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Giant viruses of ‘Megaviridae’ have the ability to widely disperse around the globe. We herein examined ‘Megaviridae’ 
communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), 
which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 
593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans 
metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the 
planet.
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‘Megaviridae’, also referred to as the extended Mimiviridae, 
is a rapidly expanding proposed family of nucleocytoplasmic 
large DNA viruses (NCLDVs) (see [24, 32] and references 
therein; [7] for an alternative proposal). ‘Megaviridae’ includes 
giant viruses such as mimiviruses (20), Cafeteria roenbergensis 
virus (10), and Prymnesium kappa virus RF01 (17). Early 
marine metagenomic surveys revealed the existence of viruses 
of ‘Megaviridae’ in the sea (13, 25, 26). They were later found 
to be highly abundant (14) and active (5) across oceanic 
regions, at an abundance estimated to be 103 to 105 genomes 
mL–1 seawater. The taxon richness of this viral group appears 
to be very large and exceeds that of the whole domain of 
Bacteria (24), suggesting that a diverse array of eukaryotes 
are potential hosts of these mostly unidentified viruses. 
Isolated lineages of this viral family are still rare; they infect 
unicellular algae (12, 17, 27, 31–33) and aquatic heterotrophic 
protists, such as amoeba infecting mimiviruses (1, 9, 10, 29). 
Furthermore, a viral group infecting sturgeons, a group of 
fishes from which caviar is obtained, was recently shown to 
be related to ‘Megaviridae’ (8). Therefore, viruses in this group 
appear to have important, but vastly unknown ecological 
functions in the aquatic environment through the regulation 
of the populations of their eukaryotic hosts.

Meta-barcoding approaches using degenerate polymerase 
chain reaction (PCR) primers that amplify specific genes from 
environmental DNA have been successful in characterizing the 
community structures of ‘Megaviridae’ in aquatic environments 
(18, 21, 37). We recently proposed a set of 82 pairs of 
degenerate PCR primers (i.e., MEGAPRIMER) targeting the 
B family DNA polymerase genes (polBs) of ‘Megaviridae’ 
(22). These primers were designed based on 904 metagenomic 
‘Megaviridae’ polBs in addition to 17 polBs from viruses with 
sequenced genomes. The MEGAPRIMER approach revealed 

5,595 ‘Megaviridae’ non-singleton operational taxonomic 
units (OTUs) at a nucleotide sequence identity of 97% in a 
seawater sample taken at Osaka Bay, Japan. However, 
MEGAPRIMER was only tested for a single seawater sample 
in our previous study. Therefore, the effectiveness of 
MEGAPRIMER has not yet been sufficiently demonstrated. 
In the present study, we used the same primer set to investigate 
‘Megaviridae’ community structures in four different aquatic 
environments.

Between June 2016 and October 2016, samples were collected 
from four geographically distant locations in Japan to cover a 
broad range of aquatic environments (Fig. 1 and Table 1). 
The sampling sites were distantly located from each other 
(between 74 and 1,765 km). Osaka Bay is a typical eutrophic 
environment surrounded by densely populated districts and 
forests with the input of nutrients from rivers. The Japan Sea 
represents a marginal sea environment that is semi-isolated 
from the north Pacific. A mangrove site in Ishigaki Island was 
selected for the potential existence of ‘Megaviridae’ (25). 
The Miyuki hot spring of Shirahama was also selected to 
examine the existence of ‘Megaviridae’ in a high temperature 
environment. Four liters of surface water (from a depth of 
between 0 and 5 m) was collected at each sampling location. 
Filtration and DNA extraction were performed as previously 
described (22). Each primer pair of MEGAPRIMER was 
used in a separate PCR amplification as previously described 
(22). In the present study, we did not select amplicons based 
on visualization in gel electrophoresis as previously reported 
(22); we mixed all 82 amplicons and an identical barcode was 
attached to PCR products from the same sample to distinguish 
sequences from different samples. One sequencing run was 
performed using a MiSeq platform with MiSeq V3 (2×300 bp) 
reagent kits (Illumina, San Diego, CA, USA) and with a 
spike-in of PhiX at 50% to serve as an internal control. Raw 
reads were processed using the ‘Megaviridae’ Amplicon 
Processing System (MAPS) as previously described (22). 
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OTUs were formed using CD-HIT-EST (11) with a nucleotide 
sequence identity of 97%. Rarefaction curves were generated 
using matplotlib package version 2.0.2 (16). The most abundant 
100 OTUs in each sample were selected (423 OTUs after 
removing redundancy) and used to build a phylogenetic tree 
based on their translated sequences. The phylogenetic tree 
was generated using FastTree version 2.1.9 (28) with a 
default setting (the JTT+CAT model) and visualized using 
Python ETE3 package version 3.0.0b35 (15). A Unifrac 
analysis (23) was performed with the scikit-bio package version 
0.5.1 of Python and visualized using R. Metagenomic genes 
from published Tara Oceans data (34) downloaded from 
MGENES (https://www.genome.jp/mgenes/) were initially 
screened for homologs of the mimivirus PolB sequence with 
TBLASTN (2), and then analyzed with CD-HIT-EST to 
identify genes nearly identical to OTUs (nucleotide sequence 
identity>97%). Raw read data were deposited to DDBJ 
(accession number DRA008113), and sequence data are 
also available from our ftp site (ftp://ftp.genome.jp/pub/db/
community/MEGAPRIMER_papers).

The resulting high quality ‘Megaviridae’ polB fragments 
were grouped into 3,627, 1,093, 593, and 220 non-singleton 
OTUs for Osaka Bay Aug., Japan Sea, Ishigaki Island, and 
Miyuki hot spring, respectively (Table 2). Rarefaction curves 
indicated that the number of OTUs was close to the plateau 
under the sequencing depth examined in the present study 
(Fig. 2). Unweighted Unifrac distances were calculated 
between ‘Megaviridae’ community structures in five samples 
by including previously generated data from Osaka Bay (22) 
and by selecting the 200 most abundant OTUs from each 
sample. A multidimensional scaling (MDS) analysis showed 
that the two samples from Osaka Bay were similar to each 
other. Other samples (Japan Sea, Ishigaki Island, and Miyuki 
hot spring) were distantly placed from the Osaka Bay samples 
in the MDS plot (Fig. 3).

We then performed phylogenetic analyses of representative 
sequences. The tree revealed dozens of diverse clades (clades 
ii to xii in Fig. 4) for ‘Mesomimivirinae’ (a proposed subfamily 
of ‘Megaviridae’), which includes known viruses of unicellular 
algae. The tree also revealed the detection of sequences 
belonging to ‘Megamimivirinae’ (another proposed subfamily 
including mimiviruses, Cafeteria roenbergensis virus and 
klosneuviruses; clade i in Fig. 4). However, we did not detect 
any sample-specific clades, which was unexpected because 
the hot freshwater spring (Miyuki) appeared to be ecologically 
distinct and isolated from other sites. In other words, each 
clade was found to contain OTUs from all or nearly all samples, 
although there were also OTUs specific to individual samples 
(as indicated by triangles in the outer ring of Fig. 4). Furthermore, 
a large proportion (78%; 330 OTUs) of the selected OTUs 
were found in more than one sample and 17 OTUs (4%) were 
discovered in all samples (Fig. 5). Regarding 7 out of 17 OTUs, 
their presence across five samples was supported at an identical 
read level (i.e. identical genotypes; star marks in Fig. 4).

The large number of OTUs shared among the samples 
tested prompted us to search metagenomic genes from the 
previous Tara Oceans expedition (34), which covered a large 
part of global oceans, for the non-singleton OTUs identified 
in the present study. Many of the OTUs were discovered in 
different oceanic regions, including the opposite side of the 
earth from Japan, such as the South Atlantic Ocean (Table 3).

Fig. 1. Locations of four sampling sites.

Table 1. Locations and sampling dates of samples used in the present study

Sample Longitude Latitude Depth (m) Temperature (°C) Salinity Date Reference
Osaka Bay Oct. N 34°19’28” E 135°7’15” 5 22.01 33.10 October 30, 2015 (22)
Osaka Bay Aug. N 34°19’28” E 135°7’15” 5 25.62 32.51 August 22, 2016 This study
Japan Sea N 37°20’06” E 134°49’85” 0 25.5 32.03 July 25, 2016 This study
Ishigaki Island N 24°19’19” E 124°03’23” 0 29.5 NA* October 13, 2016 This study
Miyuki hot spring N 33°40’35” E 135°20’18” 0 69.4 0.8 June 21 2016 This study

* The salinity meter broke down at this sampling site.

Table 2. Number of operational taxonomic units (OTUs) for each sample.

Sample Total number  
of OTUs

Number of  
singleton OTUs

Number of  
non-singleton  

OTUs

Number of  
sequences included  

in non-singleton  
OTUs

Osaka Bay Aug. 5,653 2,026 3,627 875,592
Japan Sea 2,206 1,113 1,093 1,115,401

Ishigaki Island 881 288 593 16,602
Miyuki Hot spring 304 84 220 39,769
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Previous studies isolated highly similar giant viruses in 
different countries. The genome of Mimivirus shirakomae 
(GenBank: AP017645) isolated in Japan (35) was nearly 
identical (nucleotide sequence identity of ~99.9%) to the 
genome of the first mimivirus (GenBank: NC_014649) isolated 
in England (29). The genome of a marseillevirus isolated in 
Shanghai (GenBank: MG827395) was nearly identical 
(~98.5%) to the genome of a marseillevirus isolated from 
Cannes, France (GenBank: KF261120). These findings suggest 
the long distance dispersal of giant viruses across continents 
and oceans through unidentified mechanisms, possibly via 
microscale droplets (30, 36), wind (3, 19), or oceanic current 
systems (4), as suggested for other smaller viruses. In the 
present study, we revealed the existence of polB OTUs that 
may be observed in largely distinct aquatic ecosystems, 
which span seawater, a mangrove site (brackish water), and 
freshwater hot spring. Furthermore, some OTUs were found 
in different oceans. Therefore, the dispersal of ‘Megaviridae’ 
occurs across distant geographical locations on a global scale. 
The present results also imply a relatively wide habitat and niche 
for at least some of the viruses belonging to ‘Megaviridae’.

It is notable that we detected 220 ‘Megaviridae’ OTUs 
from Miyuki hot spring, at which the water temperature 
was 69.4°C. This result suggests the existence of diverse 
‘Megaviridae’ in a high temperature environment. Giant 
viruses have not yet been isolated from an environment as hot 
as Miyuki spring, except for medusavirus recently isolated 
from a cooler, but still warm environment (43.4°C freshwater) 
(38). A previous study reported the genome sequences of 
‘Megaviridae’ assembled from metagenomic samples from a 
hot spring site, Yellowstone Lake (39). However, the 
genomes were co-assembled from different metagenomic 
data derived from samples collected at different locations 
with varying temperatures between 10 and 96°C. Therefore, 
it currently remains unclear whether ‘Megaviridae’ exist in a 
hot or warm environment. Another related study on the same 
metagenomes revealed the existence of virophages, which are 
parasites of ‘Megaviridae’ viruses, in a high temperature 
ecosystem (40). Zhou et al. assembled seven virophage 
genomes from 42 samples from Yellowstone Lake, and all of 
the virophage genomes were detected in vent water metage-
nomic samples (between 40 and 68°C). In the literature, the 
upper temperature limit for a eukaryotic cell to reproduce has 
been described as 65°C (6). Therefore, there may be no 
actively replicating eukaryotic cells in hot water at 69.4°C. In 
the Miyuki hot spring sampling site, water runs into a drain open 
to the surrounding environment, including the atmosphere. 
Therefore, it currently remains unclear whether ‘Megaviridae’ 
actively infect eukaryotic hosts in a hot environment. The 
quantitativity of the MEGAPRIMER approach needs to be 
investigated as previously pointed out (22); however, the two 
Osaka Bay samples (collected in different years, but within 
similar periods) being placed closely to each other in the 
MDS plot (Fig. 3) corroborate the effectiveness of the 
MEGAPRIMER approach for comparisons of ‘Megaviridae’ 
communities across environments.

Fig. 2. Rarefaction curves for Megaviridae polB OTUs with a 97% 
DNA sequence identity cut-off for four samples. (A) All four samples. 
(B) A magnified view of Ishigaki Island and Miyuki hot spring samples. 
Proximity to saturation is indicated by weak slopes at the end of each 
rarefaction curve. For example, an increase in 32.89 OTUs per resampling 
of one million reads is noted as a slope of 32.89/1M.

Fig. 3. MDS analysis of pairwise unweighted Unifrac distances between 
five samples. The stress value was 2.5×10–14.
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Fig. 4. Maximum-likelihood phylogenetic tree of ‘Megaviridae’ PolB meta-barcodes with additionally known ‘Megaviridae’ sequences. The tree 
is rooted with nine Phycodnaviridae sequences, which are not shown in this figure. Leaves are either meta-barcodes (black) or reference 
‘Megaviridae’ PolBs (red). Triangles in the most outer ring indicate OTUs specific to a single sample, and stars indicate OTUs containing genotypes 
shared among all samples. The next ring from outside indicates putative ‘Megamimivirinae’ (pink) or putative ‘Mesomimivirinae’ (light blue). The 
next five rings indicate the presence/absence of OTUs in the respective samples. The gray lines (labeled with Roman numerals from i to xii) inside 
the presence-absence rings indicate major clades of OTUs.

Table 3. Number of OTUs identified in Tara Oceans data.

Sample
Oceanic region*

MS RS IO SAO SO SPO NPO NAO
Osaka Bay Oct. 35 29 146 119 1 224 73 53
Osaka Bay Aug. 37 9 96 79 0 159 58 28
Japan Sea 17 2 46 58 0 63 27 15
Ishigaki Island 13 1 28 21 0 26 12 5
Miyuki hot spring 6 2 18 12 0 19 9 11

* Abbreviations: MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SAO, South Atlantic Ocean; SO, Southern Ocean; SPO, 
South Pacific Ocean; NPO, North Pacific Ocean; NAO, North Atlantic Ocean.
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