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Abstract Because of their elementary significance in almost all fields of science,

measures of association between two variables or traits are abundant and multiform.

One aspect of association that is of considerable interest, especially in population

genetics and ecology, seems to be widely ignored. This aspect concerns association

between complex traits that show variable and arbitrarily defined state differences.

Among such traits are genetic characters controlled by many and potentially

polyploid loci, species characteristics, and environmental variables, all of which

may be mutually and asymmetrically associated. A concept of directed association

of one trait with another is developed here that relies solely on difference measures

between the states of a trait. Associations are considered at three levels: between

individual states of two variables, between an individual state of one variable and

the totality of the other variable, and between two variables. Relations to known

concepts of association are identified. In particular, measures at the latter two levels

turn out to be interpretable as measures of differentiation. Examples are given for

areas of application (search for functional relationships, distribution of variation

over populations, genomic associations, spatiogenetic structure).
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1 Introduction

The detection of kinds and degrees of relationship, or association, between two traits

is one of the most fundamental issues in scientific research. Accordingly numerous

are the measures that have been proposed. Typically, associations are determined

between two variables (or traits) of the same type, in the sense that both variables

are discrete (qualitative, categorical, etc.), both ordinal, or both continuous, for

example. Associations between variables of different type are usually treated by

transforming one type into the other. With one variable discrete and the other

continuous, for example, the latter is usually partitioned more or less arbitrarily into

classes, making both variables discrete. While for discrete variables association is

usually determined by measures of deviation from stochastic independence,

association between real-valued or ordered (ordinal) variables is commonly treated

in terms of measures of covariation and thus of monotonicity of relationships

between the variables (the classical papers of Goodman and Kruskal compiled in

Goodman and Kruskal 1979, and the monography of Liebetrau 1983, still provide a

suitable overview of the most common measures). More recent approaches are

based on measuring the dependence of the distribution of one variable on the

distribution of a second variable with the help of the variance of conditional

probabilities (see e.g. Hsing et al. 2005; or Liu 2005). In these approaches variables

are allowed to be of different type. The resulting indices again measure the

deviation from stochastic independence but in an asymmetrical way. They are

measures of directed association and are thus applicable to analyses of cause-effect

relationships.

Complex variables in particular are frequently characterized by variable

differences between their states, where the applied measures of difference may be

of quite diverse kind. Consideration of variable differences in analyses of

association introduces a perception that cannot be captured simply by methods of

covariation or of transformation of joint frequency distributions. Despite its

obviousness, this perception seems to have attracted little, if any, explicit attention

in association studies. As an example, in a biological context, variable differences

are essential whenever problems of differential relatedness or similarity of species,

populations or individuals are addressed in connection with the environmental

conditions in which they are found or to which they are presumably adapted. The

systematic, genetic or phylogenetic traits of these entities are mostly multidimen-

sional, as are most environmental characteristics of interest. The currently popular

genome-scale studies in phylogenetics and ecological genetics pose particularly

obvious challenges in this respect. With the exception of rare events of perfect

cloning, each genotype identified at a genomic level is unique (realized by only one

individual). The plain fact that genotypes are not identically repeated thus precludes

any classical analysis of association of the genetic trait with other functional,

phenotypic, or ecological traits (see e.g. Hughes 2008, for a recent commentary).

Nevertheless, genotypes are composed of gene-types (alleles) that may be shared

among individuals. Genotypes thus differ to variable degrees, and these differences

may be associated with certain differences that are measurable between the states of

other traits or variables. Actually, the detection of variation per se relies on the
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ability to discriminate and thus to recognize differences. For qualitative traits, for

example, differences are measured in a binary fashion by stating sameness and its

opposite (a value of 0 indicates sameness of two individuals and 1 indicates their

differentness). Variation thus becomes visible through differences, which suggests

that studies of association between variables should first and foremost take

differences between the states of a variable into consideration. Herewith, neither the

type of variable (e.g. qualitative or quantitative), the combination of types of

variables nor the way differences between the states of the variables are measured

should impose any restrictions on the analyses. The present paper is devoted to the

elaboration of a conceptual approach to the assessment of association that takes all

of these aspects into consideration.

2 Preliminary Deliberations

When two independently specified features are observed, their association is

basically determined by those population members that display both features. The

features commonly appear as states of two traits (or variables) X and Y, say. The

more members of state x of X that also hold state y of trait Y, and the more distinctly

the members not holding state y differ from x, the more strictly can state y be

considered to be associated with state x. As becomes evident from this formulation,

considerations of association are of an intrinsically directed nature, and this reflects

an essential prerequisite for the detection of cause-effect relationships in the sense

that y (effect) is determined by x (cause). If not stated otherwise, the term

‘‘population’’ will be conceived in a wide sense as any specified finite or infinite

collection of objects.

Perfect (or strict) association is thus characterized by two conditions, one of

which requires that all x-members display y, and the other requires that the X-states

of all members that do not hold state y be distinct from x. The second condition

reflects the expectation that even if the possession of x would always imply

possession of y, the association would not be considered perfect if the X-states of

members not holding y could come close to state x. In that case the association

would become imperfect because of insufficient separation of state x from members

not holding state y. In fact, the second condition implies the first, since if all

members not holding y differ from x, then all x-members, if there are any, show state

y. At the other extreme, y can be viewed to be perfectly dissociated from x if all y-

members distinctly differ from x in their X-states. Loosely speaking, association of

y with x is strong if members that do not hold state y differ distinctly in their X-states

from x, and dissociation is strong if members that do hold state y differ distinctly in

their X-states from x.

Intermediate situations arise when among y-members the distribution of

differences of X-states from x is similar to that for members of the remainder of

the population. Complete absence of association of y with x would then be stated if

the possession of y is not implied in any particular way by the possession of x or by

its differences from other X-states. The same situation represents the absence of

dissociation of y from x. This case is realized if the distribution of X-states among
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y-members is the same as in the remainder of the population. In other words, trait

X varies (stochastically) independently of state y. One concludes from these

deliberations that the assessment of dissociation and association basically depends

on the distribution of differences of X-states from x among y-members and within

the remainder of the population, respectively. Variable differences between X-states

thus imply that all X-states (i.e. not just state x) are potentially involved in the

assessment of association of y with x.

To illustrate the transformations creating association, let Xy denote the set of

y-members and let Xc
y denote its complement (the remainder). By the above

explanations, the association of y with x increases as members from Xc
y become

more distinct from state x for their X-trait. This is achieved by a frequency shift
within Xc

y such that the frequency of an X-state that differs more from x than another

X-state is increased, and in return the frequency of the other state is decreased by the

same amount. Starting from a situation in which the distribution of X is the same in

Xy and Xc
y (and association is thus absent), such shift transformations can be applied

to create any difference between the two distributions and to observe the resulting

gains or losses in association (see Fig. 1 for an illustration).

Therefore, in order to assess the associations realized in a particular joint

distribution of Y and X, it is meaningful to consider the overall frequency shifts

among X-states within Xc
y that are required to transform the distribution of X within

Xc
y into the distribution of X within Xy: The sum of frequency shifts quantifies the

deviation from stochastic independence and thus, in concert with the pertaining

differences from x, determines the degree of association. An assessment of

dissociation can be achieved analogously by carrying out frequency shifts within Xy

in order to match the distribution of X within Xc
y: This approach will be detailed

later on in the appropriate sections. Note that because of the directedness of

association, difference measures are relevant only between the states of one trait

unless the reverse association is additionally taken into account.

frequency shift transformations s(a,b) performed within collection p to match collection q

q2 q3 q4 q5q1

p4

p3

p2

p1

p5

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

0

S(3,4)

S(3,1) S(5,4)

S(3,4)S(5,1)

collection p collection q shift 2

frequency sink

shift 1

frequency source

Fig. 1 Two frequency shift transformations performed within collection p (corresponding to Xc
y) in order

to match the frequency distribution in collection q (corresponding to Xy). Differences between states are

supposed to correspond to differences in color. On this basis, shift transformation 1 represents a smaller
total change in trait state (color) than shift transformation 2 (adapted from Gillet et al. 2004)
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The above explanations show that difference measures are required for that trait

with which the other trait is considered to be associated. Of course, all of these and

of the following considerations apply identically when the determination of the two

traits is reversed (association of x with y). In this way, analyses of association can be

conducted in both directions with the aim of detecting asymmetries that hint at

cause-effect relations, for example. Since the present paper is specifically concerned

with the effect of variable differences between trait states on the assessment of

association, comparability of associations in both directions must rely on

comparability of the difference measures applied to the involved traits.

3 Properties of Difference Measures

The characterization of situations of perfect association and perfect dissociation

both depend on the notion of distinctness of trait states. In fact, perfect association

or dissociation cannot be realized unless proper meaning is given to ideas of perfect

or complete distinctness, differentness, or dissimilarity. If differences are bounded

from above, their maximum value can be conceived of as specifying the situation of

complete dissimilarity. Yet, even if the differences can become arbitrarily large, it

may be meaningful to draw a threshold beyond which trait states are regarded to be

completely dissimilar. Indeed, if differences may become infinitely large,

statements as to the strength of dissociation become arbitrary. Hence, since the

measurement of association or dissociation does not depend on scale and operates

relative to the range of realizable differences, it is reasonable to consider only

bounded difference measures that preferably vary between 0 and 1.

If from the outset a measure of difference is subject to a limitation with pertinent

interpretation (such as ‘‘complete’’ differentness, distinctness, dissimilarity or

separation), the appropriate normalization would be d̂ ¼ d=u; where u is the

maximum value of d. Otherwise, if the maximum value u is not predefined but has a

specific meaning, the appropriate normalization might be d̂ ¼ d=u for d B u and

d̂ ¼ 1 for d C u. This normalization may however be unsatisfactory if d may reach

very large values that are realized only in exceptional cases. In such cases the

normalization

d̂ :¼
d

1þd � eu�1þd
eu�1þu

� 1þu
u if 0� d� u

1 if d� u

�

is more appropriate. The normalization is a strictly increasing function of d that is

convex for u \ 1, is concave for u [ 1, and attains its maximum value of 1 exactly

for d C u. If u = 1 then d̂ ¼ d for d B u. As u!1 one obtains d̂ ¼ d
1þd. Note that

all of the above normalizations decrease for fixed d when the threshold value u is

increased (u C d). This rules out intersection of the functions d̂ of d.

Given this connection between bounded measures of difference and perfect

association as well as opportunities for appropriate normalization, the following

developments will solely refer to difference measures that vary over the unit

interval. The extremal values 0 and 1 are interpreted as complete similarity and
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complete dissimilarity, respectively. This understanding conforms with the above

requirement that difference measures for different traits have to be comparable in

order to allow associations to be considered in both directions and by this to allow

for the detection of asymmetries in association.

4 State-to-State Level of Association

It is argued above that the assessment of association or dissociation should be based

on frequency shift transformations that are performed on the distribution of a

variable in one set of objects with the aim of matching the distribution of that

variable in another set of objects. The two sets are Xy (the set of objects with trait

state Y = y) and its complement Xc
y (where Y= y), and the frequency shifts are

performed on the distribution of trait X in either of the two sets to match the

distribution in the other set. With each shift, the frequencies of the differences

between the involved X-states and a reference state x are changed. This was shown

to directly determine changes in association (or dissociation) of state y of trait Y
with (from) state x of trait X. In order to develop a measure of association from these

principles, the notation listed in Table 1 is also needed.

Frequency shifts are carried out from X-states that are more frequent in Xc
y than in

Xy to X-states that are less frequent in Xc
y than in Xy: The former states will be called

frequency sources and the latter frequency sinks. Matching the distribution of X in

Xc
y with the distribution in Xy thus requires that parts of the frequency sources be

removed and added (shifted) to the sink frequencies. Herewith, state X = a is a

frequency source or frequency sink within Xc
y according to whether

PðX ¼ a j Y 6¼ yÞ � PðX ¼ a jY ¼ yÞ is positive or negative, respectively. Fre-

quency shifts r(a, b) from frequency source states X = a to frequency sink states

X = b within Xc
y are required in order to transform the distribution of X within Xc

y

into the distribution of X within Xy: A shift transformation must therefore level out

the differences between frequency sources and sinks (see Fig. 1 for an illustration),

i.e. r(a,b) C 0 for all a and b, and

Table 1 Notation

dX(a, b):= measure of difference between the states a and b of trait X

PðCÞ :¼ relative frequency (in finite populations or samples) or probability of an event C; e.g.

P(X = a) is the relative frequency of state a of trait X

PðC1 jC2Þ :¼ conditional probability of event C1 given event C2; e.g. PðX ¼ x jY 6¼ yÞ is the frequency

of population members holding state x among members not holding state y

E(Z) := average or expectation of variable Z; e.g. EðdXðX; aÞÞ ¼
P

b dXða; bÞ � PðX ¼ bÞ is the average

difference of trait X from state a (where Z = dX(X, a))

EðZ jCÞ :¼ conditional expectation of variable Z given event C; e.g. EðdXðX; aÞ jY ¼ yÞ is the average

difference of trait X from state a among members holding state y of trait Y

For continuous variables, the probabilities have to be replaced by probability densities, and the expec-

tations appear as integrals.
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X
b

rða; bÞ ¼ PðX ¼ a j Y 6¼ yÞ �min PðX ¼ a j Y 6¼ yÞ;PðX ¼ a j Y ¼ yÞf g;
X

a

rða; bÞ ¼ PðX ¼ b j Y ¼ yÞ �min PðX ¼ b j Y 6¼ yÞ;PðX ¼ b j Y ¼ yÞf g:

Any frequency shift may increase or decrease the association depending on the size

of the difference of the source state and of the sink state from x. The gain or loss in

association is therefore determined by the size of the frequency shift and by the

difference between the two state differences. In particular, if both differences are

equal, association is unaffected by the shift; if the difference of x from the source

state exceeds that from the sink state, association is increased, and it is decreased

otherwise. Hence, summing up all individual shifts leads to an overall net gain or

loss of association according to

Ty;xðrÞ :¼
X
a;b

rða; bÞ � dXða; xÞ � dXðb; xÞ½ � ð1Þ

There may be many shift transformations that fulfill the above conditions. However,

as follows directly from the shift characteristics,

Ty;xðrÞ ¼
X

a

PðX ¼ a j Y 6¼ yÞ � PðX ¼ a j Y ¼ yÞ½ � � dXða; xÞ

which shows that Ty,x(r) does not depend on which shift transformation r is applied.

The sum in the representation of Ty,x can be decomposed into two sums, the first

of which equals the average difference EðdXðX; xÞ j Y 6¼ yÞ of X-states from x within

Xc
y, and the second equals the corresponding average EðdXðX; xÞ j Y ¼ yÞ within Xy.

One thus obtains the following two equivalent representations of Ty,x:

Ty;x ¼ EðdXðX; xÞ j Y 6¼ yÞ � EðdXðX; xÞ j Y ¼ yÞ

¼ EðdXðX; xÞ j Y 6¼ yÞ � EðdXðX; xÞÞ
PðY ¼ yÞ

where E(dX(X, x)) is the overall average difference of X-states from x [recall that

EðdXðX; xÞÞ ¼ EðdXðX; xÞ j Y 6¼ yÞ � PðY 6¼ yÞ þ EðdXðX; xÞ j Y ¼ yÞ � PðY ¼ yÞ].
With the help of this expression, the absence of association, its presence, and the

presence of dissociation can be stated as Ty,x = 0, Ty,x [ 0, and Ty,x \ 0,

respectively.

Moreover, EðdXðX; xÞ j Y 6¼ yÞ ¼
P

a PðX ¼ a j Y 6¼ yÞ � dXða; xÞ� 1 with equal-

ity only if for each a with PðX ¼ a j Y 6¼ yÞ[ 0 one has dX(a,x) = 1, and

PðX ¼ x j Y 6¼ yÞ ¼ 0: This condition conforms precisely with the definition of

perfect association. It suggests normalization of Ty,x so as to yield a measure of

association of y with x with upper limit equal to 1. There are two ways to

normalize depending on whether the first or the second representation of Ty,x is

used. For reasons of comparison with existing measures, the second representation

will be given preference. This normalization yields the measure of association of
y with x
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AþðY ¼ y jX ¼ xÞ ¼ EðdXðX; xÞ j Y 6¼ yÞ � EðdXðX; xÞÞ
1� EðdXðX; xÞÞ

By symmetry of arguments (and since perfect dissociation is realized only for

EðdXðX; xÞ j Y ¼ yÞ ¼ 1), one obtains the pertaining measure of dissociation of y
from x as

A�ðY ¼ y jX ¼ xÞ ¼ EðdXðX; xÞ j Y ¼ yÞ � EðdXðX; xÞÞ
1� EðdXðX; xÞÞ

The two measures are connected by

AþðY ¼ y jX ¼ xÞ � PðY 6¼ yÞ þ A�ðY ¼ y jX ¼ xÞ � PðY ¼ yÞ ¼ 0

Both measures can be combined into a single measure that varies from -1 to ?1,

indicating association by positive values, its absence by zero, and dissociation by

negative values:

AðY ¼ y jX ¼ xÞ ¼ i �maxfAþðY ¼ y jX ¼ xÞ; A�ðY ¼ y jX ¼ xÞg

¼ i �maxfEðdXðX; xÞ jY 6¼ yÞ;EðdXðX;xÞ jY ¼ yÞg�EðdXðX;xÞÞ
1�EðdXðX;xÞÞ

ð2Þ

where i is ?1 or -1 according to whether the average difference from x is larger or

smaller in the total population than among y-members [i is the sign of

EðdXðX; xÞÞ � EðdXðX; xÞ j Y ¼ yÞ].
The absence of association of y with x is therefore characterized by equality of

the overall and the conditional expectation, i.e. EðdXðX; xÞÞ ¼ EðdXðX; xÞ j Y ¼ yÞ.
Obviously, stochastic independence between the trait X and the state y is sufficient

for absence of association. It is however not sufficient to require stochastic

independence only between the two states x and y. On the other hand, there are

special cases of stochastic dependence, where association is absent in terms of

equality of the pertaining overall and conditional expectation.

5 State-to-Trait Level of Association

So far, association was regarded between individual states of two traits. The next

higher level of association is that of the state of one trait with the entirety of states of

another trait. At this level of association, one is interested in knowing whether

possession of a particular state of one trait implies association with particular states

of the other trait. Application of the approach taken at the state-to-state level

suggests consideration of the difference between the X-states that y is associated

with and the X-states that y is not associated with (or dissociated from). This

corresponds to the idea that state y can be distinguished or separated for its X-states

from other Y-states (i.e. the remainder of the population). The more distinct this

separation becomes, the stronger is the association of state y with trait X. The

association would be perfect if state y is found to be associated with X-states with
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which no other Y-state is associated, and if in addition the X-states with which y is

associated differ completely from the X-states in the remaining population. Recall

that this perspective involves differences between X-states but not between Y-states.

It therefore addresses the states of X as potential differentiae specificae of the states

of Y, where, for example, y denotes a species that is distinguished from other species

of the same genus by the states of trait X.

The problem to be addressed is apparently similar to that treated at the state-to-

state level in that the separateness between Xc
y and Xy with respect to X-states

determines the degree of association. The difference is that at the present state-to-

trait level, separateness involves all states of trait X rather than only one specific

state. Hence, the previous concept of shift transformations applies identically to the

assessment of separateness, where the separation is now determined by the

differences between the X-states to which the individual shifts refer. A frequency

shift r(a, b) from a source state a to a sink state b therefore entails a difference

dX(a, b) between the two states. It follows that with each shift transformation r that

matches the distribution of X within Xc
y to that within Xy, the pertaining total change

in X-states amounts to

Ty;XðrÞ ¼
X
a;b

rða; bÞ � dXða; bÞ ð3Þ

Ty,X(r) can also be viewed to quantify the separation between Xc
y and Xy that goes

along with the shift transformation r.

The situation of complete separation and thus of perfect association of y with X is

realized if for any pair a and b of X-states with PðX ¼ a j Y 6¼ yÞ[ 0 and

PðX ¼ b j Y ¼ yÞ[ 0 one has dX(a,b) = 1. Since dX(a,a) = 0, this implies that

if either of the probabilities PðX ¼ a j Y 6¼ yÞ or PðX ¼ a j Y ¼ yÞ is positive, then

the other is zero. Hence, r(a,b) [ 0 only if PðX ¼ a j Y 6¼ yÞ[ 0 and

PðX ¼ b j Y ¼ yÞ[ 0 (which implies dX(a,b) = 1). It follows that in this case

Ty;XðrÞ ¼
X
a;b

rða; bÞ ¼ 1�
X

a

min PðX ¼ a j Y 6¼ yÞ; PðX ¼ a j Y ¼ yÞf g ¼ 1

so that Ty,X(r) reaches its maximum value of 1 only for perfect association of y with

X. On the other hand, there is no association if X varies stochastically independently

from y, and this shows as r(a,b) = 0 for all X-states and therefore as Ty,X(r) = 0.

Apparently, Ty,X(r) displays features that are desirable for a measure of association.

However, it was mentioned earlier that there may be many shift transformations

of one given distribution into another given distribution (for an illustration see

Fig. 1). Since the objective consists in quantifying the separation between the

distributions on the basis of state differences, it is essential to consider only shift

transformations r that minimize the total change Ty,X(r). This suggests

AðY ¼ y jXÞ :¼ min
r

Ty;XðrÞ ð4Þ

as a measure of association of state y with trait X. The same approach was applied

by Gregorius et al. (2003) to the measurement of differentiation between frequency

distributions of traits with variable state differences. Algorithms for finding the
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minimum separation (or differentiation) are described in this paper, and programs

are available from the co-author E. Gillet.

In the case of perfect state-to-trait associations it is desirable to identify the

involved X-states. By definition of the state-to-state associations, the X-states

involved in AðY ¼ y jXÞ ¼ 1 are exactly those with which y is perfectly associated,

i.e. for which AðY ¼ y jX ¼ xÞ ¼ 1. Conversely, if there are any states x for which

AðY ¼ y jX ¼ xÞ ¼ 1 then AðY ¼ y jXÞ ¼ 1. Moreover, if AðY ¼ y jX ¼ xÞ\1 for

any x, then y is perfectly dissociated from x since the X-states not involved in

AðY ¼ y jXÞ ¼ 1 differ completely from all X-states involved in AðY ¼ y jXÞ ¼ 1.

This leads to the conclusion that AðY ¼ y jXÞ ¼ 1 if and only if for each x the

measure AðY ¼ y jX ¼ xÞ equals either ?1 or -1.

For highly variable Y-traits, but not only for these, it may happen that y-members

are fixed for their X-trait. If the Y-trait is continuous this is even the normal case,

since for such traits it is very unlikely that any two members of a population share a

trait state. Thus typically PðX ¼ x j Y ¼ yÞ ¼ 1 for some state x. Hence, there is only

one sink state in Xc
y, namely x, to which all other states are to be shifted. The only

positive frequency shifts are therefore rða; xÞ ¼ PðX ¼ a j Y 6¼ yÞ for a= x, so that

Eq. 3 becomes Ty;X ¼
P

a PðX ¼ a j Y 6¼ yÞ � dXða; xÞ ¼
P

a PðX ¼ aÞ � dXða; xÞ=
PðY 6¼ yÞ and consequently AðY ¼ y jXÞ ¼ EðdXðX; xÞ j Y 6¼ yÞ by Eq. 4. Hence, in

this case the association of state y with trait X equals the average difference of

X-states from x among individuals not holding state y.

6 Trait-to-Trait Level of Association

At the next higher level of association (which is also the highest level) the state-to-

trait level associations of the individual Y-states with trait X are to be summarized.

This summary should reflect the overall degree to which Y-states are distinguished

for their X-states. The contributions of the individual Y-states correspond to their

frequency, which specifies an appropriate measure AðY jXÞ of association of trait Y
with trait X by the averages of the state-to-trait level measures, i.e.

AðY jXÞ :¼
X

y

AðY ¼ y jXÞ � PðY ¼ yÞ ð5Þ

for trait X. In the absence of association AðY jXÞ ¼ 0, so that there is no

differentiation. Analogously, for perfect association, AðY jXÞ ¼ 1, and differenti-

ation is complete.

Perfect association can also be interpreted in terms of proper functional relations,

since AðY jXÞ ¼ 1 implies that AðY ¼ y jXÞ ¼ 1 for all y. As was shown above,

this guarantees that members holding state y do not share their X-states with

members not holding y and that between the two groups X-states differ completely.

In other words, to each X-state there corresponds a unique Y-state, and the X-states

corresponding to different Y-states are properly distinguished; thus Y is a proper

function of X. From this perspective, AðY jXÞ presents itself as a measure of

closeness of Y to a proper functional dependence on X. Note that this distinguishes
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AðY jXÞ from the common indices of covariation (such as correlation or regression

coefficients), which essentially measure deviations from models of linear (or more

general monotonic) relationships between quantitative (or ordinal) variables. A
applies to the detection of any functional relationship, including non-monotonic

relationships as well as relationships between non-linear multi-dimensional or

qualitative traits.

7 Association for Discrete Traits

Formally, discrete traits can be characterized by the existence of only two kinds of

difference, one indicating sameness and the other differentness of states. Usually

this amounts to choosing dX = 0 or dX = 1 according to whether the trait states of

two individuals are identical or different, respectively. Hence, EðdXðX; xÞÞ ¼
PðX 6¼ xÞ ¼ 1� PðX ¼ xÞ; EðdXðX; xÞ j Y ¼ yÞ ¼ 1� PðX ¼ x j Y ¼ yÞ, and

EðdXðX; xÞ j Y 6¼ yÞ ¼ 1� PðX ¼ x j Y 6¼ yÞ. At the state-to-state level of associa-

tion, one therefore obtains from Eq. 2

AðY ¼ y jX ¼ xÞ ¼ i � PðX ¼ xÞ �minfPðX ¼ x j Y 6¼ yÞ; PðX ¼ x j Y ¼ yÞg
PðX ¼ xÞ

where i is the sign of PðX ¼ x j Y ¼ yÞ � PðX ¼ xÞ.
The state-to-trait level of association follows directly from Eq. 3 since

Ty;XðrÞ ¼
X
a;b

rða; bÞ ¼ 1�
X

a

min PðX ¼ a j Y 6¼ yÞ; PðX ¼ a j Y ¼ yÞf g

¼ 1

2

X
a

PðX ¼ a j Y 6¼ yÞ � PðX ¼ a j Y ¼ yÞj j

¼ AðY ¼ y jXÞ

From this in turn the trait-to-trait level of association results as given in Eq. 5. All

of these results conform with those derived earlier by Gregorius (1998). Also

consult this paper for cases of further specialization to standard measures of

association (such as measures of cross-classification, or linkage disequilibrium in

population genetics).

8 Concluding Remarks

The areas of application of the above measures of association are quite diverse and

cannot be appropriately represented in this paper. Therefore the following examples

merely address opportunities for providing more detailed or alternative solutions to

three problems of presumably common interest in population and ecological

genetics. These will be preceded by a brief reference to functional relationships. In

all examples the significance of considering both directions of association is pointed

out.
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• Search for functional relationships: At the state-to-state level, associations

allow the creation of hypotheses about a functional relationship by consideration of

both directions of association at the trait-to-trait level; choose the larger of the two

associations to identify the direction of the functional relationship; for AðY jXÞ[
AðX j YÞ select for each x a state y such that AðY ¼ y jX ¼ xÞ ¼ maxzAðY ¼
z jX ¼ xÞ and assign y to x; this creates a hypothesis for a functional relationship

Y = f(X) (which need not be monotonic in any sense). Since the maximum

association with x may be realized by more than one state of Y, several hypotheses

on a functional relationship Y = f(X) may be possible.

For continuous variables, strict functional relationships may exist despite the fact

that Y-states are not completely differentiated for their X-states. This is due to the

condition that any statement on complete differentiation depends on difference

measures for which complete difference is meaningfully defined. The latter,

however, does not generally apply to continuous variables. Moreover, changes in X
may go along with small as well as with large changes in Y (where the notions of

‘‘small’’ and ‘‘large’’ depend on the difference measure dY). The present concept of

association therefore does not seem to cover such situations.

On the other hand, functional relationships, including continuous variables, are

first of all based on the uniqueness of assignment of the states of the ‘‘independent’’

variable (X) to the states of the ‘‘dependent’’ variable (Y). Hence, only sameness or

differentness of the states of the independent variable is relevant in this context,

which in turn calls for a difference measure d that allows unambiguous separation of

all states. Given this, an additional binary difference measure d* can be specified by

d* = 1 if d [ 0 and d* = 0 if d = 0. As a result, Y can be perfectly associated with

X when applying d*, but the implied functional relationship may have to be

considered imperfect when association is determined for the original difference

measure d. The imperfection is thus due to unsatisfactory distinction or resolution of

the states of trait Y by the states of trait X.

• Distribution of variation over populations: A question frequently posed in

population genetics concerns the mode according to which the genetic variation of a

population is distributed over subpopulations. The same type of question is posed in

ecology, where the distribution of the species in a region over communities is of

concern. Both types of question can be tackled by characterizing each individual by

its genetic type (or species affiliation) and by its subpopulation (or community)

membership. Given that subpopulations are properly separated, subpopulation

membership can be specified as a discrete trait with states that are equally different

(binary difference measure). The latter does not apply to the genetic trait, since the

genetic types may differ to variable degrees depending on the number of genes they

share.

An assessment of the distribution of genetic variation over subpopulations can

then be approached by computing the associations between the two traits (with Y as

subpopulation affiliation and X as genetic type, for example). At the trait-to-trait

level the association of Y with X would then be conceived as a measure of genetic

differentiation among subpopulations. By consideration of genic differences

between genotypes, it is possible to include gene interactions at different levels
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as a new aspect into analyses of differentiation (Gillet and Gregorius 2008). The

reverse association addresses differentiation between genetic types for their

subpopulation memberships, as is relevant in the detection of tendencies of

individuals with the same genotype to occur in the same subpopulation. This

perspective is widely ignored in population genetic research (for an exception see

Hudson 2000; a more comprehensive treatment can be found in Gregorius 2009).

• Genomic associations: Selection acting on pleiotropic or epistatically poly-

genic traits, inbreeding, or small population size entail evolutionary processes that

shape in very different ways the multilocus genotypic structure of populations.

These associations are commonly quantified in terms of linkage disequilibria or

similar indices, all of which are based on haplotype frequencies (for an overview see

e.g. Mueller 2004). For diploidy or higher degrees of ploidy, haplotype frequencies

are difficult to estimate and may even miss important aspects of genomic

association that show up at the genotypic level (for an example of linkage

equilibrium with association at the genotypic level see Ziehe and Müller-Starck

1991, p. 260). Asymmetric associations seem to play no role at all in the context of

linkage disequilibrium studies, even though they are to be expected at least among

selected genetic traits or between selected and ‘‘background’’ traits.

The present measures of association apply to all degrees of ploidy, at least to the

extent that appropriate measures of genic difference between genotypes are

available (the total number of alleles by which two genotypes differ may be

reasonable in many cases). This allows the study of associations between genomic

regions that are chosen for their special functions and that need not be characterized

by the same kind of genic difference measure. Another type of genetic association

may exist between cellular organelles such as nuclear, mitochondrial, or plastid.

These ‘‘cytonuclear disequilibria’’ (see e.g. Asmussen and Basten 1996) are defined

in ways analogous to linkage disequilibria and can be substantially generalized with

the help of the present measures.

• Spatiogenetic structure: This topic is frequently addressed in connection with

dispersal problems and is analyzed in terms of spatial autocorrelation (for an

overview see e.g. Epperson 2005). In essence, this type of analysis focuses on

questions of covariation of genetic differences with spatial distances between pairs

of individuals. In a more comprehensive (and probably intuitively more appealing)

context, spatiogenetic structure can be conceived of as an association between

genetic traits of individuals and their locations (as the second trait). The difference

measures for the two traits can be specified by the genic difference between

genotypes and by the spatial distance between individuals. Accordingly, association

may be considered for genetic type with location and vice versa. Closeness to

functional relationships of any shape (including monotonic relationships) can be

assessed on the basis of the above demonstrations.

Association of genetic type with location targets situations where genetic types

are differentiated for the locations in which they occur. Individuals differing in

genetic type therefore tend to be separated more distinctly in space than individuals

of the same genetic type. The degree to which the genetic types differ is not of

concern so far. To allow for the assessment of closeness to perfect association, a
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threshold distance is to be specified, beyond which spatial separation can be

considered to be effectively complete. Thresholds are allowed for by the parameter

u, which is applied in the normalization of difference measures to scales appropriate

for association analyses (see Sect. 3). Perfect association is then reached if

individuals of the same genetic type reside at the same location, while individuals

with different genetic type are separated by a spatial distance of at least u.

If special threshold distances are not preset by the problem at hand, consideration

of several thresholds is useful in order to identify distances for which the association

changes distinctly. The present association measures allow for this kind of special

inference, since they decrease (not necessarily strictly) with increasing u (for a proof

see ‘‘Appendix 1’’). Thus, the thresholds could indicate the existence of distances

within which family structures can build up, for example, while beyond the

threshold distance individuals mix more or less freely. A more comprehensive

picture of the distribution of genetic types in space therefore results from

consideration of ‘‘association profiles’’, where the trait-to-trait level of association is

plotted against the threshold values u. Association profiles can also be considered at

the state-to-trait level in order to distinguish individual genetic types for their spatial

distribution patterns.

In the reverse direction, association of locations with genetic types addresses

differentiation among locations for the genetic types found at these locations.

Apparently, spatial arrangement of the population members has no effect on

association in this direction. If each location is occupied by a single individual only,

the results of ‘‘Appendix 2’’ demonstrate that the association of locations with genetic

types specializes to the average genetic difference between two different members of

the population. Under the additional assumption of binary differences between genetic

types, it turns out that association is identical to Simpson’s index of diversity (Simpson

1949) when defined as the probability of drawing without replacement two individuals

(locations) that differ in their genetic type (see ‘‘Appendix 2’’).

Locations may also be specified in terms of properly separated areas that are

occupied by arbitrary numbers of individuals. Such areas may correspond to

subpopulations, which, in accordance with the above perspective of the distribution

of variation over populations, reveals the association of locations with genetic types

to measure genetic differentiation among subpopulations.

There are of course many more opportunities for analyses of aspects of

spatiogenetic structure inherent in difference measures and the corresponding

association measures. One of these is provided by hierarchical clustering methods.

In essence, a hierarchical clustering method transforms, via formation of its

cophenetic differences, the initial difference measures into an ultrametric. Any

ultrametric in turn represents a hierarchical (encaptic) structure (see e.e. Jardine and

Sibson 1971, p. 50). Hence, application of a hierarchical clustering method to the

locations and to the genetic types yields difference measures that are transformed

such that they reflect various levels of spatial and genetic structure. This property is

not affected by the demanded normalization of the differences. Since the ultrametric

property implies equal difference between all members of two disjoint clusters,

associations indeed refer to those of genetic types with spatial structure and to those

of location with genetic structure.
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Appendix 1

In the Sect. 3, different ways of normalizing difference measures are considered that

are appropriate for the measurement of association. These normalizations are

denoted by d̂ and are functions of the initial (non-normalized) differences and the

threshold parameter u. The normalizations fulfill the requirement that for any fixed

difference value they decrease with increasing threshold parameter. The require-

ment is implied by the fact that complete difference, i.e. d̂ ¼ 1, is reached only for

initial differences equal to or greater than the threshold value.

As association is imperfect for differences smaller than the threshold difference,

one expects that with increasing threshold level, association becomes even more

imperfect, i.e. association measures decrease. More precisely, one expects that for

any given non-normalized initial difference measure dX, increasing the threshold

value of the pertaining normalized difference measure d̂X decreases the association

AðY ¼ y jXÞ. Indeed, this follows immediately from inspection of Eqs. 3 and 4

which specify the association AðY ¼ y jXÞ as resulting from a particular frequency

shift transformation. Decreasing the differences dX (or d̂X , respectively) by

increasing the threshold level obviously decreases Ty,X(r) for each shift transfor-

mation r and thus decreases AðY ¼ y jXÞ. Hence, associations decrease at the state-

to-trait as well as on the trait-to-trait level.

Appendix 2

In the following, the effect of perfect association of trait X with trait Y on the reverse

association of trait Y with trait X will be demonstrated. By definition, perfect

association of X with Y entails that X is a function of Y, i.e. X = f(Y). This is

equivalent to the statement that each state y is fixed for its X-trait.

At the end of the section ‘‘state-to-trait level of association’’, it was shown that in

this case AðY ¼ y jXÞ ¼ EðdXðX; f ðyÞÞ j Y 6¼ yÞ, where x is replaced by f(y). Thus

AðY jXÞ ¼
X

y

EðdXðX; f ðyÞÞ j Y 6¼ yÞ � PðY ¼ yÞ

¼
X

y

X
x

dXðx; f ðyÞÞ � PðX ¼ x j Y 6¼ yÞ � PðY ¼ yÞ

The Analysis of Association Between Traits 227

123



which equals the average difference between the X-states of two individuals that

differ in their Y-state. This applies to the example in the Sect. 8, where Y denotes the

spatial position of an individual and X is specified as a genetic trait.

If the measure of difference between X-states is binary, then perfect association

of X with Y implies

AðY jXÞ ¼
X

y

1� PðX ¼ f ðyÞ j Y 6¼ yÞ½ � � PðY ¼ yÞ

¼ 1�
X

y

PðX ¼ f ðyÞ j Y 6¼ yÞ � PðY ¼ yÞ

¼ 1�
X

y

PðX ¼ f ðyÞÞ � PðY ¼ yÞ½ � � PðY ¼ yÞ=PðY 6¼ yÞ

The second equalities shows that this association equals the probability of drawing

two individuals of different Y-state that differ in their X-state.

Assume in addition a uniform distribution of Y, so that P(Y = y) = 1/N for all y,

where N denotes the number of Y-states. ThenX
y

PðX ¼ f ðyÞÞ ¼
X

x

X
y:f ðyÞ¼x

PðX ¼ xÞ

¼
X

x

PðX ¼ xÞ � Pðf ðYÞ ¼ xÞ � N

¼ N �
X

x

PðX ¼ xÞ2

since P(f(Y) = x) = P(X = x). Consequently, one obtains from the last of the above

equalities for AðY jXÞ:

AðY jXÞ ¼ 1� N�1

1� N�1
� N �

X
x

PðX ¼ xÞ2 � 1

" #

¼ N

N � 1
� 1�

X
x

PðX ¼ xÞ2
" #

If each Y-state is represented by a single individual so that N equals the population

size, then the association is seen to be formally identical to Simpson’s index of

diversity of trait X (defined as the probability of drawing without replacement two

individuals that differ in their X-state).
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