,

approximate entropy) signal processing methods (41). The

basic principle is to analyze the difference of nonlinear entropy

between a pathological state and physiological state. In the past



FIG. 4. (A) Receiver operating characteristic (ROC) curve of the prediction model for the vital signs dataset. (B) ROC curve of the prediction model for
the vital signsþ routine blood dataset. (C) ROC curve of the prediction model for the vital signsþ routine bloodþblood gas analysis dataset.
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10 years, ML techniques have made remarkable progress and

can achieve unprecedented accuracy for classification tasks

(42). With the help of machine learning, early warning predic-

tion models have the potential to achieve better cross-individual

recognition ability and generalization ability. Additionally,

traditional statistical methods such as logistic regression are

commonly employed in the medical field. Compared with

traditional statistical methods, machine learning provides a

powerful set of tools for describing relationships between

features and the outcome(s) of interest (e.g., THS), particularly

when they are nonlinear and complex (43). Moreover, machine

learning has advantages in time-series prediction, especially

with respect to the automated processing of time structures such
as autonomous learning and time-dependent trends. We used

XGBoost, which is an interpretable algorithm, to analyze the

importance of features in vital signs, routine blood, and blood

gas analysis and then quantified their contribution to THS

(0.292, 0.249, and 0.225, respectively). We were thus able to

establish prediction models based on machine learning with

good performance and generalization ability.

This study makes several significant contributions to the

existing literature on THS prediction. Most similar studies used

survival/death as outcomes, and few focused on the onset of

THS, although early warning prediction detection analysis is

common for sepsis (43–45). XGBoost, an interpretable

machine learning algorithm, was applied to predict THS in
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advance using vital signs. This is more effective for real-time

prediction since clinicians can identify specific prediction

windows in which THS could occur once time-series data have

been input into the model.

Regarding input feature selection, we first introduced a

concept known as ‘‘stepped features’’ classified in terms of

practicability and timeliness. Due to the rapid progression of

THS and the limitations of clinical conditions, the feasibility

and timeliness of the model should be considered. At present,

the vital signs acquisition equipment is developing toward

miniaturization, and its performance is constantly optimized,

allowing it to realize real-time dynamic acquisition in multiple

scenes (e.g., in-hospital or an earlier stage). Therefore, the

advantages of time-series data were fully utilized to achieve

better prediction performance. Meanwhile, since a patient’s

vital signs are sensitive to external factors, clinicians usually

run routine blood as well as blood gas analysis to supplement

diagnosis. In this study, routine blood and blood gas analysis

were regarded as stepped features. Additionally, our research

confirmed that adding laboratory measures to vital signs

increased the prediction ability of the models. Therefore, this

study has flexible prediction ability of THS in-hospital even in

earlier stages.

This study had some limitations. First, the research used

retrospective electronic medical record data not originally

collected for the analyses. Although the prediction model of

THS exhibited good performance in the absence of data, the

judgment of THS is a comprehensive process, and some

features in the actual clinical work could not be recorded, such

as pupil size, consciousness, and color of skin. Second, most of

the current research based on machine learning has focused on

the field of septic shock and utilized large sample sizes (43, 46,

47). In the field of THS, studies that utilized small sample sizes

generally consisted of approximately 100 cases (14, 15, 48, 49).

Third, our algorithm achieved good performance in both inter-

nal and external validation, and the results of the prediction

models also provide certain decision support for clinical diag-

nosis, but prospective clinical validation is still required to

determine whether the model can accurately identify THS in

actual clinical scenarios. In addition, some aspects, such as data

acquisition devices, data acquisition methods, and data trans-

mission methods, need further enhancement for continuous

data quality improvement and model optimization.
CONCLUSIONS

In this two-center retrospective study, we revealed that

features in vital signs, routine blood, and blood gas analysis

were the most relevant to THS. Thus, the stepped relationships

existing in them were discovered. We confirmed that it is

feasible to construct three models that can flexibly and rollingly

predict THS prior to its occurrence by adopting different types

of stepped features and time windows that can adapt to the

scenarios of in-hospital even the earlier stage, and provide

predictive accuracy and speed for actual clinical scenarios. In

summary, these findings could reduce mortality, improve prog-

nosis, and optimize the clinical treatment of severe trauma
patients. The protocol used in our research also has reference

value for other clinical syndromes and disease processes.
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