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The computational prediction of interactions between drugs and targets is a standing
challenge in drug discovery. State-of-the-art methods for drug-target interaction
prediction are primarily based on supervised machine learning with known label
information. However, in biomedicine, obtaining labeled training data is an expensive
and a laborious process. This paper proposes a semi-supervised generative adversarial
networks (GANs)-based method to predict binding affinity. Our method comprises two
parts, two GANs for feature extraction and a regression network for prediction. The semi-
supervised mechanism allows our model to learn proteins drugs features of both labeled
and unlabeled data. We evaluate the performance of our method using multiple public
datasets. Experimental results demonstrate that our method achieves competitive
performance while utilizing freely available unlabeled data. Our results suggest that
utilizing such unlabeled data can considerably help improve performance in various
biomedical relation extraction processes, for example, Drug-Target interaction and
protein-protein interaction, particularly when only limited labeled data are available in
such tasks. To our best knowledge, this is the first semi-supervised GANs-based method
to predict binding affinity.

Keywords: drug-target affinity prediction, deep learning, semi-supervised, generative adversarial networks,
convolutional neural networks
INTRODUCTION

A basic task in the field of new drug design and development is to model the interaction between
known drugs and target proteins and to identify drugs with a high affinity for specific disease
proteins (Cheng et al., 2018a; Cheng et al., 2019b). However, this is a rather challenging and
expensive process even when only approximately 97M compounds reported by the PubChem
database (Bolton et al., 2008) and 12K drug entries reported by the DrugBank (Wishart et al., 2006
are considered. Computational methods, especially machine learning models, can considerably
accelerate the drug development process and save costs by guiding biological experiments.

Drug-target interaction (DTI) prediction (Yamanishi et al., 2010; Liu et al., 2016; Nascimento
et al., 2016; Keum and Nam, 2017) was modeled as a binary classification problem and solved by a
few traditional machine learning methods in recent decades. These methods have achieved
remarkable performancehowever, they still exhibit limitations because of their strong dependence
on handcrafted features.
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Apart from predicting DTI, the drug-target binding afï- nity
(DTA)(Pahikkala et al., 2014; He et al., 2017) attracts more interest
as it can indicate the strength of the interaction between a DT pair.
Therefore, predictingDTAcan considerablybenefit drugdiscovery,
because the searching space would be narrowed down by pruning
those DT pairs with low binding affinity scores. Kronecker
regularized least squares (KronRLS) Pahikkala et al. (2014) and
boostingmachines (SimBoost)He et al. (2017) are two state-of-the-
art methods for both DTI and DTA prediction. KronRLS is a
similarity-based method and can predict the interaction by
evaluating the structure similarity among compounds and targets.
On the contrary, SimBoost utilizes a gradient boostingmachine and
belongs to feature-based methods; its feature involves similarity
matrices of the drugs and those of targets He et al. (2017). The
similarity-based methods (Cheng et al., 2018b) generally rely on
similarities to predict the interaction of DT, which inevitably leads
to bias. For the feature-basedmethods,more information regarding
the DT are involved; but expert knowledge and feature engineering
are also required to construct appropriate features.

Deep learning can represent and recognize the hidden patterns
in the data well, therefore, deep-learning based methods have been
proposed to predict DTI or DTA utilizing deep neural networks
(DNN) (Peng-Wei et al., 2016; Tian et al., 2016; Hamanaka et al.,
2017), convolutional neural networks(CNN), (Jastrzebski et al.,
2016; Gomez-Bombarelli et al., 2018) recurrent neural networks
(RNNs) and stacked-autoencoders based architectures. These
methods facilitate the learning of the 3D structures provided and
the bimolecular interaction mechanism. However, on one hand,
this indeed improves the prediction as more important structural
information is exploited, on the other hand, when the 3D structure
is the input, these methods depend considerably on the availability
of the known 3D structure of the protein-ligand complex.

Another deep-learning based method, called DeepDTA, was
implemented to predict the binding affinities with CNN using
only 1D representation, that is, the sequences of the proteins and
simplified molecular input line entry system(SMILES)of the
compounds. In DeepDTA, two CNN blocks are employed as
feature extractors, and a fully connected layer receives the output
of the CNN blocks and outputs the final prediction results.
DeepDTA utilizes the strong representation of CNN, while
avoiding the dependence on the 3D structure information,
which results in remarkable performance over the other
traditional machine learning methods. However, similar to all
the state-of-the-art methods for DTA prediction, DeepDTA is
also primarily based on supervised machine learning with known
labels information. It is known that creating large sets of training
data is prohibitively expensive and laborious, particularly in
biomedicine, as domain knowledge is required.

An unsupervised learning method, generative adversarial
networks(GANs), devised by Goodfellow et al. in 2014
(Goodfellow et al., 2014) may address the challenge. The GANs
architecture is characterized by two differentiable functions that
play different roles in refining the system. One differentiable
function is known as a generator and the other as a
discriminator. The generator learns to produce data from a
learned probability distribution. The discriminator determines if
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the produced data is valid by determining if the input comes from
the generator or from the actual data set. GANs and its variants
have achieved great success in many applications such as
computer vision and natural language processing. Additionally,
GANs are more attractive as they can learn representations by
reusing parts of the generator and discriminator networks as
feature extractors, which can be widely applied in many
supervised classification or prediction tasks. On the other hand,
there also exist some problems in GANs, for example, the better
the discriminator is, the more serious the gradient of the generator
disappears; the adversarial network may cause the collapse of the
model during training, this also brings inconvenience in the
practical application. In order to solve these problems,
researchers continue to push forward new improvement
methods, including least squares GAN(LSGAN) Mao et al.
(2017), Wasserstein GAN(WGAN) Arjovsky et al. (2017)
conditional GAN(CGAN) Mirza and Osindero (2014),
information maximizing GAN(infoGAN) Chen et al. (2016),
energy-based GAN(EBGAN) Zhao and Mathieu. (2016),
boundary-seeking GAN(BEGAN) Hjelm R D (2017) and so on.

Owing to the unsupervised characteristics of GANs, in this
paper, we propose a GANs-based method to predict binding
affinity, called GANsDTA for short. Our method comprises two
types of networks, two partial GANs for the feature extraction from
the raw protein sequences and SMILES strings separately and a
regression network using convolutional neural networks for
prediction. The contributions of this paper mainly include: We
proposed a semi-supervised framework for DTA prediction; we
adopted GAN to extract features of protein sequence and
compound SMILES in an unsupervised way. Therefore, the
proposed model can accommodate unlabeled data for the
training as feature extractor using GANs does not require labeled
data. This semi-supervised mechanism enables more datasets even
without labels available for our model to learn proteins drugs
features, leading to better feature representation and prediction
performance accordingly. To our best knowledge, this is the first
semi-supervised GAN-based method to predict binding affinity.
Our results suggest that utilizing such unlabeled data can
considerably help improve performance in various biomedical
relation extraction processes, particularly when only limited
labeled data (e.g. 2000 samples or less) is available in such tasks.
MATERIALS AND METHODS

Data Sets
We evaluated our proposed method using two benchmark data
sets, the Davis et al. (2011) and KIBA data set (Tang et al., 2014).
Table 1 and Figure 1 provides the statistics of these two datasets.
TABLE 1 | Data set.

Proteins Compounds Interactions

Davis 442 68 30056
KIBA 229 2111 118254
J
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Proposed Method
Overview of our Approach
Figure 2 provides an overview of the entire pipeline for our
method for drug-target binding affinity prediction. Our
approach comprises three elements: two feature extractors for
protein sequence and compound, respectively, and a regressor
for affinity value prediction. Each feature extractor is composed
of a feature representation modular from GANs while the
regressor is made up of a CNN. A two-round training pattern
is employed. In the first training round, the feature extractors
are trained in the context of GANs. First, fake samples are
generated according to a given noise distribution by the
generator of GANs, and then all the fake samples from the
generator and the real samples from the available data sets are
inputted to the discriminator network. In order to learn to
distinguish real and fake sequences of proteins and SIMILES of
compounds, the discriminator maps the input into a feature
space by a local feature extractor, which promotes the sample
classification. Thus, after the training of the whole GANs, a
local feature extractor is obtained from the discriminator that
can represent the characteristic of the input protein sequence or
SMILE sequence. This trained local feature extractor is utilized
as the feature representation of the proposed framework,
followed by a regressor or classifier for prediction or
classification task respectively. Finally, during the second
round of training, with the labeled data (SIMILES and protein
sequence) and fixed GANs-based feature extractor, the
regressor is trained to minimize the loss function, leading to
the optimal model parameters.
Frontiers in Genetics | www.frontiersin.org 3
In the proposed method, the input proteins and drugs are
treated as sequence representations. In particular, drugs are
represented as SMILES strings – describing the chemical
structure in short ASCII strings, and similarly, protein
sequences are represented as a string of ASCII letters, which
are the amino acids. Having the inputs as strings of text, the
discriminator can learn the latent features of those sequences.

Feature Extracting Model
Goodfellow et al. (Goodfellow et al. (2014)) proposed a
framework using a minimax game to train deep generative
models, so called GANs. The GANs comprise two parts, a
generator G and a discriminator D. The generator network G
generates fake samples from the generator distribution PG by
transforming a noise variable z∼Pnoise(z) into a sample G(z). The
discriminators are to differentiate these generated samples
following distribution PG from the true sample distribution
Pdata. G and D are trained by playing against each other which
can be formulated by a minimax game as follows:

min
G

max
D

V(D,G)

= Exe Pdata
½log (x)� + Eze Pnoise½log (1 − D(G(z)))� (1)

Meanwhile, for a given generator G , the optimal
discriminator is D(x) = Pdata(x)/ (Pdata(x)+PG(x)).

The GANs employed in our framework is depicted in Figure
3 — in which the generator network is a four-layer fully
connected network and considers a noise vector as input —
and produce a sequence of proteins or SMILES. The
FIGURE 1 | Summary of the KIBA (left panel) and Davis (right panel) data sets.
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FIGURE 3 | Architecture of the generator and discriminator networks in the proposed method.
FIGURE 2 | Pipeline overview. We train the GANs on the unlabeled data set. Compound SMILES and protein sequences are encoded and two independent GANs
are applied to generate the fake samples. The trained discriminator of the GANs can then be used to project the labeled data sets into a feature latent space. Based
on this feature, we train a convolutional regression to predict the DT binding affinity.
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discriminator network is a three-layer fully connected network
and the output is a probability value between 0 and 1, where 1
means that the input is real and 0 means that the input is fake.

Typically, the discriminator network can be decomposed into
a feature extractor F (·;jf) and a sigmoid classification layer with
weight vector yl. Mathematically, given an input sequence s,
we have

D(s) = sigmoid (fT
l F(s; ff )) = sigmoid (fT

l f ) (2)

where f= (fffl) and sigmoid(z)=1/ (1+e−z). f=F (s;ff) is the
feature extractor of s in the last layer ofD, which is to be leaked to
the regression model.
Regression Model
To predict the binding affinity, we combine the intermediate
features learned by the two GANs and then apply a few 1D
convolution layers to learn the final regression output. The
convolution regression model conducts convolution operations
with the kernel size of 4 to acquire feature maps of the input
information. The dimension of the first convolution layer is
16×4. All the convolution layers are connected to activation
functions (ReLU function). The dimensions of the second and
third, convolution layers are 32×4, and 48×4. The activation
function of the output layer is a linear function (identity
function, i.e., y = x) that obtains a continuous value. This
network is trained by minimizing the loss function defined by
the mean square error (MSE) between the outputs p of this
network and depth values y included in the dataset:

MSE =
1
no

n

k=1

(pk − yk)
2

(3)
EXPERIMENTS AND RESULTS

We compared our proposed method with the state-of-the-art
DTA prediction models using the Davis and Kiba datasets. For
these two datasets, we used the same setting as DeepDTA, that is,
80% of data were split as training samples and 20% as testing
samples. In addition, our model is trained by both the labeled
and unlabeled instances. We apply the Adam optimizer with the
initial learning rate of 0.0001 to optimize the parameters of
the model. We manually tuned the hyperparameters based on
the testing results on the validation set. The performance of the
proposed model was measured by calculating the concordance
index (CI) and mean squared error (MSE) metrics. CI evaluates
the ranking performance of the models that output
continuous values.

CI =
1
Z o

dx>dy

h (bx − by) (4)

where bx is the prediction value for the larger affinity dx, by is
the prediction value for the smaller affinity dy, Z is a
normalization constant, and h(m) is the step function.
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h(m) =

1; ifm > 0

0:5; ifm = 0

0; ifm < 0

8>><
>>: (5)

MSE is a common measure to quantify the difference between
the predicted values p and the actual values, which is defined
as follows:

We compared the predicted performance of our method with
DeepDTA and two machine-learning-based KronRLS and
SimBoost method. Both of our work and DeepDTA only
utilize the information of protein sequence and SMILES of the
compounds. The difference is that our method can extract
features of proteins and compounds in an unsupervised
manner. Tables 2 and 3 present the MSE and CI values for
different methods for Davis and KIBA datasets.

For the Davis dataset (Table 2), even the DeepDTA, with
Simith–Waterman as the protein’s representation form and
drugs in the 1D strings, achieves the best CI score (0.886),
slightly higher than our method - its MSE metric is much
higher than our methods. Whereas another DeepDTA, CNN
for protein and compound representation, achieves the best MSE
with 0.261 as well as the lower CI than our method.

A similar performance is observed for the Kiba dataset (Table
3). In particular, DeepDTA is the best baseline in both measures,
CI, at 0.863, andMSE, at 0.194, when both drugs and proteins are
represented as ‘words’. Regarding CI, the proposed GANsDTA
exhibits a slight improvement. The best CI GANsDTA gained
is 0.866.

To provide a better assessment of our model, we determined
the performances of GANsDTA, DeepDTA with two CNN
modules and two baseline methods with two different metrics:
r2m index and area under precision recall (AUPR) score as well. r2m
TABLE 2 | CI and MSE scores for the Davis dataset on the independent test for
our method and other methods.

Method Protein rep. Compound rep. CI MSE

DeepDTA Smith-Waterman Pubchem-Sim 0.790 0.608
DeepDTA Smith-Waterman CNN 0.886 0.420
DeepDTA CNN Pubchem-Sim 0.835 0.419
DeepDTA CNN Pubchem-Sim 0.878 0.261
KronRLS Smith-Waterman Pubchem-Sim 0.871 0.379
SimBoost Smith-Waterman Pubchem-Sim 0.872 0.282
GANsDTA GAN GAN 0.881 0.276
J
anuary 2020 | Volume
 10 | Article
Bolded texts mean the best results.
TABLE 3 | CI and MSE scores for the Kiba dataset on the independent test.

Method Protein rep. Compound rep. CI MSE

DeepDTA Smith-Waterman Pubchem-Sim 0.710 0.502
DeepDTA Smith-Waterman CNN 0.854 0.204
DeepDTA CNN Pubchem-Sim 0.718 0.571
DeepDTA CNN CNN 0.863 0.194
KronRLS Smith-Waterman Pubchem-Sim 0.782 0.411
SimBoost Smith-Waterman Pubchem-Sim 0.836 0.222
GANsDTA GAN GAN 0.866 0.224
Bolded texts mean the best results.
1243

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. GANsDTA
index is a metric which defines the possibility of an acceptable
model. Generally, if the value of r2m the index is greater than 0.5
on a test set, we consider this model to be acceptable. The metric
is described in equation (6) where r2 and r0 are the squared
correlation coefficients with and without intercept, respectively.
The details of the formulation are explained in Pratim Roy et al.
(2009); Roy et al. (2013).

r2m = r2* ð 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r20

q
) (6)

The AUPR score is generally adopted for binary prediction.
To measure AUPR based performances, the Davis and KIBA
datasets should be converted into their binary forms via
thresholding. For the Davis dataset we selected a pKd value of
7 as the threshold, while for KIBA dataset the threshold is 12.1,
which is same as in the literature Öztürk et al. (2018).

Tables 4 and 5 list the r2m index and AUPR score of
GANsDTA and three baseline methods on the Davis and
Frontiers in Genetics | www.frontiersin.org 6
KIBA datasets, respectively. The results suggest that SimBoost,
DeepDTA and GANsDTA are acceptable models for to predict
affinity with result to r2m value.

Figure 4 illustrates the predicted binding affinity values
against the actual values for our GANsDTA on the Davis and
KIBA datasets. Evidently, an ideal model is expected to enable
predictions (p) equal to the measured (y) values. For GANsDTA,
it can be observed that the density is high around the p = y line,
particularly for the KIBA dataset.

It can be observed that the proposed GANsDTA exhibits a
similar performance to DeepDTA from Tables 2-4. For the
Davis dataset, GANsDTA provides a slightly lower CI score
(0.881) than the state-of-the-art DeepDTA with CNN the feature
extraction (0.886), and a slightly higher MSE with 0.015. The
reason is that the training for GANs is insufficient due to the
small size of the Davis dataset which only includes 442 proteins,
68 compounds, and 30056 interactions. However, GANsDTA is
still the second-best predictor. The other benchmark KIBA
dataset includes 229 proteins, 2111 compounds, and 118254
interactions, enabling the GANs to be trained better, leading to
better prediction accuracy. This indicates that GANsDTA is
more suitable for the prediction task with a large dataset. In
the future, more possible datasets (Cheng et al., 2018c; Cheng
et al., 2019a) Cheng et al., 2016; Cheng et al., 2019a can be
utilized to improve the training of GANsDTA.

CONCLUSION

Predicting drug-target binding affinity is challenging in drug
discovery. The supervised-based methods heavily depend on
labeled data, which are expensive and difficult to obtain on a
large scale. In this paper, we propose a semi-supervised GAN-
based method to estimate drug-target binding affinity, while
effectively learning useful features from both labeled and
unlabeled data. We use GANs to learn representations from
TABLE 4 | r2m index and AUPR score for the Davis dataset.“4 r2m index and
AUPR score for the Davis dataset.”

Method Protein rep. Compound rep. r2m AUPR

DeepDTA CNN CNN 0.630 0.714
KronRLS Smith-Waterman Pubchem-Sim 0.407 0.661
SimBoost Smith-Waterman Pubchem-Sim 0.644 0.709
GANsDTA GAN GAN 0.653 0.691
TABLE 5 | The r2m index and AUPR score for the KIBA dataset.

Method Protein rep. Compound rep. r2m AUPR

DeepDTA CNN CNN 0.673 0.788
KronRLS Smith-Waterman Pubchem-Sim 0.342 0.635
SimBoost Smith-Waterman Pubchem-Sim 0.629 0.760
GANsDTA GAN GAN 0.675 0.753
FIGURE 4 | Predictions from DeepDTA model with two CNN blocks against measured (real) binding affinity values for Davis (pKd) and KIBA (KIBA score) datasets.
January 2020 | Volume 10 | Article 1243
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the raw sequence data of proteins and drugs and convolutional
regression when predicting the affinity. We compare the
performance of the proposed model with the state-of-art deep-
learning-based method as our baseline. By utilizing the unlabeled
data, our model can achieve competitive performance while
using freely available unlabeled data. However, because it is
difficult to train GANs, this approach is not comparative in the
scenarios of a small dataset, and the improved techniques for
training GANs should be employed to enhance the adaptability
of GANs.
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