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Attention can be oriented in space covertly without the need of eye movements. We
used multivariate pattern classification analyses (MVPA) to investigate whether the time
course of the deployment of covert spatial attention leading up to the observer’s
perceptual decision can be decoded from both EEG alpha power and raw activity
traces. Decoding attention from these signals can help determine whether raw EEG
signals and alpha power reflect the same or distinct features of attentional selection.
Using a classical cueing task, we showed that the orientation of covert spatial attention
can be decoded by both signals. However, raw activity and alpha power may reflect
different features of spatial attention, with alpha power more associated with the
orientation of covert attention in space and raw activity with the influence of attention on
perceptual processes.

Keywords: EEG decoding, multivariate pattern classification, covert spatial attention, raw activity, alpha
oscillations

INTRODUCTION

The visual world conveys more information than observers can process (James, 1890; Moran
and Desimone, 1985) and attention is the mechanism that allow us to select and prioritize
visual information based on our goals (Carrasco, 2011). Normally, attention is focused on
our central vision and moves in tandem with our eye-movements. However, it can also be
oriented in space covertly without moving our eyes (Posner, 1980); we can “look out of the
corner of our eye” as popular wisdom would say. Covert spatial attention has been extensively
studied and one of the most popular methods used to manipulate it consists of cueing the
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location where a target stimulus will appear. Observers are faster
to report the presentation of cued compared to uncued targets
(Posner, 1980). Further studies have also shown that covert
attention does not only enhance processing time but also increase
contrast sensitivity (Ling and Carrasco, 2006).

While overt attention is bound to eye-movements, researchers
suggested that covert attention operates before the execution
of saccades (Deubel and Schneider, 1996). It facilitates the
processing of information presented in visual periphery at the
location where the eyes are about to be directed, and ultimately
guides the preparation and execution of saccades (Hoffman and
Subramaniam, 1995; de Haan et al., 2008; Zhao et al., 2012;
Casteau and Smith, 2020).

There are two types of attention mechanisms that guide
covert orienting and the selection of sensory information:
exogenous and endogenous mechanisms. Notably, we can decide
to voluntarily (i.e., endogenously) orient our attention to a given
location in space, or our attention can be automatically and
involuntarily (i.e., exogenously) attracted by a salient stimulus
in the environment (Posner and Cohen, 1984). These two
kinds of covert orienting systems exhibit similar effects on
perception but they differ with respect to their temporal dynamics
(Carrasco, 2011): i.e., exogenous covert attention is “transient,”
while endogenous covert attention can be “sustained” in time.
Notably, people can voluntarily sustain their attention in space as
long as it is needed by a given task and this voluntary deployment
of attention takes about 300 ms to occur. On the contrary,
exogenous attention has a faster time course than the endogenous
counterpart, i.e., rises and decays quickly and peaks about 100 ms
after stimulus onset (Hein et al., 2006; Ling and Carrasco, 2006;
Busse et al., 2008). In the current study we will be addressing
endogenous covert attention.

Electroencephalography (EEG) and magnetoencephalography
(MEG) studies have explored the mechanisms underlying
endogenous covert attention showing that the orienting of covert
attention is reflected by the N2pc ERP component (observed
about 200 ms after stimulus onset on contralateral posterior-
occipital electrodes such as PO7, PO8, P7, and P8; Luck and
Hillyard, 1994; Eimer, 1996). Other MEG and EEG studies have
focused on oscillatory brain activity, showing that a change
in alpha band power recorded from parieto-occipital channels
is associated with changes in the orientation of covert spatial
attention (Gould et al., 2011; Ikkai et al., 2016). In particular,
alpha power decreases on the parieto-occipital channels that are
contralateral to where attention is allocated.

The current study aimed at investigating whether the time
course of the deployment of covert spatial attention leading
up to the observer’s perceptual decision can be decoded from
alpha power and raw activity traces, using multivariate pattern
classification analyses (MVPA). Measuring these two EEG signals
provides the additional advantage of being able to compare
whether the raw activity trace and alpha power reflect the same
or distinct features of attentional selection by looking at whether
they decode attention in the same way prior to the observer’s
perceptual response.

To date, studies have shown that both lateralized alpha
suppression and ERP components such as the N2pc can be

triggered by an attended visual target (Ekanayake et al., 2018).
For instance, in a recent study the locus of focal attention was
decoded from the N2pc component emerging after stimulus
onset, using MVPA (Thiery et al., 2016; Fahrenfort et al., 2017).
However, only alpha-band power has been used to provide a
continuous temporal prediction of the orientation of attention
before stimulus onset or response. Notably, several studies have
shown that suppression of alpha-band power over contralateral
channels can provide a reliable and continuous prediction of
the orientation of attention before the onset of the attended
target (e.g., Worden et al., 2000; Gould et al., 2011; Foster et al.,
2017; Bae and Luck, 2018; Wen et al., 2019). Accordingly, spatial
attention shifts can be reliably and continuously decoded from
alpha-band activity thus allowing for the control of external
devices via brain-computer interfaces (Bahramisharif et al., 2010;
Treder et al., 2011). However, it is not yet known whether raw
EEG signals can also provide a continuous prediction of the
deployment of spatial attention before the presentation of the
attended target. Hence, in the present study we investigated
whether after the presentation of an attentional cue (cueing where
the target will appear) and before observers’ perceptual responses,
raw activity can reliably and continuously predicts the orientation
of spatial attention. The same decoding technique was applied
to alpha power and the results of the two brain signals were
compared. One of the advantages of decoding attention from raw
EEG signal is that it can provide an indication of where attention
is located with high temporal resolution, thus supporting the fast
interpretation of brain signals required in BCI. In contrast, alpha-
band activity is limited to a resolution of about 125 ms (for 8 Hz
alpha frequency) which may entail a loss of temporal information.

Participants viewed two Random Dot Displays (RDDs), one to
the left and the other to the right of a central fixation point. An
arrow was briefly presented at the center of the screen and served
as a 100% predictive cue indicating the RDD in which coherent
dot motion would be presented. Importantly, coherent motion
would gradually appear (i.e., frame by frame more and more
dots would move coherently in one of two directions, upward
or downward) and participants were instructed to indicate the
direction (up or down) of the coherently moving dots as soon
as they detected it. Participants were also presented with neutral
trials in which the arrow was replaced by a neutral cue conveying
no information regarding the location of the upcoming dot
motion. During the experiment, we recorded participants’ EEG
activity and eye position using an eye-tracker. Eye tracking
data allowed us to check that participants maintained central
fixation throughout a trial and to assess the presence of possible
oculomotor artifacts that could have contaminated EEG signals
(i.e., microsaccades Engbert and Kliegl, 2003).

Using multivariate pattern classification analysis we assessed
whether both alpha power and raw channel activity recorded
during the cue-response interval could predict the orientation
and temporal dynamics of covert attention. Our results
corroborate the notion that alpha power and raw activity
traces reflect different aspects of spatial attention, with the first
associated with the orientation of covert attention in space (cf.
Gould et al., 2011) and the second reflecting the modulation of
sensory processing by attention (cf. Kiss et al., 2008).
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MATERIALS AND METHODS

Participants
Fourteen participants (four male, average age = 24.57, SD = 4.34)
were recruited for a reimbursement of 15 €. One participant was
removed from the sample due to very noisy EEG signals. The
choice of this sample size was based on a similar experiment
that we conducted previously and supported by robust effect
size and power values in our analysis here (see Supplementary
Materials). All participants had normal or corrected-to-normal
vision, and were naïve to the hypothesis under investigation.
They all gave written and informed consent before participating
in the experiment. This study was conducted in agreement with
the requirements of the Helsinki convention and approved by the
local ethics committee of Université Paris Descartes.

Apparatus
Stimuli were presented on a CRT Sony GDM-C520 (100 Hz
refresh rate) with a resolution of 1024 × 768 pixels. Stimulus
presentation and data collection were performed using MATLAB
with the Psychophysics Toolbox (Pelli, 1997) and Eyelink
Toolbox (Cornelissen et al., 2002) extensions. EEG data
were recorded with 64 Ag/AgC1 electrodes mounted on
an elastic cap and amplified by an ActiCHamp amplifier
(Brain Product). The sampling rate of the EEG recording
was set to 500 Hz. Electrodes were arranged according to
the international 10–20 systems. Two of the electrodes (FT9
and FT10) were used to record horizontal eye movements
(left and right HEOG, respectively), and two other electrodes
(TP9 and TP10) were placed on the mastoids (M1 and M2,
respectively). The right mastoid (M2) was used as online
reference. Viewing was binocular and movements of one
eye were monitored with an EyeLink 1000 (SR Research,
Mississauga, ON, Canada) at 1000 Hz sampling rate. Head
movements were restrained with a chinrest located 51 cm
from the screen.

Stimuli
Participants were presented with two Random Dot Displays
(RDDs) one to the left and the other to the right of a central
fixation point (a white empty circle of 0.3◦ visual angle diameter),
with an eccentricity of 6◦ (from fixation to the center of the
RDDs). The RDDs consisted of 80 white dots of a diameter of 3
pixels each (0.132◦) displayed on a mid-gray background within
a circular aperture of 4◦ diameter. When random dot motion
was displayed, the dots moved in all directions with a speed of
1.5◦/s. When coherent motion was displayed a proportion of dots
(see section “Procedure” below) moved coherently either upward
or downward with a speed of 3◦/s. We used an increased speed
for the coherently moving dots to facilitate the discrimination of
upward and downward motion. Indeed, in pilot experiments we
noticed that for some participants it was very hard to dissociate
upward and downward directions with dots moving at 1.5◦/s
even when all dots moved in one of these directions (e.g., some
participants systematically reported the opposite of what was
displayed). The dot lifetime was set to 140 ms (14 frames at

100 Hz frame rate) after which it was erased and then displayed
in another location within the circular aperture.

Establishing Individual Motion Discrimination
Thresholds
Before starting the main experiment, we established participants’
motion discrimination thresholds. In this preliminary
experiment, at the beginning of each trial, participants were
presented with a fixation point. Participants were required
to keep their eyes on the fixation point throughout the trial.
1000 ms after the onset of the fixation two Random Dot Displays
(RDDs) were presented one on the left and the other on the right
of fixation. The two displays were presented on the screen for
1500 ms. A proportion of dots of one of the RDDs (i.e., left or
the right display) moved coherently either upward or downward,
while the dots in the other display moved incoherently. The
location (left or right) and direction (upward or downward) of
the coherently moving dots was selected randomly. When the dot
displays disappeared from the screen, participants were required
to report the direction of the coherent motion (up or down) by
pressing one of two designated keys always with their right hand,
irrespective of the location of the motion (left or right). No time
limit was given to participants’ response. If an eye movement or
a blink occurred while the stimuli were displayed the trial was
interrupted and a feedback appeared on the screen “please fixate”
for 800 ms followed by a blank of 500 ms. The trial restarted after
this blank screen.

Three interleaved staircases controlled the percentage of
dots moving coherently. Each staircase started with a different
percentage of dots moving coherently, i.e., 90, 80, and 70%
of dots, respectively. If the participant’s response was correct
(incorrect) the percentage of dots moving coherently (upward
or downward) decreased (increased) in the subsequent trial.
The size of this increment/decrement was controlled by an
accelerated stochastic approximation algorithm (Kesten, 1958)
set to converge at the percentage of dots moving coherently
that supported 0.75 correct responses. Each staircase stopped
once the convergence level was reached. The convergence values
obtained with the three staircases was averaged and used as
the participant’s upward vs. downward discrimination threshold.
This threshold was used for both left and right dot display.
Note that discrimination threshold can vary for stimuli presented
to the left or the right visual field. Accordingly, when using
the same threshold for both sides, participants might exhibit
different accuracies and response times for the left and right
target trials in the main task. The decision of using the same
threshold for both sides was based on the fact that no difference
in correct responses and response times were observed in pilot
experiments. Control analyses assessing the response times and
correct responses for left and right target trials observed during
the main task are reported below.

This preliminary experiment lasted about 20 min.

Main Experiment
Procedure
Once individual motion discrimination thresholds were
established, participants completed the main experiment, which
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consisted of two experimental conditions (Attention, Neutral)
during which their EEG brain activity was recorded (Figure
1 illustrates one trial of the main experiment). Attention and
neutral trials were equiprobable and were randomized within the
task. In the attention condition, participants were presented with
a fixation point and two Random Dots Displays (RDDs). They
were asked to keep their eyes on the fixation throughout the
trial. An arrow (i.e., a white equilateral triangle of 0.5◦ height),
pointing to the left or the right display, was presented at the
center of the screen 500 ms after the onset of the trial for a
duration of 150 ms. The arrow served as a cue indicating the side
on which the dots would move coherently. The cue was 100%
valid, but its orientation (left or right) was selected randomly
and equiprobably.

In this experiment, contrary to the preliminary study, the
number of dots moving coherently increased linearly over time.
Notably, 400, 500, or 600 ms after the onset of the arrow
(each delay was selected on a random basis and equally often),
some of the dots of the RDD indicated by the cue started
to move either upward or downward. More specifically, the
upward/downward motion began with 1 of the dots moving in
the specified direction. The number of dots moving coherently
then increased linearly for 3000 ms until reaching a proportion
equal to three times the threshold obtained in the preliminary
experiment. For instance, if the threshold of a given participant
was 0.2 of the dots (20%) moving coherently, then the proportion
of coherently moving dots incremented until reaching 0.6 (i.e.,
3 × 0.2). The size of the increment at each frame depended
on the participant’s discrimination threshold and on the onset
time of the coherent motion (400, 500, or 600 ms after the cue).
Importantly, the dots of the uncued RDD moved incoherently
throughout the trial. At the end of the 3000 ms the number of
dots moving coherently stopped increasing and coherent motion
was displayed for additional 200 ms. Then, dots disappeared
and participants were required to not blink/move their eyes for
additional 1000 ms. This time period was introduced to calculate
the EEG baseline.

Participants were instructed to continuously monitor the cued
RDD without moving their eyes, and to report the direction
of coherent motion (upward or downward) as soon as they
detected it, by pressing one of two designated keys (the upward
and downward arrows of the keyboard) with their right-hand
index finger. While the stimuli were displayed on the screen,
participants were instructed to not move their eyes or blink. In
the case of an eye blink or a saccade the trial was interrupted
and a new trial added at the end of the trial list. A saccade was
considered to have been initiated when gaze direction moved
2◦ away (vertically or horizontally) from the center of fixation.
Similarly, if the participant failed to respond by the end of
the presentation of the coherent motion an error message was
displayed (“too late”) and a new trial was added to the end of the
trial list. At the end of each trial, participants had 1 s to blink.
A break was introduced every 25 trials where the experimenter
could also perform an eye-tracker calibration if required.

The neutral condition was the same as the attention condition
except that the location (left or right) of the coherent motion
was not cued. The arrows were replaced by a neutral cue

created by the superposition of the two arrows. Thus, participants
did not know where the coherent motion was going to be
displayed (left or right RDD) and had to monitor both sides. The
neutral condition allowed us to evaluate whether we successfully
manipulated attention in the cued trials.

The experiment stopped as soon as participants completed
240 attention and neutral trials without errors [i.e., 2 (attention,
neutral) × 2 (left, right target) × 120 trials]. In total, the main
experiment lasted on average 2 h 30 min (this also included EEG
preparation time, instructions and pauses).

Data Analyses
EEG Preprocessing
Electroencephalography data were preprocessed using the
EEGLAB toolbox (Delorme and Makeig, 2004) and Fieldtrip
(Oostenveld et al., 2011). We re-referenced the data to average
left and right mastoids and then filtered with a low (48 Hz)
and high-pass (0.05 Hz) Butterworth non-causal filter. In this
research we were interested in the time dynamics and latency
of attention processes, we thus decided to use a non-causal
filter to avoid phase delays and thus changes in peak latency
that can occur with causal filters (Rousselet, 2012; Cohen, 2014;
Luck, 2014). However, note that non-causal filters might also
introduce distortion to the data by injecting artifacts in time
points prior to true events. For instance, it has been shown
that a non-causal high-pass filter with a cut-off frequency of
0.3 Hz or higher produced artifactual effects of opposite polarity
preceding the true effect (Tanner et al., 2015). Accordingly, our
high-pass and low-pass frequencies were carefully chosen based
on the recommendations of Tanner et al. (2015). Moreover,
we tested our filter settings on simulated data to make sure
that no distortion were introduced to the EEG traces (see
Supplementary Material).

Reaction times varied across trials, conditions and
participants. In order to be able to compare our conditions
we selected the time limit of our EEG epochs respecting the
following constraints: (1) maximize the number of trials to
analyze, and (2) have the longest possible time period prior to the
response. Thus, we selected epochs 1500 ms long, time-locked to
the onset of participants’ response (i.e., from −1500 to 0 ms).

Electroencephalography epochs were corrected with a 500 ms
baseline time-locked to the onset of the response i.e., from 500
to 1000 ms after the response. This linear baseline correction
was used for the classification of raw channel traces. However,
for time-frequency analyses we used a 200 ms linear baseline
correction – from 800 to 1000 ms after the response – during
preprocessing, and then a 500 ms time-frequency baseline –
from 200 to 700 ms after participants’ response – to calculate
average frequency power. Epochs containing amplitudes greater
than 100 µV or less than −100 µV were marked as potential
artifacts and then removed after confirmation through visual
inspection. This led to the removal of 10 and 9% of trials in
the neutral and the attention condition, respectively (i.e., an
average of 21 and 19 trials in the neutral and the attention
condition, respectively). Noisy electrodes were identified through
visual inspection. Notably, electrodes exhibiting sudden and
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large changes of amplitude, or electrodes that were responsible
for more than 20% of the trials to be removed during artifact
rejection, or finally electrodes exhibiting large amplitude activity
at high frequencies. The electrodes that were noisy for most of
the participants and conditions were removed from classification
analyses (T7, T8, TP7, TP8, Fp1, Fp2, FT7, FT8, AF7, AF8). The
channels lHEOG, rHEOG were also removed from classification
analyses. For some participants, we interpolated across electrodes
that were noisy and that were located in the regions that have
often been associated with attentional processes (i.e., central,
parietal, and occipital regions). Specifically, the electrodes O1,
FC1, and PO3 were interpolated for participants 4, 6, and
7, respectively.

For the classification analyses of raw EEG activity (see below)
we averaged the time-points of EEG epochs corresponding to
10, 50, and 100 ms time windows. This was performed to assess
whether classification accuracy based on raw activity would
improve with increasingly larger time windows.

Time-Frequency Analyses
Trial-by-trial time-frequency activity for alpha oscillations was
calculated using two separate methods. Notably, we performed a
Hilbert transform on band-pass filtered data [with 8 and 13 Hz
high and low-pass filters, respectively, as described in Foster
et al. (2017)] and a Wavelet transform. Since both methods gave
very similar results we present here only the Wavelet transform.
The Wavelet transform provides a good compromise between
time and frequency resolution (Tallon-Baudry and Bertrand,
1999). More specifically, trial-by-trial time-frequency activity
was obtained for each participant, condition and electrode by
applying Morlet wavelets, with linearly increasing cycles, to
successive and overlapping time windows (Delorme and Makeig,
2004) of 478 ms. The Morlet wavelet for this time window covers
three cycles of the lowest frequency (7 Hz) and reached fifteen
cycles for the highest frequency (30 Hz). This analysis gave the
power for frequencies ranging from 7 to 30 Hz within an epoch.
Because the epoch started at −1500 ms, and the width of the
moving window was 478 ms, this provided spectral estimates
from −1262 to 760 ms. This is because spectral estimates can
be obtained only at the center of the window. Trial-by-trial
alpha power used for the classification analyses was calculated by
squaring the absolute values of the complex numbers obtained
with the Wavelet transform. In addition, a similar analysis
was conducted on epochs time-locked to the onset of the
neutral/attentional cue rather than to the onset of response. This
analysis can be found in the Supplementary Material.

Multivariate Classification Analyses
Single trials were used to train a Linear Discriminant Analyses
classifier (LDA; Carlson et al., 2003) using the available
electrodes. In addition to LDA, other classifiers types were
evaluated on a subset of the data, including a support vector
machine and a multi-layer perceptron with a large range of
layers/neurons. Because all types of classifiers led to similar
results, only the LDA results are presented here.

Our main interest was to evaluate whether we could dissociate
and predict from time-point-by-time-point EEG signals (raw
activity and alpha power) the left/right direction of participants’

covert attention leading up to their perceptual judgments. Thus,
separate LDA classifiers were trained and tested for each time-
point in the EEG epoch to dissociate left and right target trials in
both the attention and the neutral condition.

Our classification procedure implemented a Monte Carlo
cross-validation method (Dubitzky et al., 2007). Notably, each
classifier was trained on 90% of the available dataset and tested
on each of the remaining trials. This procedure was repeated 200
times. Each time a random 90% of trials was used as training set
and the rest as test set.

Classification accuracy was estimated with a Receiver
Operating Characteristic (ROC) curve analysis and was
summarized by the Area Under the Curve (AUC). The ROC
curve presents the hit rate (the proportion of trials A classified
as A) as a function of the false alarm rate (the proportion of
trials B classified as A). It provides a less biased measure of
classification accuracy when compared to the proportion of
correct classification. Indeed, biased measures of classification
accuracy can emerge, for instance, when two classes have
unequal numbers of observations. In this case a classifier might
wrongly categorize trials more frequently as those belonging
to the category with the higher number of observations, thus
artifactually boosting correct classifications. In the current
experiment, after artifact rejection, some participants ended
up with a slight imbalance in the number of trials in the left
and right target samples of the attention and neutral condition.
Hence even though computationally more demanding, we
preferred to calculate AUC values. A diagonal ROC curve which
corresponds to an AUC of 50% reflects a situation in which
hit and false alarm rates are equal, showing that the classifier
is at chance. In contrast, an AUC of 100% indicates perfect
performance with 100% hit and no false alarm. Accordingly,
unlike the proportion of correct classification, AUC values
provide a less biased measure of decoding accuracy compared
to the proportion of correct classification. Note that in our case
the difference in number of trials for the left and right target
trials was very small. Notably, the highest difference between
the two classes was five trials. The mean AUC value of these 200
repetitions within each subject and time-point was taken as the
classifier accuracy for that participant and that time-point. To
evaluate whether the decoding accuracy was significantly above
chance level (50%), we performed a series permutation tests as
described below (a description of these tests on (M)EEG data
can also be found in Maris and Oostenveld, 2007). In addition to
permutation tests, other non-parametric statistical approaches
were used to analyses decoding accuracy. For instance, we used
signed rank tests comparing directly AUC values with chance
level. Because all types of analyses led to similar results, only the
permutation tests are presented here.

Firstly, individuals’ mean decoding accuracy (AUC) for each
time-point was compared against chance level (50%). Notably,
we subtracted 50% from the participants’ average AUC values
observed at each time-point, and then performed a series of
Wilcoxon signed rank tests on the resulting values. From these
signed rank tests we estimated z-statistics. We also performed
this analysis using paired Student t-tests, and the results
were very similar.

Frontiers in Human Neuroscience | www.frontiersin.org 5 October 2020 | Volume 14 | Article 570419

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-570419 October 7, 2020 Time: 19:43 # 6

Desantis et al. Decoding Spatial Attention in Time

Subsequently, we repeated these steps 1000 times. Each time
we randomized the left and right trial labels of our training set.
This way we were able to obtain 1000 AUC values for each
time-point and participant, and consequently 1000 z-statistics
representing the distribution of test statistic under the null
hypothesis (i.e., no difference between left and right target trials)1.
The same analyses were performed by randomizing both the
labels of the training and of the test set. This led to very similar
results to those reported below.

Finally, to calculate a p-value for each time-point we computed
the proportion of random samples that resulted in a higher z-
statistics than the one we obtained with the real sample (statistical
significance was set to p < 0.05). P-values were corrected using
False Discovery Rate (FDR) procedure as described in Benjamini
and Hochberg (1995), a procedure designed to control the
expected proportion of “rejected null hypotheses” that are false
incorrect rejections and that can be used for both independent
and dependent tests. As with other correction methods, FDR
provides a critical p-value below which a statistical test can
be considered as significant. The critical p-value is obtained
based on the number of tests performed and the actual p-values
obtained in the test (see Benjamini and Hochberg, 1995 for
more details). Critical p-value is provided together with the
results reported below.

These classification and statistical procedures were applied
to both raw EEG activity, the power observed for alpha
band frequencies (8–13 Hz) and eye-position data (see below
for more details).

Eye Movement Analysis
Eye-movement data were recorded and analyzed to control for
potential oculomotor artifact that might have contaminated EEG
data. For offline analyses, eye movement samples were smoothed
with SR Research’s proprietary algorithms.

As for the EEG data, we segmented eye-gaze data into
1500 ms long segments (i.e., from −1500 to 0 ms) time
locked to the onset of participants’ response. Firstly, we
removed from the eye-movement data the corresponding trials
marked as containing artifacts in the EEG data. This was
performed because we were interested in eye-movement data
principally to control for any possible oculomotor artifacts in
the EEG data. From the remaining segments we identified
microsaccades using the algorithm described in Engbert and
Kliegl (Engbert and Kliegl, 2003).

We also analyzed whether the orientation of attention could
be simply predicted by participants’ eye position prior to their
response. The procedure we used to decode left and right target
trials from eye-position data was exactly the same as the one
described for the EEG signals. Moreover, as for the raw EEG

1We have also directly compared the AUC values obtained with the actual data
and the AUC values obtained with the randomized data. The results were similar
(even stronger effects were observed in the attention condition). However, we
preferred the approach reported here as it preserves inter-subject variability, while
comparing directly the AUC values of the actual and the randomized data requires
averaging the AUC values across participants and thus loosing inter-subject
variability.

activity, we averaged the time-points of eye-position data in 10 ms
successive time windows.

Behavioral Data
We measured average reaction times defined as the response
latency from the beginning of the coherent motion, and
proportion of correct responses (i.e., correct identification
of the coherent motion direction) for each participant and
condition (attention and neutral). Their comparison allowed us
to assess whether our cues successfully manipulated covert spatial
attention. In particular, we expected faster reaction times (RTs) in
the attention compared to the neutral trials.

Furthermore, we also investigated whether reaction times,
number of responses and proportion of correct responses varied
between left and right target trials both in the attention and
the neutral condition. These analyses were performed in order
to control for any potential lateralized confound that could
contaminate EEG signals. The results of these analyses are
reported in the Supplementary Material.

RESULTS

Behavioral Data
The average proportion of dots moving coherently required to
achieve a discrimination performance of ∼75% correct responses
in the preliminary experiment was 0.48 (SD = 0.15). Coherence
thresholds are relatively larger than previously reported (e.g.,
Cornelissen et al., 1995: 1500 ms display, 50 frames lifetime,
2.5◦/s; Burr and Santoro, 2001: variable duration, 3 frames
lifetime, 4.7◦/s; de Bruyn and Orban, 1988: variable durations,
speeds, contrasts). This might be due to a combination of the life-
time (14 frames and 100 Hz refresh rate), motion speed (3◦/s) and
stimulus eccentricity used in the current study.

In the behavioral data of the main experiment, we first
evaluated whether the cueing procedure successfully manipulated
spatial attention. A two-sample Wilcoxon signed rank test
showed no difference in the proportion of correct responses
between neutral (M = 0.89; SD = 0.05) and attention condition
(M = 0.90; SD = 0.06), p > 0.5. The same test on RTs showed faster
responses in the attention (M = 1.822 s; SD = 0.272 s) compared to
the neutral condition (M = 1.983 s; SD = 0.254 s), p < 0.001. These
reaction times corresponded to an average percentage of 51% of
dots moving coherently in the attention condition and 56% in the
neutral condition. This confirms that the cueing procedure we
adopted successfully manipulated spatial attention: participants
required less time in the attention condition to achieve the same
level of performance as in the neutral condition.

Raw Activity Traces
We trained and tested separate classifiers to dissociate left from
right target trials in the attention and in the neutral condition.
Figure 2A shows the evolution of classification performance
(AUC) over time for both conditions. The significance of
decoding accuracy was calculated using permutation tests and
p-values were corrected using FDR (see section “Data Analyses”).
The results of the 10 ms raw activity trace classifier show that

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 570419

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-570419 October 7, 2020 Time: 19:43 # 7

Desantis et al. Decoding Spatial Attention in Time

FIGURE 1 | Illustration of one trial of the main experiment. A trial began with
the presentation of a fixation point at the center of the screen. Two Random
Dots Displays (RDDs) were then displayed only if participants kept their eyes
on the fixation for at least 200 ms. More specifically, the verification of fixation
was performed for a maximum time period of 1 s. If during that time period,
participants did not fixate for at least 200 ms, the trial was interrupted and a
calibration was proposed. A cue was presented 500 ms after the presentation
of the RDDs. In the attention trials the cue was an arrow pointing either to the
left or the right RDD and indicating where a coherent motion (upward or
downward) would appear (left or right). The cue was displayed on the screen
for 150 ms and was 100% valid. Cue orientation was selected randomly and
equiprobably. 400, 500, or 600 ms after the onset of the arrow (each delay
was selected on a random basis and equally often), the dots of the RDD
indicated by the cue started to move coherently either upward or downward.
The number of dots moving coherently increased linearly for 3000 ms until
reaching a proportion equal to three times the threshold obtained in the
preliminary experiment. At the end of the 3000 ms the number of dots moving
coherently stopped increasing and coherent motion was displayed for
additional 200 ms. Then, the dots disappeared and participants were required
to not blink/move their eyes for additional 1000 ms. Participants were
instructed to continuously monitor the cued RDD without moving their eyes,
and to report the direction of coherent motion (upward or downward) as soon
as they perceived it, by pressing one of two designated keys (the upward and
downward arrows of the keyboard) with their right-hand index finger. The
neutral trials were exactly the same, except that the arrows were replaced by
a neutral cue created by the superposition of the two arrows. Attention and
neutral trials were randomized and were presented equally often.

only in the attention condition could the classifier dissociate
left from right target trials starting at about 826 ms prior to
participants’ response (a total of 150 p-values, one for each
time-point, were obtained with the permutation test, the critical
p-value for significance after FDR correction was p ≤ 0.018).
The absence of significant classification in the neutral condition
indicates that decoding accuracy was not driven solely by the
mere presentation of the coherent motion. A further non-
parametric test corroborated this last point. First, we averaged
the decoding accuracy (AUC values) across time-points for each
condition (attention and neutral) and participants. Then, we
used a non-parametric Wilcoxon signed-rank test to compare the
averaged AUC values observed in the attention and the neutral
conditions. The test showed that decoding accuracy was higher
in the attention compared to the neutral condition (p = 0.039),
thus confirming that in the attention condition we were not
simply decoding the presentation of coherent motion but rather
endogenous attention mechanisms.

Scalp topographies presented in Figure 2A show the brain
activity observed in the left target trials minus the activity in
the right target trials of the attention condition. The activity
recorded by central, posterior and occipital electrodes differed
the most between left and right target trials. A one-sample
Wilcoxon signed rank test on linear coefficients (we averaged

linear coefficients observed between −800 and 0 ms) confirmed
this point showing that classification accuracy was mostly driven
by central-posterior (CPz, CP4, CP6), posterior (Pz, P2, P4,
P6, P8), posterior-occipital (POz, PO4, PO8) and occipital
(Oz, O2) electrodes.

Interestingly, increasing the width of the window to 50
and 100 ms time improved classification accuracy in both
the attention and the neutral condition. More specifically, we
averaged the EEG activity for time points corresponding to
50 and 100 ms wide successive time windows. Indeed, in
the attention condition, the 50 ms classifier could decode
left and right target trials above chance from −826 ms to
participants’ response (a total of 30 p-values, one for each time-
point, were obtained with the permutation test, the critical
p-value for significance after FDR correction was p ≤ 0.025).
The highest AUC value with the 50 ms classifier was 61%,
compared to 59% accuracy with the 10 ms classifier. Similarly,
the 100 ms attention classifier could decode left and right
target trials above chance from −751 ms to participants’
response with a maximum AUC value of 63% (a total of
15 p-values, one for each time-point, were obtained with
the permutation test, the critical p-value for significance after
correction was p ≤ 0.018).

We could also decode left versus right target trials above
chance in the neutral condition from about 351 ms before
participants’ response with the 50 ms time window classifier (a
total of 30 p-values, one for each time-point, were obtained with
the permutation test, the critical p-value for significance after
correction was p ≤ 0.01). We could decode left and right target
trials from about −426 ms before participants’ response with the
100 ms time window classifier (a total of 15 p-values, one for each
time-point, were obtained with the permutation test, the critical
p-value for significance after correction was p ≤ 0.01).

Further Wilcoxon signed-rank tests showed that for both the
50 and the 100 ms classifiers decoding accuracy was overall
higher in the attention compared to the neutral condition,
with the 100 ms classifier leading to the highest difference
(Mean AUC value in the attention condition = 57%; Mean
AUC value in the neutral condition = 52%, p = 0.006). This
corroborates the notion that the presentation of coherent motion
alone cannot explain the decoding accuracy observed in the
attention trials. This observation was supported by further
analyses aiming at classifying neutral versus attention trials
using the 100 ms time window raw activity and alpha power
(see Supplementary Material). The analyses showed that our
classifiers could decode above chance whether a trial belonged
to the attention or the neutral condition in several different time
periods. This provides further evidence that what was decoded in
the attention condition was not due to the mere presentation of
the coherent motion but rather to attentional mechanisms (see
section “General Discussion”).

Time-Frequency Data
As for the raw electrode activity, we trained and tested separate
classifiers to dissociate left from right target trials in the
attention and in the neutral condition using alpha power
calculated by squaring the absolute values of the complex
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FIGURE 2 | (A) Decoding accuracy based on raw activity traces (10 ms time window classifier). The classifier was trained to discriminate left from right target trials
as a function of time. 0 ms indicates the onset of participants’ response for both the attention (in red) and the neutral condition (in blue) for raw channel traces. The
classifier could dissociate left from right target trials only when target location was cued. Classification accuracy (AUC) was significantly above chance from about
826 ms before the onset of participants’ response. The red/blue dots under the lines indicate significant difference from chance tested via permutation tests. At
826 ms before the onset of participants’ response, about 28.75% of the dots were moving coherently. Note that participants’ average discrimination threshold was
48.15%. Since the average response time was 1819 and 1985 ms in the attention and neutral conditions, respectively, the coherent motion started on average prior
to the beginning of the EEG segments shown here2. The percentage of dots moving coherently at –1500 and 0 ms was on average 9.65 and 52.31% in the
attention condition, 14.13 and 56.92% in the neutral condition, respectively. The scalp distribution depicts the difference in brain activity between left and right target
trials in the attention condition at five different 200 ms time windows prior to the onset of participants’ response with the midpoint of the window indicated under
each on the graph. (B) Decoding accuracy for alpha power (8–13 Hz). The classifier could dissociate left from right target trials only when target location was cued.
Classification accuracy (AUC) was significantly above chance from the beginning of the epoch, i.e., 1262 ms before the onset of participants’ response. Scalp
topographies depict the distribution of alpha power (Event-Related Spectral Perturbations - ERSP) observed for left minus right target trials in the attention condition,
at five different 200 ms time windows with the midpoint of each indicated underneath. Note that the average amplitude of alpha oscillation at each individual
frequency was corrected with a 500 ms time-frequency baseline - from 200 to 700 ms after the onset of participants’ response. (C,D) The two bottom graphs depict
the decoding accuracy (AUC) for the 50 and 100 ms time window brain potential classifiers. Classification accuracy for the 50 ms classifier was significantly above
chance from 826 ms and 351 ms before the onset of participants’ response in the attention and the neutral condition, respectively. Importantly, at these time points,
about 28.75% and 46.96% of the dots were moving coherently either upward or downward in the attention and neutral condition, respectively. Similar results were
observed in the 100 ms time window classifier. Shaded areas represent bootstrapped confidence intervals.

number obtained with a Wavelet transform. Figure 2B shows
the evolution of classification performance (AUC) over time
for both the attention and the neutral condition. Performance
was tested at each time-point by comparing the average
classifier accuracy (AUC averaged across permutations for

2These response times were calculated after removing the trials rejected during
EEG artifact rejection, in order to match behavioral with EEG data.

each participant) to chance level (50%). The results show
that alpha power predicted the orientation of spatial attention
from the beginning of the segment in the attention condition.
Moreover, decoding accuracy was overall higher in the attention
compared to the neutral condition (Mean AUC value in the
attention condition = 57%; Mean AUC value in the neutral
condition = 51%, p = 0.002). Scalp topographies depict the
distribution of alpha power for left attention trials minus the
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right attention trials and show a change in alpha power over the
parieto-occipital electrodes.

Comparison Between Alpha and Raw Activity
Firstly, we assessed whether there was a main effect of Signal
(alpha vs. raw activity). Notably, for both the alpha and the
raw activity classifiers, we averaged the AUC values across time
for each classifier (Alpha, 10, 50, and 100 ms raw activity
classifiers), condition (neutral and attention) and participant. We
then compared the average AUC values with a series of Wilcoxon
signed rank tests. The results showed that alpha power predicted
the orientation of spatial attention overall better than the 10 ms
raw activity classifier in the attention condition (signed rank = 14,
p = 0.027; Mean AUC raw activity = 54%; Mean AUC alpha
activity = 58%) but not in the neutral condition (p = 0.735; Mean
AUC raw activity = 52%; Mean AUC alpha activity = 52%).

Subsequently, a series of paired Wilcoxon signed rank tests
compared the time-point-by-time-point AUC values observed
with the alpha classifier and the 10 ms raw activity classifier for
both the neutral and the attention condition. A total of 125 tests
were performed for each condition. FDR was used for correction
to multiple comparisons (critical alpha for significance after FDR
correction was p ≤ 0.0081). The analyses showed that alpha AUC
values were higher than 10 ms raw activity AUC values between
−1096 ms (±5 ms)3 and −612 ms (±5 ms) in the attention
condition (p ≤ 0.0081). However, this difference disappeared for
time-points superior to −612 ms (±5 ms), thus showing that raw
activity led to the same prediction accuracy as alpha power for
time-points closer to participant’s perceptual decisions. None of
the comparisons in the neutral condition reached significance.

Further analyses explored whether alpha power would better
predict the orientation of spatial attention also when compared
to the 50 and 100 ms raw activity classifier accuracy. A series of
Wilcoxon signed rank tests showed that the advantage of alpha
we initially observed in the attention condition disappeared.
Notably, no main effect of Signal (alpha vs. raw activity) was
observed, neither for the 50 ms raw activity classifier (Mean AUC
raw activity = 56%; Mean AUC alpha activity = 58%) nor for
the 100 ms raw activity (Mean AUC raw activity = 57%; Mean
AUC alpha activity = 58%). Similarly, the time-points-by-time-
points comparisons showed that only at −1026 ms (±4 ms)
were Alpha AUC values higher than the 50 ms raw activity AUC
(p = 0.012; a total of 25 paired comparisons were performed,
critical alpha after FDR correction was p ≤ 0.012). However,
for all the other comparisons the AUC values observed with
alpha did not differ from those obtained the time windowed
raw activity. Consequently, the striking advantage of alpha in
predicting spatial attention disappeared when compared to the
50 ms and the 100 ms time windowed raw activity AUC.

Eye-Tracking Data
The above analyses suggest that activity in parieto-occipital areas
may be associated with the orientation of attention in space.
However, specific eye movement signatures have also been linked
to spatial attention, so it is possible that what we decoded was

3Note that the time-points of the 10 ms raw activity did not always match with the
alpha time-points, and the largest difference between time points was 5 ms.

not attentional processes per se, but the activity guiding eye
movements. To check whether this was the case, we ran several
control analyses on eye position data.

First, a classifier was trained and tested on eye position.
Classifiers could not dissociate left from right target trials either
in the attention condition or in the neutral condition. This
means that eye position itself did not predict the orientation
of spatial attention, and thus cannot explain, at least not
entirely, the activity found in the EEG decoding analyses (see
Figure 3, left graph).

Second, we assessed the correlation between eye position
and brain activity recorded by fronto-lateral electrodes. We
subtracted the brain activity recorded by the right frontal
electrodes (rHEOG, Fp2, AF8, F8) from that recorded by the left
frontal electrodes (lHEOG, Fp1, AF7, F7). We then calculated
a time point-by-time point linear regression of average brain
activity difference on the average horizontal component of
eye position for each participant. Given that eye position was
recorded at 1000 Hz and EEG at 500 Hz, we subsampled eye
position data to the time points that were available in the EEG
data. If participants performed eye-movements in the direction
of the target and these movements drove the brain activity, we
expected that the more leftward the horizontal component of
eye-position, the more positive the left fronto-lateral EEG activity
would be relative to right fronto-lateral. A one sample signed rank
tests showed that the slope (M = −8.96, SD = 20.47) of the linear
model was not significantly different from zero, signed rank = 69,
p = 0.11. This corroborates the classification result presented
above, showing that eye position did not reliably predict the
allocation of spatial attention and that ultimately classification
accuracy on raw channel activity could not be solely attributed
to oculomotor factors.

Previous research showed that microsaccades, rather than eye-
position data, show the strongest association to the orientation
of spatial attention (Engbert and Kliegl, 2003). Accordingly, we
performed further analyses evaluating whether microsaccades
differed between left and right target trials and thus could
potentially explain our decoding accuracy.

First, we computed the distribution of directions of
microsaccades for each participant and condition. Our statistics
were performed with MATLAB in combination with the
circular statistics toolbox (Berens, 2009). We then calculated the
mean, median and standard deviation of these distributions of
directions and we performed a series of Wilcoxon signed rank
tests to evaluate whether the mean/median/sd directions observe
in the left and the right target trials differed in the attention and
the neutral condition. No difference was observed between left
and right target trials in the attention (p = 0.54) and the neutral
condition (p = 0.45). Similarly, no difference was observed
between the attention and neutral condition (p = 0.30).

Second, we pooled together observers’ distribution of
microsaccade directions for left and right target trials in the
neutral and attention condition. We then compared these
distributions using a non-parametric test for circular data (i.e.,
the multi-sample test for equal median directions described
in Berens, 2009). The analyses confirmed that the direction
of microsaccades did not differ between left and right target
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FIGURE 3 | The left graph depicts decoding accuracy for the eye-gaze data. As for the raw EEG activity we averaged the time points corresponding to 10 ms in
successive time windows. Neither the attention classifier nor the neutral classifier could decode significantly above chance level left versus right target trials. The
same results were observed when time points were averaged in 50 and 100 ms successive time windows. Shaded areas represent bootstrapped confidence
intervals. The central and right polar histograms depict the distribution of directions of microsaccades executed during left and right target trials for both the attention
and the neutral condition. No difference was observed in the distribution of microsaccades between left and right target trials of the attention and neutral condition.

trials in the attention condition or the neutral condition,
p = 0.11 and p = 0.14, respectively (see Figure 3, central
and right graph).

Third, in order to assess a possible contribution of
microsaccades on decoding accuracy, we calculated a linear
correlation between EEG decoding accuracy and the proportion
of microsaccades performed in the direction of the dot
display containing the coherent motion. Notably, we wanted
to investigate whether the participants who performed more
microsaccades in the direction of the coherent motion were
also those who exhibited the higher EEG decoding accuracy.
In particular, we assessed whether the proportion of saccades
in the direction of the target correlated with the decoding
accuracy observed at the last time-point of our 10 ms brain
potential classifier. The Pearson correlation coefficient did not
reach significance (p = 0.764). The same analyses were performed
with the other classifiers leading to the same result.

Finally, we investigated whether the decoding accuracy based
on eye-position data was correlated with the decoding accuracy
based on the raw activity classifiers. Notably, we wanted to assess
whether the participants’ with higher decoding accuracy from the
eye-position data were also those who showed higher decoding
accuracy with the 10 ms raw activity classifier. The Pearson
correlation coefficient (value) was not significant (p = 0.47).

In sum, none of the analyses performed on eye-tracking data
provided evidence that the orientation of spatial attention could
be predicted by eye-gaze or eye-movements. Furthermore, no
relationship between the proportion of microsaccades performed
in the direction of the target and EEG decoding accuracy
was observed. Accordingly, EEG decoding accuracy cannot be
explained solely by eye-movements. Further control analyses
investigating the relationship between EEG and eye-movement
data are presented in the Supplementary Material.

Control Analyses
Further behavioral analyses investigated whether number of
responses, reaction times and proportion of correct responses

differed between left and right target trials in the attention and
neutral condition. As we reported above, the same discrimination
threshold was used for both left and right dot display. This could
potentially represent a problem if the discrimination threshold
is different for the left or the right visual field (Greenwood
et al., 2017). Accordingly, when using the same threshold for
both sides, participants might show different accuracies and
reaction times in the main task for the left and right side.
Consequently, it could be argued that decoding accuracy (see
below) observed with raw signals could be due to difference
in response time when coherent motion was presented on
the left and right of fixation. A series of Wilcoxon signed
rank tests showed no difference in reaction times between left
(M = 1.83 s, SD = 0.32 s) and right target trials (M = 1.81 s,
SD = 0.26 s.) trials in the attention condition (p = 0.45).
Similarly, no difference was observed (p = 0.27) in the neutral
condition (Left trials: M = 2.00 s, SD = 0.32 s; Right trials:
M = 1.96 s, SD = 0.24 s).

In addition, no difference was observed in the proportion
of correct responses for left and right target trials either in the
attention condition (p = 0.11; Left trials: M = 0.92, SD = 0.06 s;
Right trials: M = 0.88, SD = 0.09) or in the neutral condition
(p = 0.84; Left trials: M = 0.90, SD = 0.05 s; Right trials: M = 0.89,
SD = 0.08). The same results were observed when performing
parametric statistics.

These analyses confirmed that decoding accuracy observed
with raw EEG traces could not be simply attributed to biases in
participants’ responses. Further analyses corroborated this point.
We evaluated whether EEG decoding accuracy was correlated
to the difference in response time between left and right target
trials. Notably, we wanted to investigate whether the participants’
for whom the difference in response time for the left and right
target trials was the highest would also exhibit higher decoding
accuracy. Hence, firstly we calculated the absolute difference
between the average response time observed in the left and right
target trials for each participant, and we assessed whether this
difference correlated with the classification accuracy observed
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at the last time point of our 10 ms raw activity classifier.
The Pearson correlation coefficient did not reach significance
(p = 0.76). Therefore, classification accuracy cannot be explained
by response times. The same analyses were performed also with
the other classifiers leading to the same result.

We also investigated whether participants performed more
“upward” or “downward” responses when the coherent motion
was presented to the left or to the right, to rule out the possibility
that decoding accuracy was contaminated by participants’
judgments (up or down). In order to address this issue, we first
calculated the ratio of upward and downward responses both
when the coherent motion was presented to the left and when
presented to the right for the attention and neutral conditions
(i.e., we simply divided the number of upward responses by
the number of downward responses for each target side and
condition). Then, we performed a Wilcoxon signed rank test
comparing the ratio of responses observed when the target was
presented on the left and the right. The analyses show that the
number of responses did not differ between left and right target
trials either in the attention (p = 0.37; ratio or responses for left
trials: M = 1.044, SD = 0.22; ratio or responses for right trials:
M = 1.091, SD = 0.32) or in the neutral condition (p = 0.89;
ratio or responses for left trials: M = 1.127, SD = 0.37; ratio or
responses for right trials: M = 1.145, SD = 0.40). Consequently,
no difference between the numbers of responses was observed.
We are confident that decoding accuracy was not due to motor
or more general response pattern of the participants.

GENERAL DISCUSSION

We decoded the temporal dynamics of covert spatial attention
from both raw activity and alpha oscillations. We used a cueing
task to manipulate participants’ allocation of attention in space
with two conditions: a cued covert attention condition, and
an uncued neutral condition. Coherent motion was presented
gradually in either the left or the right random dot display
and participants were required to report the direction (upward
or downward) of coherent motion as accurately and quickly
as possible. In the neutral condition, participants continuously
monitored both left and right random dots displays, whereas in
the attention condition, they monitored only the cued side.

We used multivariate pattern classification analysis
applied to both raw activity and alpha power to decode
and predict whether participants were attending to the
right or the left Random Dot Display (RDD). Based on
raw EEG traces, we decoded whether participants were
attending to the left or right RDD starting about 826 ms
before their response in the cued attention condition. In
addition, scalp topography of both raw EEG traces and alpha
power pointed to prominent activity from parieto-occipital
electrodes that have often been linked to the spatial attention
network (Jensen and Mazaheri, 2010; Gould et al., 2011;
Thiery et al., 2016). The implication of a parieto-occipital
network in the deployments of spatial attention has also been
demonstrated by a recent fMRI study using real-time decoding
(Battistoni et al., 2018).

Interestingly, when individual time-points of raw activity
were averaged across successive time windows of 50 and
100 ms, decoding accuracy improved compared to the
10 ms time windows. In the attention condition, the highest
accuracy rose from 59 to 63% while in the neutral condition,
accuracy rose to reach significance (i.e., 61%). With the
wider time windows, we could dissociate left from right
target trials starting from 751 and 426 ms before the onset
of participants’ response in the attention and the neutral
condition, respectively (in the 100 ms time-window classifier).
The decoding accuracy observed in the neutral condition
with the larger time windows suggests that in that case we
were decoding either the increase of coherent motion or the
moment when attention was captured exogenously by the
coherent motion.

Decoding accuracy also improved when LDA classifiers were
trained on alpha power compared to the 10 ms raw activity
classifier. Importantly, all classifiers in the attention conditions
led to a higher decoding accuracy than those in the neutral
conditions, suggesting that decoding accuracy in the cued trials
was not merely due to the gradual increase of coherent motion
but rather to endogenous attention processes. This observation
was corroborated by a series of classifiers aiming at dissociating
neutral from attention trials for both alpha power and 100 ms
time window raw activity (see Supplementary Material).

Our result replicates previous findings suggesting that alpha
band oscillations are reliable signals to decode the deployment of
covert spatial attention (Worden et al., 2000; Gould et al., 2011;
Samaha et al., 2016; Foster et al., 2017; Bae and Luck, 2018). For
instance, a recent study of Foster et al. (2017) showed that alpha
power could track the deployment of covert attention in time.

Importantly, we show that raw EEG activity can also predict
the temporal dynamics of spatial attention after attentional
cueing and before perceptual responses (see also Wen et al.,
2019). Previous research was able to decode the orientation of
spatial attention in a particular time window, that is using the
N2pc component which occurs about 200 ms after stimulus
onset (Fahrenfort et al., 2017). Our study provides evidence
showing that instead, raw EEG activity can provide a continuous
prediction of the orientation of spatial attention starting from
the moment that the sensory signal, in our case the coherent dot
motion, can be perceptually dissociated from noise.

Moreover, the time profile of the decoding accuracy obtained
with alpha and raw channel activity suggested that these
classifiers decode two distinct processes. Specifically, the classifier
applied to alpha power could dissociate left and right attention
trials over the pre-response interval with about the same
accuracy throughout. This suggests that spatial attention was
oriented to the left/right random dot display already at the
beginning of the segment when coherent dot motion was
not yet distinguishable from incoherent motion. Indeed, at
the beginning of the segment an average of only 9.65%
of dots moved coherently, while the participants’ average
discrimination threshold was 48.15%. In contrast, the classifier
applied to raw activity showed a gradual increase of accuracy
with time from about 826 ms before participants’ perceptual
responses and when an average of 28.75% of dots moved
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coherently. This suggests that this classifier might be decoding
the application of attention to the sensory signal (i.e., the
coherent dot motion), a process that can only begin once the
signal can be more easily dissociated from noise. In other
words, alpha power could be associated with the orientation
of covert attention in space, whereas raw channel activity may
reflect the influence of attention on perceptual processes. More
specifically, the suppression of alpha power in contralateral
electrodes would reflect preparatory processes that releases
inhibition. Notably, cortical excitability would increase in
the brain regions that process the upcoming target in the
attended location, while the activity in the (ipsilateral) regions
processing the unattended location would be inhibited (Jensen
and Mazaheri, 2010; Haegens et al., 2011; Klimesch, 2012;
Bae and Luck, 2018). However, like ERP components such
as the N2pc, the classification based on raw activity might
index the enhancement of target processing for the stimuli
presented in the attended location (cf. Luck and Hillyard,
1994; Eimer, 1996; Kiss et al., 2008; Mazza and Caramazza,
2015). This interpretation seems to be corroborated by the
time dynamics of decoding accuracy we observed for the 50
and 100 ms raw EEG classifier in the attention and neutral
conditions where the increase of decoding accuracy coincides
with the increase in coherent motion. Notably, decoding accuracy
increased gradually in both neutral and attention condition with
the increase of coherent motion, in a manner reminiscent of
evidence accumulation (O’Connell et al., 2018). More specifically,
decoding accuracy in these cases was significantly above chance
from 826 to 351 ms before the onset of participants’ response
in the attention and the neutral condition, respectively (for
the 50 ms window classifier). Importantly, at these time
points, about 28.75% and 46.96% of dots were on average
moving coherently (upward or downward) in the attention and
neutral condition, respectively. Interestingly, observers’ average
discrimination threshold calculated during the preliminary
experiment was 48.15% of dots moving coherently. Hence, the
gradual increase of decoding accuracy above chance level in
the neutral condition starts on average when coherent motion
reaches observers’ discrimination threshold, while in attention
condition the increase in classification accuracy starts earlier
suggesting that attention improved observers’ discrimination
threshold, thus corroborating the notion that attention enhances
sensory processing.

Importantly, recent studies suggest that alpha oscillations
do not only reflect preparatory mechanisms linked to the
anticipatory deployment of attention in space, but they are also
a marker for target processing in a similar way as components
such as the N2pc. In line with this notion, a recent study
showed that visual search targets triggered both an N2pc and
a lateralized suppression of alpha-band activity (Bacigalupo
and Luck, 2019). However, alpha oscillations and the N2pc
exhibited different time dynamics. According to Bacigalupo
and Luck (2019) their results indicate that lateralized alpha-
band activity is involved in target processing and is not purely
associated to anticipatory mechanisms, suggesting that alpha
activity and N2pc reflect a related but separable mechanism
of spatial attention. Accordingly, alpha oscillations may also

have contributed the classification accuracy we observed with
the raw EEG traces. Complementary analyses reported in the
Supplementary Material aimed at investigating this point.
Notably, we explored whether the decoding accuracy observed
in the raw EEG classifier would persist also after removing alpha
oscillations from raw EEG activity. The analyses showed a very
similar pattern of results as the one observed with raw EEG
classifiers, suggesting that alpha contributed but it cannot alone
explain the classification accuracy observed with raw EEG traces.

Finally, in addition to alpha oscillations, also gamma band
frequencies (>30 Hz) have been associated to the inhibition and
selection of sensory information. For instance, Bonnefond and
Jensen (2013) showed that, in a memory task, distracters elicited
a lower gamma power and a higher alpha power compared to
target stimuli. The authors suggested that while alpha oscillations
would reflect anticipative modulation of excitability, gamma
power would be linked to the interaction between this top-down
modulation and the stimulus-driven activity. However, in the
present study we were not able to decode the orientation of spatial
attention from gamma power (see Supplementary Material).

Contrary to past research (Engbert and Kliegl, 2003; Yuval-
Greenberg et al., 2014) we did not observe any difference in
the direction of microsaccades when participants were attending
the left or right dot display in our stimulus. This suggests that
eye-movement artifacts cannot explain the decoding accuracy
observed with our raw EEG traces, thus confirming that the
activity we observed in parieto-occipital areas is related to
attentional mechanisms rather than eye movements. However,
our failure to replicate previous findings linking attention and
microsaccades may simply be a result of our lack of statistical
power. Microsaccades are infrequent (i.e., 1 or 2 microsaccades
are observed every 1/2 s). Studies investigating microsaccades
typically collect a very large number of trials (White and Rolfs,
2016). Given the length of our recording epochs of 1500 ms
and the number of trials we analyzed (on average 110 trials
per condition), we do not have the data density required to
examine the link between microsaccades and attention. And,
indeed, our study did not aim at investigating these differences.
Eye-movements were recorded in order to control for any
contamination of oculomotor artifacts on the EEG signals. In this
respect, we believe that our results unambiguously show that the
EEG decoding was not due to eye-movements.

The ability to decode brain signals linked to cognitive
processes such as attention provides invaluable information
about the causal relationship between brain and cognitive
function (Poldrack, 2011) – a central goal of cognitive
neuroscience. However, it can also guide the development
of brain-computer interfaces (BCIs) that can help individuals
control external devices using EEG (Lebedev and Nicolelis, 2006).
This is particularly important for patients who have lost the
ability to give motor responses. In this context, one of the
advantages of EEG for the development of BCIs is its high
temporal resolution allowing for fast interpretation of brain
signals. Alpha-band activity can be tracked with resolution of
about 125 ms (for 8 Hz alpha frequency), which may entail a
significant loss of temporal information. In contrast, the raw EEG
traces provide a reliable alternative to decode attention with little
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or no loss. In particular, when simply averaging the time-points
of raw activity in 50 ms successive time windows the decoding
accuracy matched that of alpha power while only sacrificing a
small amount of temporal resolution. It is important to note,
however, that our study suggests also that the decoding from
alpha power and raw activity reflects difference processes of
spatial attention. Hence, one signal cannot simply substitute for
the other. The choice of the signals to use for BCI will need to be
evaluated depending on the issue a given BCI is addressing (see
Van and Jensen, 2009).

However, useful BCIs require higher classification accuracy
than we have found here and several methods can be
used to address this issue. For instance, Long Short-Term
Memory (LSTM) neural networks can take into account the
temporal dependency of EEG traces and may therefore improve
classification accuracy (Hefron et al., 2017). In addition, instead
of concentrating on individual time points, one could focus on
classifier outputs observed within a predefined time window.
Indeed, by averaging time points across time windows of 50
or 100 ms, we significantly improved classification accuracy.
Alternately, other approaches might consist in calculating the
votes for one class within a sliding time window of 100 ms, and
then using Bayesian models to calculate a weighted sum over all
votes (see Dietterich, 2000 for more details). The combination of
this sliding window method and LSTM could potentially improve
classification accuracy and generate more reliable decisions.
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