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The corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been investigated using elec-

trochemical methods, X-ray diffraction (XRD) and scanning electron microscope (SEM). The

adsorption and inhibition action of acid corrosion of mild steel using cetyltrimethylammonium

bromide (CTABr) and different halides (NaCl, NaBr and NaI) has shown synergetic effect. The

results showed that the protection efficiency (P%) has high values at considerable high concen-

tration of CTABr. However, in the presence of the different halides, the P increases dramatically

at low concentration of CTABr. Physisorption was proposed from the the values of DG0
ads. The

synergism parameter (Sh) is found to be greater than unity indicating that the enhanced P%

caused by the addition of the halides to the CTABr is due to a co-operative adsorption of both

species. Corrosion products phases and surface morphology were studied using X-ray diffrac-

tion (XRD) and scanning electron microscopy (SEM), respectively.

ª 2013 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Corrosion inhibition of steel is an important issue both from

industrial and scientific point of view. For instance in oil pro-
duction countries worldwide, corrosion protection plays a vital
role. Many cases of extensive corrosion have occurred in pro-

duction tubing, valves, and flow lines from the wellhead to the
processing equipment. One of the most important methods to
inhibit corrosion of steel is to use adsorption inhibitors for the
purpose. This happens in many technological and practical

areas such as acid pickling and descaling, petroleum industry
storage of chemical in special tanks [1,2]. Among these adsorp-
tion inhibitors are inorganic compounds such as chromates

and organic compounds bearing sulfur, oxygen or nitrogen
heteroatom are widely used as corrosion inhibitors of steel in
different media [3–6]. This class of inhibitors exhibits high inhi-

bition efficiency level at considerably low cost, in addition to
their availability. Surfactants are one of the important
categories which are widely applied as corrosion inhibitors

for different metals such as Fe, Al and Cu in different media
[7,8].

Surfactants exert their inhibition action through adsorption
on the metal surface such that the polar or ionic group
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(hydrophilic part) attaches to the metal surface while its tail
(hydrophobic part) extends to solution. The adsorption of sur-
factant on metal surface can markedly change the corrosion-

resisting property of the metal [9,10]. The strength of adsorp-
tion and hence the extent of inhibition is dependent on the nat-
ure of the surfactant, nature of the surface and the corrosion

medium. Cationic surfactants as a class of the surfactants have
been used as corrosion inhibitors for steel both in HCl [4,11]
and H2SO4 [12] solutions. The molecular structure of the cat-

ionic surfactant affects the mode and extent of adsorption on
the metal surface. The ionic head of the cationic surfactant
plays a crucial role in the inhibition efficiency. For instance,
while cationic surfactant has a pyridinium ring, it has higher

inhibition efficiency and tends to chemically adsorbed on the
iron surface compared to the tetra methyl. That is to say that
the tetra methyl has lower inhibition efficiency than pyridini-

um. However, in the presence of a halide ion either as a coun-
ter ion or in solution, it can help to increase the extent of
adsorption due to the well-known synergistic effects [12–14].

This synergism has been reported to be due to the increased
surface coverage as a result of ion–pair interactions between
an organic cation and the halide anion. Halide ion presents

in an inhibiting solution firstly adsorbs on the corroding sur-
face by creating oriented dipoles and thus it facilitates the
adsorption of inhibitor cations on the dipoles [15]. In general,
cationic surfactants are known for its toxicity and carcinoge-

nicity in addition to their high cost, and hence it is of prime
interest to use lower concentration of such inhibitors via using
synergism with some ions which are known of its low costs and

eco-friendly characteristics such as halides. In the present
work, the synergistic inhibition between CTABr and different
halide ions in 0.5 M sulfuric acid was investigated by electro-

chemical methods. The interaction of halide ions with the
CTABr molecule and its synergism toward the inhibition of
acid corrosion of mild steel is discussed.
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Fig. 1 Open circuit potential, EOCP – time relations for mild steel

immersed in (1) 0.5 M H2SO4, (2) 7 · 10�6 M CTABr, (3–5)

7 · 10�6 M CTABr + (0.1 M of (3) NaCl, (4) NaBr and (5) NaI,

respectively).
Experimental

Mild steel sample used has the following composition (wt.%);

0.07% C, 0.29% Mn, 0.07% Si, 0.012% S, 0.021% P and the
remainder iron. Cetyltrimethylammonium bromide (CTABr)
and sodium halides were obtained from Aldrich and used as
received. The solution of 0.5 M H2SO4 was prepared by dilu-

tion of AR grade 96% H2SO4. Stock solutions of surfactant
and halides were prepared in 0.5 M H2SO4 and the desired
concentrations were obtained by appropriate dilution.

Electrochemical measurements were carried out in a con-
ventional three-electrode cell with a platinum counter electrode
(CE) and a Hg/Hg2SO4/(1.0 M) SO2�

4 [E = 0.674 V (NHE)]

coupled to a fine Luggin capillary as the reference electrode
(RE). In order to minimize the ohmic contribution, the Luggin
capillary was kept close enough to the working electrode
(WE). The latter was fitted into a glass tube of proper internal

diameter by using epoxy resins. The WE surface area of
0.5 cm2 was abraded with emery paper (grade 320–500–800–
1000–1200) on test face, rinsed with distilled water, degreased

with acetone, and dried with a cold air stream. Before mea-
surements the electrode was immersed in the test solution at
open circuit potential (OCP) for 15 min at 25 �C or until the
steady state is obtained. All electrochemical measurements
were carried out using an EG&G Princeton Applied Research
(model 273A) potentiostat/galvanostat controlled by m352

electrochemical analysis software. The potential of potentiody-
namic polarization curves was done from a potential of
�250 mV vs. OCP, to 250 mV vs. OCP at a scan rate of

2 mV/s. Current densities were calculated on the basis of the
apparent geometrical surface area of the electrode.

A computer controlled X-ray diffraction technique, PANa-

lytical model X’pert pro powder was used to scan the corro-
sion products between 0� and 80� 2h with copper Ka
radiation (Ni filter) at a rating of 45 kV and 40 mA. The dried
corrosion products were collected, crushed into a fine powder

and used for XRD analysis for determining the nature of film
present on the metal surface. Surface morphology of mild steel
samples and protective films were examined by scanning elec-

tron microscopy (FEI Quanta 3D 200i). The mild steel samples
with surface area of 0.5 cm2 was abraded with emery paper
(grade 320–500–800–1000–1200) on both faces, rinsed with dis-

tilled water. Before examination the sample was immersed in
the test solution for 30 min at 25 �C.

Results and discussion

Open circuit potential

The variation of the open circuit potential (OCP) of mild steel
was followed as a function of time as shown in Fig. 1 in differ-

ent combinations of CTABr and halide ions in 0.5 M H2SO4

solutions. Curve 1 is for the blank (0.5 M H2SO4) and curve
2 is for 7 · 10�6 M CTABr (in 0.5 M H2SO4). Curves 3–5
are for 7 · 10�6 M CTABr (in 0.5 M H2SO4) + 0.1 M halide

ions (NaCl (curve 3), NaBr (curve 4) and NaI (curve 5)). While
in the presence of 7 · 10�6 M CTABr (curve 2) or in the pres-
ence of both the CTABr and 0.1 M Cl� (curve 3) drift the stea-

dy state Ecor to positive values (with respect to blank (0.5 M
H2SO4)), the presence both CTABr and 0.1 M Br� (curve 4)
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Fig. 2 Polarization curves for mild steel in (1) 0.5 M H2SO4

(blank), (2) 7 · 10�6 M CTABr, (3) 0.1 M halide and (4)

7 · 10�6 M CTABr + 0.1 M of halide; panel (A) for NaCl, panel

(B) for NaBr and panel (C) for NaI.
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or I� (curve 5) drift Ecor to more positive values with respect to
the blank (0.5 M H2SO4). However, the general shape of the
OCP-time curves does not change. According to some litera-

ture reports [16], the classification of an inhibitor as an
anodic or cathodic type inhibitor is feasible when the shift in
the corrosion potential Ecor is at least ±85 mV as compared

to the blank solution. We can note that the shift in Ecor on
adding the CTABr is less than 40 mV revealing that the
CTABr and CTABr/halide systems affects both the anodic dis-

solution of iron and the hydrogen evolution reaction and acts
as mixed type inhibitor systems. Also, in Fig. 1 by adding
NaCl to the CTABr (curve 3) the same trend as that in the
presence of the CTABr only is obtained. When NaBr (curve

4) and NaI (curve 5) are added, the steady state is obtained
quickly and the shift in Ecor is less than in absence of NaCl
indicating that CTABr/NaBr and CTABr/NaI systems are

more inhibiting systems than CTABr/NaCl system. The results
clearly indicate that the shifting to noble direction of potential
is in the order I�>Br�>Cl�.

Polarization studies

Fig. 2 shows the polarization curves for mild steel in 0.5 M

H2SO4 (curve 1), containing 7 · 10�6 M CTABr (curve 2),
0.10 M halide (curve 3) and both (0.1 M halide + 10�5 M
CTABr) (curve 4). Panels A–C show the case of Cl�, Br�

and I�, respectively. It is clear that the mild steel corrosion

is slightly inhibited in the presence of either a small concentra-
tion of CTABr (7 · 10�6 M curve 2) or halides (0.10 M curve
3). In the presence of both species (curve 4), however, both

anodic and cathodic branches are dramatically shifted to lower
currents. The presence of halide ions only (curve 2) causes
slight shifts in both anodic and cathodic currents i.e., a slight

decrease in the corrosion rate. This could be ascribed to
adsorption of halide over the corroded surface [17]. In other
words, both cathodic and anodic reactions of mild steel are

slowly retarded by halides. In the presences of iodide only (pa-
nel C, curve 3) the decrease in both anodic and cathodic cur-
rents is significant. Generally, the adsorbability of anions is
related to the degree of hydration. The less hydrated ion is

preferentially adsorbed on the metal surface. The ease of
adsorption (greater protection efficiency) shown in the case
of the iodide ions may be due to its less degree of hydration.

The protective effect of halide ions is found to be in the same
order as that of adsorption ability.

Table 1 lists important corrosion parameters such as the

free corrosion potential (Ecor), corrosion current density (icor),
slope of the cathodic branch (bc) and slope of the anodic
branch (ba). The cathodic Tafel slope (bc) for mild steel in
the absence and presence of different systems does not change

significantly indicating that all systems does not change the
mechanism of the HER, and the corrosion is rather inhibited
by blocking of the iron surface by simple adsorption process.

We can also note that the corrosion current decreases signifi-
cantly in the presence of CTABr and the halide ions specially
the I� ion.

In order to demonstrate the different behavior of the ha-
lides we may use one concentration of CTABr and the same
halide concentration in one figure. Fig. 3 shows the

polarization curves for mild steel in 0.5 M H2SO4 (curve 1),
containing 7 · 10�6 M CTABr (curve 2), 7 · 10�6 M
CTABr + 0.1 M halide ions (NaCl (curve 3), NaBr (curve
4) and NaI (curve 5)). Where both anodic and cathodic

branches are dramatically shifted to lower currents which
indicate there is a synergism between cationic surfactant
and anionic halides in order of I� � Br�> Cl�.



Table 1 Electrochemical parameters for the corrosion of mild steel in 0.5 M H2SO4 in the absence and presence of 7 · 10�6 M and/or

0.10 M halide.

System Ecor/V (Hg/Hg2SO4) icor/mA cm�2 ba/V (decade)�1 bc/V (decade)�1 Picor%

Blank �0.923 0.969 0.219 �0.183
CTABr �0.926 0.870 0.207 �0.222 10.2

NaCl �0.928 0.660 0.247 �0.221 31.9

NaBr �0.926 0.583 0.239 �0.216 39.8

NaI �0.916 0.313 0.088 �0.144 67.7

CTABr/NaCl �0.928 0.337 0.185 �0.190 65.3

CTABr/NaBr �0.921 0.265 0.146 �0.171 72.6

CTABr/NaI �0.880 0.049 0.075 �0.172 94.8
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Fig. 3 Polarization curves for mild steel in (1) 0.5 M H2SO4

(blank), (2) 7 · 10�6 M CTABr, (3–5) 7 · 10�6 M

CTABr + (0.1 M of (3) NaCl, (4) NaBr and (5) NaI, respectively).

log ([CTABr] /M)

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5

P
 / 

%

0

20

40

60

80

100

Fig. 4 Effects of CTABr concentration on P% for mild steel in

0.5 M H2SO4.

640 A. Khamis et al.
Protection efficiency

The protection efficiency, P% is given by;

P% ¼ 1� icor2
icor1

� �
� 100 ð1Þ

where icor1 and icor2 are corrosion current densities in the ab-
sence and presence of the inhibitor, respectively. Fig. 4 shows

the effects of the CTABr concentration on the protection effi-
ciency (P%). The dependence of P% on CTABr concentration
is of a sigmoid shape. P% increases with the CTABr concen-

tration until it reaches a certain concentration which corre-
sponds to the critical micelles concentration (CMC) (CMC
of CTABr = 1 · 10�4 M at 30 �C) [18]. The inhibition is

attributed to the adsorption of the surfactant on the iron sur-
face. At [CTABr] about 10�5 M, the monomers of CTABr ad-
sorb at the surface individually with a low percent coverage.

As the concentration increases (in the range between
1 · 10�4 M and up to the start of the plateau) the amount ad-
sorbed increases leading to a higher degree of coverage and
consequently higher corrosion inhibition. Adsorption is en-

hanced due to the inter-hydrophobic chain interaction. This
may be attributed to the formation of a bimolecular layer of
surfactant through the interaction of the hydrocarbon chains

by tail–tail orientation at the electrode–electrolyte interface
[19]. Such interaction assists the formation of a thin film of sur-

factant molecules at the iron surface. This film is of hydropho-
bic nature due to anchoring of the hydrophobic chains into the
solution. At higher inhibitor concentration near the CMC, a

plateau is obtained. At this high concentration the surfactant
molecules tend to aggregate and form micelles rather than
adsorption on the iron surface [20].

Polarization curves of mild steel were collected (data are
not shown here) in 0.5 M H2SO4 at different concentrations
of the halide ions in the presence of 7 · 10�6 M CTABr. Those

polarization curves were used to determine the protection effi-
ciency as shown in Fig. 5. The figure demonstrates the depen-
dence of the protection efficiency, P% on the concentration of
the halide. Using data in Table 1 of icor, the values of P% in

the presence of CTABr only (halide-free solution) is 10.2%
at of 7 · 10�6 M CTABr.

Inspection of Fig. 5 reveals that the inhibition efficiency in-

creases with the increase in the halide concentration reaching a
constant value depending on the halide ions. It is 75%, 95%,
and 95% for Cl�, Br� and I�, respectively. In the latter ions

(Br� and I�) almost complete suppression of corrosion is ob-
tained. In the presence of a low concentration of the CTABr
(7 · 10�6 M) a significant increase in the protection efficiency
was obtained upon addition of the different halides. Briefly,

P% increases from 10.2% in the presence of only CTABr to
76.1% in the presence of (7 · 10�6 M CTABr + 0.50 M
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Cl�). Generally, the P% in the presence of similar concentra-
tion of the halide decreases in the order; I�> Br�> Cl�.

Note that the P% in the presence of CTABr alone (i.e., ha-
lide-free solution) is 10.2% at 7 · 10�6 M CTABr (see Table 1).

Note that the [Br�] produced from the dissociation of the
[CTABr] (assuming 100% dissociation) is the same as that of
CTABr. Accordingly, this Br� ion coming from the CTABr

molecules will be added to the intentionally added halide con-
centrations. However, inspection of the values of P% in Fig. 5,
in case of Cl� and I� (added to CTABr), we can see that the

P% values are much higher than in the case of using CTABr
alone. In case of the Br� the start of the increase in P% is when
the added [Br�] is higher than that coming from the dissocia-
tion of the CTABr itself. Khamis [21] have reported that the

addition of halide salt to sulfuric acid solution containing
cetylpyridinium chloride causes a synergistic or cooperative ef-
fect which inhibits iron corrosion. Halide ions have been

shown to inhibit the corrosion of some metals in strong acids
and this effect depends on the ionic size and charge, the elec-
trostatic field set up by the negative charge of the anion on

the adsorption site and the nature and concentration of the ha-
lide ion. From the observed trend of increase in the protective
action in the order I�>Br�> Cl�, it is likely that the radii

and the electronegativity of the halide ions has a profound
influence on the adsorption process. Electronegativity in-
creases from I� to Cl� (I�= 2.5, Br�= 2.8, Cl�= 3.0) while
atomic radius decreases from I� to Cl� (I�= 135 pm,

Br�= 114 pm, Cl�= 90 pm) [17]. The iodide ion is more pre-
disposed to adsorption than the bromide and chloride ions.
Stabilization of the adsorbed halide ions by means of interac-

tion with the CTABr leads to greater surface coverage h and
thereby greater protection efficiency.

Synergism

It is likely that the adsorption of a cationic surfactant is en-
hanced by increasing the negative charge density on the metal

surface. Thus the pre-adsorption of halide ions could enhance
the adsorption of the cationic surfactant due to ion–pair inter-
actions between the CTABr molecules and the halide ions,
resulting in what is the so-called inhibition synergism. The
discussion of the synergism factor here may help to distinguish
the difference in performance of the combination of the

CTABr and different halides. In this part, the effect of halide
concentration on the inhibition efficiency of CTABr is studied.
This interaction can be quantized by a parameter called syner-

gism parameter (Sh) [22,23] which is defined as,

Sh ¼
1� h1þ2

1� h01þ2
ð2Þ

where h1+2 = (h1 + h2) � (h1h2), h1 and h2 are the degrees of

surface coverage in presence of the halide ion and the CTABr,
respectively, and h01þ2 is the degree of surface coverage in the
presence of both species. Note that the degree of surface cov-
erage, Sh was determined from the polarization data (h = P%/

100). Sh approaches unity when no interaction takes place be-
tween the inhibitor molecules and the halide ion. At Sh > 1, a
synergistic effect is obtained as a result of a co-operative

adsorption. In case of Sh < 1, antagonistic behavior prevails
due to a competitive adsorption [24]. Fig. 6 shows the effects
of the halides ion concentration on Sh estimated in the pres-

ence of 0.5 M H2SO4 solution containing 7 · 10�6 M CTABr.
The Sh values are found to be higher than unity, suggesting the



Table 2 Calculated values obtained from Temkin isotherm for CTABr and CTABr/halide ion systems in 0.5 M H2SO4.

System a K/L mol�1 R2 DG0
ads kJ/mol

CTABr �1.30 1.60 · 104 0.9922 �33.9
7 · 10�6 M CTABr + NaCl �14.75 2.42 · 107 0.9918 �52.1
7 · 10�6 M CTABr + NaBr �10.36 2.61 · 107 0.9907 �52.2
7 · 10�6 M CTABr + NaI �8.12 3.50 · 107 0.9909 �53.0

Fig. 8 XRD pattern obtained on the surface film formed on mild steel at the end of 10 days in different environment. Curves: (a) blank,

(b) 1 · 10�3 M CTABr, (c) 7 · 10�6 M CTABr + 0.10 M NaCl.
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synergistic action of halide ion with the CTABr. The above re-
sults reveal that CTABr can act as an effective inhibitor in
0.5 M H2SO4 solution even at low concentration in the pres-
ence of halide ions. The synergism parameter, Sh increases with

the halide concentrations until it reaches a maximum value
after which it decreases or remains constant. This may be
due to the adsorption of the CTABr molecules on the metal

surface via the nitrogen atom which might compete with the
halide ion leading to lesser synergistic effect at higher concen-
trations of the halide ion [15,21]. Also, the obtained Sh is in the

order Cl�< I�<Br�. Although the highest P% obtained in
the case of iodide with CTABr, the highest Sh is obtained in the
case of bromide. This is due to the fact that the inhibition
efficiency in the presence of iodide alone Fig. 2 (panel C) is rel-
atively high, compared with the bromide and chloride (panels
B and A, respectively). While some literatures [25,26] showed
order of Sh as Cl�< Br�< I�, others [27] reported different

orders that depends on the nature of the metal surface and
solution composition.
Adsorption isotherms

Adsorption isotherms can provide the basic information on the
interaction between the inhibitor and the mild steel surface.

Attempts were made to fit the experimental data to various
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isotherms including Frumkin, Langmuir, Temkin, Freundlich,
Bockris–Swinkels, and Flory–Huggins isotherms. It has been
found that the experimental results in this study for both

CTABr and CTABr/halide ions systems fit with Temkin iso-
therm and the plots are presented in Fig. 7 for the surfactant
alone (inset) and the CTABr/halides systems. Temkin isotherm

is given by Eq. (3); [28–31]:

expð�2ahÞ ¼ KC ð3Þ

where h is the degree of surface coverage, C is the inhibitor
concentration, a is the molecular interaction parameter and

K is the equilibrium constant of the adsorption process. Plots
of h against log [halide] are depicted in Fig. 7 at 7 · 10�6 M
CTABr. The inset shows the plot for CTABr only. That is to

say the unshared electron pairs in nitrogen atom could interact
with the d-orbitals of the iron to form a protective adsorbed
film. The adsorption and thermodynamic parameters deduced
from the above plots are listed in Table 2. It can be deduced

that there is a repulsion force in the compact adsorption layer
since a< 0. The values of a in all CTABr/halide systems are
negative indicating that repulsion exists in the compact adsorp-

tion layer. It is generally known that K denotes the strength be-
tween the adsorbate and adsorbent. Large values of K imply
more efficient adsorption and hence better protection effi-

ciency. The standard adsorption free energy ðDG0
adsÞ was esti-

mated using the following equation [32,33]:

K ¼ 1

55:5
exp

�DG0
ads

Rt

� �
ð4Þ
Fig. 9 SEM images of mild steel after 30 min immersion in (a) 0.5
Inspection of Table 2 reveals that K and DG0
ads values are in

the order;

CTABr=I� > CTABr=Br� > CTABr=Cl� > CTABr

The values of DG0
ads in Table 2, indicate mixed mode of adsorp-

tion, while CTABr may adsorb in a physisorption mode and
the specific adsorption of halide ions is of chemisorptions
mode. Generally, values of DG0

ads up to �20 kJ/mol are consis-

tent with the electrostatic interaction between the charged mol-
ecules and the charged metal (physical adsorption) in case of
CTABr alone, while those more negative than 40 kJ/mol in-

volve sharing or transfer of electrons from the inhibitor mole-
cules to the metal surface to form a co-ordinate type of bond
(chemisorption) in case of CTABr/halide systems [34,35].

The above values of DG0
ads are consistent with the results of

the protection efficiency.

Analysis of X-ray diffraction patterns

The X-ray diffraction patterns of the film formed on surface of
the mild steel specimens immersed in various test solutions are
given in Fig. 8. (a–c for blank, 1 · 10�3 M CTABr and

7 · 10�6 M + 0.10 M NaCl, respectively.)
Fig. 8a shows the XRD pattern for the material in blank

solution, and it displays the presence of different species of

91% rozenite (FeSO4Æ4H2O) and 9% melanterite (FeSO4Æ7-
H2O) phases, respectively (JCPDS No. 35-1360 and JCPDS
No. 25-614) that are commonly formed in sulfuric acid
M H2SO4, (b) 7 · 10�6, (c) 2 · 10�4 and (d) 1 · 10�3 M CTABr.
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medium as corrosion product [36]. Fig. 8b and c display the
spectrum for the rust material studied after the immersion in
1 · 10�3 M CTABr and 7 · 10�6 M CTABr + 0.10 M NaCl,

respectively. It is observed that the peaks due to iron sulfates
(rozenite and melanterite) showed less intensity than that cor-
responding to the material in blank (Fig. 8a). Apparently, the

sulfated anion is tied to the ionic liquid via the cathodic ion,
and in this way iron dissolution of steel is mitigated and sulfate
desorption is hindered [36].

SEM examination

SEM images are shown in Fig. 9 for mild steel taken after

30 min immersion in (a) 0.5 M H2SO4, (b) 7 · 10�6, (c)
2 · 10�4 and (d) 1 · 10�3 M CTABr. Close examinations of
SEM image taken in the absence of the inhibitor reveals that
the specimen surface was strongly damaged with deep cavities

(Fig. 9a). In the presence of different concentration of CTABr,
the steel specimen has a better morphology with increase in the
CTABr concentration (Fig. 9b and c) and the best smooth sur-

face is obtained at higher concentration of the CTABr
(Fig. 9d). Fig. 10 shows the SEM images for mild steel after
30 min immersion in (a) 0.5 M H2SO4, (b) 7 · 10�6 M CTABr,

(c) 0.10 M NaCl and (d) 7 · 10�6 M CTABr + 0.10 M NaCl.
In the presence of combined CTABr + NaCl (Fig. 10d), the
steel specimen has a better morphology and smooth surface
compared with that of the surface immersed in either CTABr

or NaCl solutions (Fig. 10b and c, respectively) with few small
notches. This indicates that the combined use of CTABr and
Fig. 10 SEM images of mild steel after 30 min immersion in (a)

7 · 10�6 M CTABr + 0.10 M NaCl.
NaCl hinders the dissolution of iron and thereby reduces the
rate of corrosion, and it reveals good protection against corro-
sion. The less damage of mild steel surface when dipped in

0.5 M H2SO4 containing either high concentration of the
CTABr (Fig. 9d) or CTABr and NaCl (Fig. 10d) might be
due to the specific adsorption of Cl� ions on the mild steel

which facilitates the adsorption of CTABr molecules.

Explanation of inhibition

The adsorption of inhibitor on iron/solution interface is af-
fected by the chemical structures of the inhibitors, the nature
of the charged metal surface and the distribution of charge

over the whole inhibitor molecules. The CTABr molecule
can be presented as a cationic surfactant; the organic part (3-
methyl ammonium group) CTA+ is the cation and the inor-
ganic part Br� is the anion. Accordingly, the CTABr inhibitor

exerts its inhibition action by adsorption of the organic part on
the iron surface via the 3-methyl ammonium group on the me-
tal surface while the hydrophobic part C16H33– extends to the

solution forming a hydrophobic barrier that protects metal
surface from aqueous attack. The mode of adsorption of
CTABr and its synergism with halides may be discussed in

light of potential of zero charge. In the present case Ecor of
the iron, under the present conditions, equals �512 mV
(SCE) and in view of the fact that the potential of zero charge
for iron in H2SO4 is �550 mV (SCE) [37], it is expected that

the iron surface is positively charged. The specific adsorption
of the Br� ion and to lower extent of adsorption of SO2�

4 ion
0.5 M H2SO4, (b) 7 · 10�6 M CTABr, (c) 0.10 M NaCl and (d)
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creates an excess negative charge on the metal surface and fa-
vors more adsorption of the cations [23]. In other words, there
may be a synergism between anions (Br� and SO2�

4 ) and the

cationic inhibitor. It is generally accepted that the Br– ions
have stronger tendency to adsorb more than the SO2�

4 ions
[23], and hence the electrostatic influence may be the reason

for the increased protective effect in the halide-containing solu-
tion [38]. Thus a co-operative adsorption exists between halide
ions and CTABr dominates over competitive adsorption.

According to co-operative mechanism, halide ions are initially
adsorbed on anode of metal surface and then CTABr cations
are adsorbed on the layer of halide ions by coulombic attrac-
tion forming ion pairs on mild steel surface [28].
Conclusions

Protection efficiency obtained in the presence of CTABr with
the coexistence of halides increases in the order:
Cl�>Br�> I�, which seems to indicate that the radii and
the electronegativity of the halide ions play a significant role

in the adsorption process. The values of Sh (synergistic param-
eter) are greater than unity showing the corrosion inhibition
brought about by CTABr in combination with the halides is

synergistic in nature and co-operative adsorption between ha-
lides and CTABr prevails over competitive adsorption. CTABr
adsorption is physisorption in nature as revealed from DG0

ads

values, while the adsorption of CTABr/halide ions systems is
chemisorption in nature. DG0

ads for CTABr/halide ions systems
is larger than CTABr alone showing that a CTABr/halide ions
system is strongly adsorbed than CTABr alone. XRD shows

the absence of corrosion product in both cases of high CTABr
concentration or low CTABr concentration with halide ion.
SEM shows that the best morphology and smooth surface is

obtained in both cases of high CTABr concentration or low
CTABr concentration with halide ion.
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