
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nanna Maria Sijtsema,
University Medical Center Groningen,
Netherlands

REVIEWED BY

Wen-Yen Huang,
Tri-Service General Hospital, Taiwan
Shixiong Liang,
Guangxi Medical University Cancer
Hospital, China

*CORRESPONDENCE

Yu-Jen Chen
chenmdphd@gmail.com
Shih-Ming Hsu
smhsu@ym.edu.tw

SPECIALTY SECTION

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

RECEIVED 28 March 2022
ACCEPTED 26 August 2022

PUBLISHED 20 September 2022

CITATION

Huang Y-M, Wang T-E, Chen M-J,
Lin C-C, Chang C-W, Tai H-C,
Hsu S-M and Chen Y-J (2022)
Radiomics-based nomogram as
predictive model for prognosis
of hepatocellular carcinoma with
portal vein tumor thrombosis
receiving radiotherapy.
Front. Oncol. 12:906498.
doi: 10.3389/fonc.2022.906498

COPYRIGHT

© 2022 Huang, Wang, Chen, Lin,
Chang, Tai, Hsu and Chen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 20 September 2022

DOI 10.3389/fonc.2022.906498
Radiomics-based nomogram
as predictive model for
prognosis of hepatocellular
carcinoma with portal
vein tumor thrombosis
receiving radiotherapy

Yu-Ming Huang1,2,3, Tsang-En Wang2,4,5, Ming-Jen Chen2,4,5,
Ching-Chung Lin2,4,5, Ching-Wei Chang2,4,5, Hung-Chi Tai3,6,
Shih-Ming Hsu3* and Yu-Jen Chen2,5,6,7,8*

1Department of Radiation Oncology, Taipei Hospital, Ministry of Health and Welfare, New
Taipei City, Taiwan, 2Department of Medicine, MacKay Medical College,
New Taipei City, Taiwan, 3Department of Biomedical Imaging and Radiological Sciences,
National Yang Ming Chiao Tung University, Taipei, Taiwan, 4Division of Gastroenterology,
Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, 5Department of
Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing,
and Management, New Taipei City, Taiwan, 6Department of Radiation Oncology, MacKay
Memorial Hospital, Taipei, Taiwan, 7Department of Medical Research, MacKay Memorial
Hospital, Taipei, Taiwan, 8Department of Medical Research, China Medical University Hospital,
Taichung, Taiwan
Background: This study aims to establish and validate a predictive model based

on radiomics features, clinical features, and radiation therapy (RT) dosimetric

parameters for overall survival (OS) in hepatocellular carcinoma (HCC) patients

treated with RT for portal vein tumor thrombosis (PVTT).

Methods: We retrospectively reviewed 131 patients. Patients were randomly

divided into the training (n = 105) and validation (n = 26) cohorts. The clinical

target volume was contoured on pre-RT computed tomography images and

48 textural features were extracted. The least absolute shrinkage and selection

operator regression was used to determine the radiomics score (rad-score). A

nomogram based on rad-score, clinical features, and dosimetric parameters

was developed using the results of multivariate regression analysis. The

predictive nomogram was evaluated using Harrell’s concordance index

(C-index), area under the curve (AUC), and calibration curve.

Results: Two radiomics features were extracted to calculate the rad-score for

the prediction of OS. The radiomics-based nomogram had better performance

than the clinical nomogram for the prediction of OS, with a C-index of 0.73

(95% CI, 0.67–0.79) and an AUC of 0.71 (95% CI, 0.62–0.79). The predictive

accuracy was assessed by a calibration curve.
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Conclusion: The radiomics-based predictive model significantly improved OS

prediction in HCC patients treated with RT for PVTT.
KEYWORDS

hepatocellular carcinoma, portal vein tumor thrombosis, radiation therapy, radiomics,
predictive model
Introduction

Hepatocellular carcinoma (HCC) is the sixth most common

cancer and the third leading cause of cancer death worldwide.

The prognosis of HCC is poor, with a 5-year survival rate of

5%–18% (1–4). Approximately 70% of newly diagnosed HCC

patients are not suitable for curative local treatment (5). The

major cause is macrovascular invasion, in which tumor cells

invade the portal vein, hepatic vein, or the inferior vena cava in

the liver (6). Portal vein tumor thrombosis (PVTT) is a common

complication of HCC and is related to poor prognosis and poor

response to local treatment. The incidence of PVTT in HCC

ranges from 44% to 62% (7). PVTT can interfere with the portal

blood supply in the normal liver and deteriorate liver function. It

may contribute to intrahepatic or extrahepatic metastasis (8).

This locally advanced and mostly unresectable disease is

associated with rapid cancer progression and deterioration of

liver function. Patients with PVTT have a median survival rate of

only 3 months without treatment (9). Current treatments for

HCC with PVTT include targeted therapy with sorafenib and

lenvatinib and locoregional treatments such as operation (OP),

radiation therapy (RT), transarterial chemoembolization

(TACE), and transarterial radioembolization (TARE) (10–13).

However, there is no consensus on the best forms of treatment

for HCC patients with PVTT. Several clinical studies have

reported that RT alone or combined with TACE is an effective

treatment for HCC with PVTT (14–17). The clinical target

volume (CTV) of RT for PVTT usually encompasses the area

of PVTT and/or visible tumor with a 5–10–mm margin to cover

the involved portal vein region (18). The advantages of RT for

HCC with PVTT are local tumor control, portal vein patency,

and survival benefit (19). No universal marker or method of

clinical utility that can predict the survival of HCC patients

treated with RT for PVTT is known. An effective predictive

model that may guide precision medicine for these patients with

generally poor survival is required.

HCC can be diagnosed on contrast-enhanced computed

tomography (CT) or magnetic resonance imaging (MRI) (20).

Therefore, HCC is frequently diagnosed on images alone,
02
precluding the requirement for tissue proof. Currently, CT is

routinely used by physicians for diagnosis, staging, and RT

planning for HCC. Radiomics is an emerging and promising

methodology for medical image analysis that converts medical

images into high-dimensional quantitative features using

machine learning algorithms and statistical analysis software.

Thus, it may facilitate the detection of lesions (21, 22), improve

diagnostic accuracy (23–25), predict disease risk and prognosis

(26–32), evaluate the risk of treatment and treatment-related

toxicities (33–37), and guide treatment strategies (38, 39) in

different types of diseases, especially malignancies. Several

studies have been published on the use of radiomics in HCC

(40–43). Wang et al. analyzed the prognostic value of MRI

textural features in HCC in 201 patients who underwent OP

(44). Meng et al. integrated intratumoral and peritumoral CT

radiomics features and clinical features to develop and validate a

radiomics-based predictive nomogram to predict overall survival

(OS) in HCC patients undergoing TACE (45). Cozzi et al.

appraised the ability of a radiomics-based analysis to predict

local response and OS in HCC patients who were eligible for

curative or palliative RT (46). To the best of our knowledge,

relatively limited data and few studies focused on prognosis

estimation in HCC patients treated with RT for PVTT with

radiomics analysis are available. This study uses radiomics

features of CTV, which are derived from the pre-RT CT of

HCC patients with PVTT, in combination with clinical features

and RT dosimetric parameters to develop a predictive model for

HCC with PVTT.
Material and methods

Patients

We retrospectively reviewed HCC patients newly diagnosed

with PVTT between December 2007 and December 2019 in one

institution. A contrast-enhanced CT or MRI was performed for

diagnosis and staging. According to the 7th edition American

Joint Committee on Cancer/American Joint Committee on
frontiersin.org
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Cancer staging system, all patients were staged IIIB (patients

with a single tumor or multiple tumors of any size involving a

major branch of the portal vein or hepatic vein, Vp4 in Liver

Cancer Study Group of Japan classification). All patients had an

Eastern Cooperative Oncology Group (ECOG) performance

status of 0 to 2. In this study, patients were either inoperable

or not eligible for TACE or TARE. The primary treatments were

RT and/or targeted therapy. Patients with a history of OP, RT,

TACE, or TARE were excluded. A total of 131 patients were

enrolled and randomly divided into the training cohort (n = 105)

and validation cohort (n = 26), with a ratio of 4:1.
RT protocol

Patients underwent CT simulation in the supine position and

were immobilized with an alpha cradle. Planning CT images with a

slice thickness of 3 mm were acquired through the entire upper

abdomen. Contrast-enhanced CT was used to localize the PVTT

along with the primary tumor and to assess the enhancement

patterns of lesions. The gross tumor volume (GTV) was delineated

using the diagnostic and simulation images of the PVTT with or

without the primary liver tumor. The CTV was determined by

expanding the GTV margin by 5–10 mm to consider areas at

significant risk of microscopic disease. The planning target volume

(PTV) was generated by adding a 5–10–mmmargin to the CTV in

all directions for a setup error. RT was delivered using either three-

dimensional conformal radiotherapy or intensity-modulated

radiation therapy (IMRT) based on physician preference. The

treatment plans were designed using 6- or 10-MV photons. All

patients were treated with linear accelerators. Dosimetric

parameters such as the dose of the CTV and normal organs were

extracted from RT planning systems (Eclipse Treatment Planning

System; Varian Medical Systems Inc., Palo Alto, CA, USA). The

prescribed dose was 45, 50, or 60 Gy delivered in 1.8–2 Gy per

fraction (BED10: 53.1–72.0 Gy). The goals were to deliver the

prescribed dose to ≥95% of the PTV and 95% of the prescribed dose

to ≥99% of the PTV. The dosimetric parameters were recorded for

evaluation. After RT, abdominal CT or MRI was performed for

response assessment. Most patients underwent abdominal CT or

MRI 1 month after RT. The patency status of the portal vein area

was evaluated by experienced radiologists.
Acquisition of CT images

Contrast-enhanced CT was performed using Philips MRC

800 (Philips Medical Systems, Amsterdam, Netherlands) with a

peak tube voltage of 120 kVp, tube current of 325 mA, rotation

time of 0.75 s, matrix of 512 × 512, field of view of 50 cm, and

slice thickness of 3 mm for RT planning and radiomics analysis.
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Texture analysis

The CTV, the region of interest (ROI), was contoured by

experienced radiation oncologists on all axial CT images.

Segmentation was performed using the Eclipse system.

Three-dimension ROI was visualized using Local Image

Features Extraction (LIFEx) version 5.10 (http://www.lifexsoft.

org; Orsay, France) (47). The LIFEx software was used to extract

the textural features of the ROI. A total of 48 textural features of

the images were extracted, including features of a histogram-

based matrix, gray-level co-occurrence matrix (GLCM), gray-

level run length matrix (GLRLM), neighborhood gray-level

dependence matrix (NGLDM), and gray-level zone length

matrix (GLZLM) (Figure 1).
Extraction of radiomics features

The study population was divided into the training and

validation cohorts in a ratio of 4:1 using the sample function of R

(version 3.6.1) software (https://www.r-project.org; Vienna,

Austria) to make randomization. The least absolute shrinkage

and selection operator (LASSO) Cox regression was performed

to determine the radiomics features that can predict OS in the

training cohort. We performed the 10-fold cross-validation 20

times. The final value of lambda (penalized parameter) was

determined with the minimized mean deviance and the

corresponding subset of covariates with non-zero coefficients.

Features were selected by the total times of non-zero coefficient

in 20 randomized 10-fold cross-validations. The Cox

proportional-hazard model was fitted with the selected

features, and the radiomics score (rad-score) predicting OS

could be calculated linearly.
Clinical feature extraction

The following 17 clinical features were selected: age, gender,

etiology of viral hepatitis, drinking history, ECOG performance

status, Child-Pugh class, tumor size, anemia status, serum levels

of alpha-fetoprotein (AFP), white blood cell, platelet, albumin,

alanine aminotransferase, aspartate aminotransferase (AST),

total bilirubin, creatinine, and prothrombin time.
RT dosimetric parameters

The prescribed RT doses, RT fields as involved PVTT with

or without primary liver tumors, CTV, normal liver volume

(NLV), and mean liver doses (MLDs) of all patients were

recorded (Figure 2).
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FIGURE 2

Radiation therapy plan for a patient. The prescribed dose to treat portal vein tumor thrombosis only is 50 Gy. The clinical target volume as the
region of interest is contoured in red, and the volume is 280.7 cm3. The normal liver volume is 1,769.0 cm3, and the mean liver dose is 2,189.4 cGy.
FIGURE 1

Study workflow. The region of interest (ROI) was segmented on all transverse contrast-enhanced computed tomography images by
experienced radiation oncologists using the Eclipse system. After a three-dimensional reconstruction of the ROI, 48 textural features, including
conventional features, histogram features, gray-level co-occurrence matrix, gray-level run-length matrix, neighborhood gray-level dependence
matrix, and gray-level zone length matrix, were extracted. The extracted features were selected by least absolute shrinkage and selection
operator regression. Based on the selected radiomics features, clinical features, and radiation therapy dosimetric parameters, a nomogram
model was established to predict overall survival. The performance of the predictive model was evaluated with concordance index, area under
the curve of the receiver operating characteristic curve, and calibration curve.
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Statistical analysis

Statistical analysis was performed using R (version 3.6.1) and

SPSS version 24.0 (IBM Corporation, Armonk, NY, USA).

Numerical data are presented as mean ± standard deviation.

LASSO regression analysis was performed using the “glmnet”

package to select the radiomics features for rad-score to predict

OS. The optimal cutoff value of the rad-score was determined

using X-tile software (Yale University, New Haven, CT, USA).

The survival curves were plotted using the Kaplan–Meier method

and assessed using the log-rank test. The Chi-square test was used

to assess categorical variables, and the Mann–Whitney U test was

used to assess continuous variables. Univariate Cox regression

analysis was performed to determine the predictors of OS from

rad-score, clinical features, and RT dosimetric parameters.

Thereafter, multivariate Cox regression analysis was used to

select prognostic factors for the establishment of predictive

nomogram models. The “survival” and “rms” packages were

used for survival analysis, nomogram model construction,

Harrell’s concordance index (C-index) calculation, and

calibration curve. The C-index was a measure of goodness-of-fit

for outcomes in a regression model, ranging from 0.5 to 1. A

C-index value of 0.5 indicated that the predictive ability of the

model was no better than a random chance, whereas C-index

values of >0.7 and >0.8 indicated that the model was good and

strong, respectively. A value of 1 implied that the model perfectly

predicted the outcome. The “survivalROC” package was used for

calculation and comparison of the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve for evaluation of

the nomogram. The AUC ranged from 0.5 to 1. The

discrimination potent of the model based on the value of AUC

was as follows: 0.5, no discrimination potent; 0.7–0.8, acceptable;

0.8–0.9, excellent; and >0.9, outstanding. Differences were

considered significant at p < 0.05.
Establishment of predictive models

Based on the results of multivariate Cox regression analysis,

the nomogram models with significant clinical features, RT

dosimetric parameters, and/or rad-score were constructed to

predict OS in HCC patients treated with RT for PVTT. The

confirmation of nomograms was subjected to a 1,000 resampling

bootstrap analysis for validation. The predictive models were

evaluated with C-indexes, AUC of ROC curves, and calibration

curves (Figure 1).
Ethical statement

This study was approved by the Institutional Review Board

of our institution (IRB number: 20MMHIS215e).
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Results

Patient characteristics

A summary of the baseline characteristics of the 131 patients

is presented in Table 1. The median age at diagnosis was 61 years

(range: 36–87 years), and 108 (82.4%) of the patients were men.

A total of 110 (84.0%) patients had hepatitis B/C virus infection,

and 93 (71.0%) patients had a drinking history. In this study, 83,

44, and 4 patients had Child–Pugh classes A, B, and C,

respectively. The pre-RT tumor size was 9.5 ± 5.2 cm. Before

RT, 59 (45.0%) patients had anemia, and the median serum AFP
TABLE 1 Baseline characteristics of all patients.

Characteristics N = 131

Age (median (range), year) 61 (36–87)

Gender (N (%))

Male 108 (82.4)

Female 23 (17.6)

Hepatitis (B/C) (N (%))

Yes 110 (84.0)

No 21 (16.0)

Drinking history (N (%))

Yes 93 (71.0)

No 38 (29.0)

ECOG (N (%))

0 36 (27.5)

1 71 (54.2)

2 24 (18.3)

Child–Pugh class (N (%))

A 83 (63.4)

B 44 (33.6)

C 4 (3.0)

Tumor size (mean (SD), cm) 9.5 (5.2)

Anemia (N (%))

Yes 59 (45.0)

No 72 (55.0)

AFP (median (range), ng/ml) 149.3 (1.2–515,800.0)

WBC (mean (SD), 103/µl) 6.3 (2.5)

PLT (mean (SD), 103/µl) 172.3 (105.5)

ALB (mean (SD), g/dl) 3.5 (0.6)

ALT (mean (SD), IU/L) 53.2 (42.1)

AST (mean (SD), IU/L) 86.0 (80.8)

TBIL (mean (SD), mg/dl) 1.5 (0.9)

Cr (mean (SD), mg/dl) 0.9 (0.3)

PT (mean (SD), s) 11.8 (1.0)
ECOG, Eastern Cooperative Oncology Group; SD, standard deviation; AFP,
alpha-fetoprotein; WBC, white blood cell; PLT, platelet; ALB, albumin; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; Cr, creatinine;
PT, prothrombin time.
The performance status was graded with the ECOG score, in which grade 0 indicated fully
active, grade 1 indicated able to perform light work, and grade 2 indicated capable of all
self-care but unable to perform any work activities.
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level was 149.3 ng/ml (range: 1.2–515,800.0 ng/ml). The baseline

characteristics of the training and validation cohorts are

summarized in Table 2. No significant differences were found

in the baseline characteristics of the two cohorts.
RT dosimetric parameters

The RT dosimetric parameters for 131 patients are presented

in Table 3. A total of 25, 101, and 5 patients were treated with an

RT dose of 45, 50, and 60 Gy, respectively. The RT field in 88

(67.2%) patients involved PVTT only and that in 43 (32.8%)

patients involved PVTT and primary liver tumors. The median
Frontiers in Oncology 06
CTV was 164.6 cm3 (range: 19.5–2,189.0 cm3). The NLV was

1,140.7 ± 480.8 cm3, and the MLD was 1891.3 ± 651.5 cGy. The

RT dosimetric parameters for the training and validation cohorts

are summarized in Table 4. No significant differences were found

between the two cohorts for RT dosimetric parameters.
Treatment outcome

The treatment outcomes of the patients are presented in

Table 5. The median follow-up time was 9.8 months (range,

1.6–57.9 months), and 101 (77.1%) patients underwent

abdominal CT or MRI images for response assessment. Three
TABLE 2 Baseline characteristics of the training and validation cohorts.

Characteristics Training cohort (N = 105) Validation cohort (N = 26) p

Age (median (range), year) 61 (36–87) 62 (45–84) 0.36

Gender (N (%))

Male 88 (83.8) 20 (76.9) 0.41

Female 17 (16.2) 6 (23.1)

Etiology of viral hepatitis (N (%))

Hepatitis B 64 (60.9) 12 (46.2) 0.11

Hepatitis C 23 (21.9) 4 (15.4)

Hepatitis B + C 5 (4.8) 2 (7.7)

None 13 (12.4) 8 (30.7)

Drinking history (N (%))

Yes 76 (72.4) 17 (65.4) 0.48

No 29 (27.6) 9 (34.6)

ECOG (N (%))

0 28 (26.7) 8 (30.7) 0.92

1 59 (56.2) 12 (46.2)

2 18 (17.1) 6 (23.1)

Child–Pugh class (N (%))

A 68 (64.8) 15 (57.7) 0.79

B 34 (32.4) 10 (38.5)

C 3 (2.8) 1 (3.8)

Tumor size (mean (SD), cm) 9.5 (5.1) 9.4 (5.2) 0.93

Anemia (N (%))

Yes 46 (43.8) 13 (50.0) 0.57

No 59 (56.2) 13 (50.0)

AFP (median (range), ng/ml) 149.3 (1.2–515,800.0) 136.9 (2.0–121,480.0) 0.59

WBC (mean (SD), 103/µl) 6.3 (2.4) 6.2 (2.7) 0.84

PLT (mean (SD), 103/µl) 177.4 (108.7) 151.5 (89.9) 0.28

ALB (mean (SD), g/dl) 3.5 (0.6) 3.6 (0.6) 0.29

ALT (mean (SD), IU/L) 54.0 (43.9) 50.0 (33.8) 0.51

AST (mean (SD), IU/L) 87.1 (81.2) 81.5 (63.7) 0.64

TBIL (mean (SD), mg/dl) 1.5 (0.9) 1.5 (0.9) 0.85

Cr (mean (SD), mg/dl) 0.9 (0.3) 0.9 (0.2) 0.83

PT (mean (SD), s) 11.7 (1.0) 12.1 (1.2) 0.15
frontiersin
ECOG, Eastern Cooperative Oncology Group; SD, standard deviation; AFP, alpha-fetoprotein; WBC, white blood cell; PLT, platelet; ALB, albumin; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; TBIL, total bilirubin; Cr, creatinine; PT, prothrombin time.
The performance status was graded with the ECOG score. A two-sided p-value of < 0.05 was considered statistically significant.
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(2.3%) patients were alive at the time of the current analysis.

Sixteen (15.8%) patients had patent portal veins after RT. The

median OS was 9.8 months (95% CI, 8.0–11.6 months), and the

median progression-free survival (PFS) was 5.6 months (95% CI,

4.8–6.4 months). Distant metastases were found in 22 (16.8%)

patients. The treatment outcomes of the training and validation

cohorts are summarized in Table 6. No significant differences in

treatment outcomes were found between the two cohorts.
Radiomics feature extraction and
development of the rad-score

A total of 48 radiomics features were extracted from the

imaging data of all patients. Two features were selected by

LASSO Cox regression analysis to predict the OS in the training
Frontiers in Oncology 07
cohort (Figure 3). The rad-score formula was GLRLM_HGRE

× −2.973897e−05 + GLRLM_SRHGE × −2.504878e−05.
Rad-score and correlation with OS

The optimal cutoff value of the rad-score, as determined by

X-tile software, was −0.6. The patients were divided into the

high- (≧−0.6) and low-risk (<−0.6) groups based on the cutoff

value of the rad-score. The median OS rates in the high- and

low-risk groups were 7.4 months (95% CI, 6.5–10.7) and 12.4

months (95% CI, 10.0–16.8), respectively (p = 0.007).

Considering the training cohort, the median OS rates in the

high- and low-risk groups were 7.5 months (95% CI, 6.5–11.2)

and 11.8 months (95% CI, 9.6–16.8), respectively (p = 0.038). In

the validation cohort, the median OS rates in the high- and low-

risk groups were 6.8 months (95% CI, 4.3–NA) and 12.6 months
(95% CI, 10.7–NA), respectively (p = 0.033). The median OS

rates were significantly lower in the high-risk groups than in the

low-risk groups in both the training and validation

cohorts (Figure 4).
Extraction of significant features

Univariate and multivariate Cox regression analyses were

performed to determine the predictors of OS from rad-score,

clinical features, and RT dosimetric parameters. Univariate

analysis revealed seven predictors, namely gender, Child–Pugh

class, anemia status, rad-score, MLD, tumor size, and AST, for

OS prediction. Gender, Child–Pugh class, anemia status, rad-

score, and MLD were found to be independent predictors in

multivariate analysis (Table 7).
TABLE 3 RT dosimetric parameters of all patients.

Parameters N = 131

RT dose (N (%))

45 Gy 25 (19.1)

50 Gy 101 (77.1)

60 Gy 5 (3.8)

RT field (N (%))

Involved PVTT 88 (67.2)

Involved PVTT + liver tumors 43 (32.8)

CTV (median (range), cm3) 164.6 (19.5–2,189.0)

NLV (mean (SD), cm3) 1,140.7 (480.8)

MLD (mean (SD), cGy) 1,891.3 (651.5)
RT, radiation therapy; PVTT, portal vein tumor thrombosis; CTV, clinical target volume;
NLV, normal liver volume; SD, standard deviation; MLD, mean liver dose.
TABLE 4 RT dosimetric parameters of the training and validation cohorts.

Parameters Training cohort (N = 105) Validation cohort (N = 26) p

RT dose (N (%))

45 Gy 21 (20.0) 4 (15.4) 0.87

50 Gy 80 (76.2) 21 (80.8)

60 Gy 4 (3.8) 1 (3.8)

RT field (N (%))

Involved PVTT 72 (68.6) 16 (61.5) 0.49

PVTT + liver tumors 33 (31.4) 10 (38.5)

CTV (median (range), cm3) 175.6 (27.3–2,189.0) 154.2 (19.5–1,958.0) 0.63

NLV (mean (SD), cm3) 1137.4 (498.2) 1,154.0 (411.2) 0.88

MLD (mean (SD), cGy) 1,895.5 (661.5) 1,874.5 (621.5) 0.88
frontiersin
RT, radiation therapy; PVTT, portal vein tumor thrombosis; CTV, clinical target volume; NLV, normal liver volume; SD, standard deviation; MLD, mean liver dose.
A two-sided p-value of < 0.05 was considered statistically significant.
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Establishment of the predictive model

Based on the result of multivariate Cox regression analysis, a

radiomics-based nomogram with significant clinical features, RT

dosimetric parameters, and rad-score was developed to predict OS.
Frontiers in Oncology 08
A clinical nomogram with selected clinical features and RT

dosimetric parameters was developed for OS prediction (Figure 5).
Performances of different predictive
nomograms and significant features

C-indexes were used to evaluate the discrimination power of

significant features, clinical nomogram, and radiomics-based

nomogram. The C-index profiles are presented in Table 8. In

this study, the radiomics-based nomogram showed the best

discrimination power, which was examined by internal

validation. ROC analyses for 9-month survival, the AUCs for
the radiomics-based nomogram and clinical nomogram were 0.71

(95% CI, 0.63–0.79) and 0.61 (95% CI, 0.51–0.71), respectively

(Figure 6). The calibration curves of the radiomics-based

nomogram and clinical nomogram are presented in Figure 7.

The radiomics-based nomogram exhibited better predictive
TABLE 5 Treatment outcomes of all patients.

Outcomes N = 131

Patency (N (%))

Yes 16 (15.8)

No 85 (84.2)

OS (median (95% CI), m) 9.8 (8.0–11.6)

PFS (median (95% CI), m) 5.6 (4.8–6.4)

DM (N (%))

Yes 22 (16.8)

No 109 (83.2)
OS, overall survival; CI, confidence interval; PFS, progression-free survival; DM, distant
metastasis.
TABLE 6 Treatment outcomes of the training and validation cohorts.

Outcomes Training cohort (N = 105) Validation cohort (N = 26) p

Patency (N (%))

Yes 13 (15.5) 3 (17.6) 0.82

No 71 (84.5) 14 (82.4)

OS (median (95% CI), m) 9.8 (7.9–11.7) 10.1 (6.7–13.7) 0.87

PFS (median (95% CI), m) 5.2 (4.4–6.1) 5.9 (4.1–7.7) 0.47

DM (N (%))

Yes 19 (18.1) 3 (11.5) 0.64

No 86 (81.9) 23 (88.5)
frontiersin
OS, overall survival; CI, confidence interval; PFS, progression-free survival; DM, distant metastasis.
A two-sided p-value of <0.05 was considered statistically significant.
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FIGURE 3

Least absolute shrinkage and selection operator (LASSO) regression analysis for the selection of significant radiomics features from the 48
textural features. (A) Coefficient profile of the LASSO model. (B) Optimal tuning parameter (lambda) selection using 10-fold cross-validation with
minimum criteria. Two significant radiomics features were extracted.
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FIGURE 4

Survival curves of the high- and low-risk groups based on the radiomics score (rad-score) classification. The rad-scores in the high- and low-
risk groups were more than −0.6 and less than −0.6, respectively. (A) Considering all patients, the median overall survival (OS) rates in the high-
and low-risk groups were 7.4 months (95% CI, 6.5–10.7) and 12.4 months (95% CI, 10.0–16.8), respectively (p = 0.007). (B) Considering the
training cohort, the median OS rates in the high- and low-risk groups were 7.5 months (95% CI, 6.5–11.2) and 11.8 months (95% CI, 9.6–16.8),
respectively (p = 0.038). (C) Considering the validation cohort, the median OS rates in the high- and low-risk groups were 6.8 months (95% CI,
4.3–NA) and 12.6 months (95% CI, 10.7–NA), respectively (p = 0.033).
TABLE 7 Univariate and multivariate analyses for predictors of OS.

Predictors Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Gender

Male 1 1

Female 1.704 1.062–2.735 0.025 1.886 1.013–3.512 0.045

Child–Pugh class

A 1 1

B and C 1.515 1.042–2.201 0.028 1.672 1.053–2.655 0.029

Anemia

No 1 1

Yes 1.617 1.123–2.328 0.009 1.690 1.043–2.739 0.033

Rad-score

<−0.6 1 1

≧−0.6 1.635 1.137–2.351 0.008 1.540 1.007–2.355 0.047

MLD (cGy) 1.000 1.000–1.001 0.050 1.001 1.000–1.001 0.002

Tumor size (cm) 1.054 1.016–1.093 0.005 1.040 0.990–1.092 0.119

AST (U/L) 1.003 1.001–1.004 0.001 1.002 0.998–1.006 0.292
Frontiers in Oncology
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OS, overall survival; HR, hazard ratio; CI, confidence interval; rad-score, radiomics score; MLD, mean liver dose; AST, aspartate aminotransferase.
A two-sided p-value of <0.05 was considered statistically significant.
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accuracy than the clinical nomogram for the prediction of 9-

month survival.
Discussion

In this study, we intended to develop a radiomics-based

nomogram using pre-RT CT data. Univariate and multivariate

analyses revealed that the rad-score significantly influenced OS.

The performance of the radiomics-based nomogram was better

than the clinical nomogram, and the predictive accuracy of each

significant feature in the C-index and ROC analysis was

examined by the calibration curve.

This study was conducted in the Department of Radiation

Oncology in a medical center. All HCC patients were treated
Frontiers in Oncology 10
with the same RT protocol to ensure the standardization of the

treatment and CT quality. CT was performed according to the

American Association of Physicists in Medicine (AAPM) and

American College of Radiology (ACR) guidelines (AAPM report

#74 and #96 and ACR CT QC manual) and standard quality

assurance measures.

Few studies have reported the application of radiomics and

clinical features to predict treatment outcomes and prognosis in

different types of cancers treated with RT. Hou et al. established

an integrated model that combined posttreatment CT radiomics

features and clinical features for response and OS prediction in

esophageal cancer patients undergoing neoadjuvant

chemoradiotherapy (48). Wu et al. developed a nomogram

using radiomics and clinical features to predict OS in HCC

patients treated with stereotactic body radiotherapy (SBRT) for
B

C D

A

FIGURE 5

Nomograms for the prediction of overall survival. Nomograms with radiomics score, significant clinical features, and radiation therapy (RT)
dosimetric parameters for the prediction of (A) median survival time and (B) 6-, 9-, and 12-month survival rates. Nomograms with selected
clinical features and RT dosimetric parameters for the prediction of (C) median survival time and (D) 6-, 9-, and 12-month survival rates.
TABLE 8 C-indexes of significant features, clinical nomogram, and radiomics-based nomogram.

Variables Training cohort Validation cohort All patients

C-index 95% CI C-index 95% CI C-index 95% CI

Gender 0.54 0.50–0.58 0.53 0.41–0.65 0.54 0.50–0.58

Child–Pugh class 0.54 0.48–0.60 0.65 0.54–0.76 0.56 0.51–0.61

Anemia 0.56 0.50–0.62 0.58 0.46–0.70 0.56 0.51–0.61

MLD 0.51 0.44–0.58 0.59 0.46–0.72 0.53 0.47–0.59

Rad-score 0.57 0.52–0.62 0.64 0.53–0.75 0.58 0.53–0.63

Clinical nomogram 0.60 0.53–0.67 0.72 0.58–0.86 0.61 0.55–0.67

Radiomics-based nomogram 0.72 0.65–0.79 0.82 0.69–0.95 0.73 0.67–0.79
front
C-index, concordance index; CI, confidence interval; MLD, mean liver dose; rad-score, radiomics score.
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PVTT (49). Parr et al. indicated that a radiomics-based

predictive model combined with clinical features is better than

an analysis of clinical features alone for predicting OS in

pancreatic cancer patients treated with SBRT (50). Thus,

radiomics combined with clinical features may have a better

performance than analysis with clinical features alone for

treatment response and OS prediction.

This study has several limitations. First, MRI is the preferred

imaging modality for the evaluation of liver lesions. The technique

of MRI-guided RT with MRI simulation and planning is rapidly

developing (51). However, contrast-enhanced CT is still the main

imaging methodology for diagnosis, staging, and RT planning for

HCC, with acceptable sensitivity and high specificity. It is

noninvasive, well-developed in current clinical practice, and not

time-consuming or labor-consuming. Second, sorafenib has been

used as the standard systemic treatment of advanced HCC during

the investigation period of our study population. Currently,

different agents such as lenvatinib, checkpoint inhibitors, and

antivascular endothelial growth factor receptor antibodies have

demonstrated efficacy in the treatment of advanced HCC. The
Frontiers in Oncology 11
effects of different systemic treatments should be examined in the

future. Third, this study included 30 patients without CT or MRI

follow-up data. Fourth, the small number of patients from a single

institute could not draw a firm conclusion for application in other

hospitals. In this retrospective review study, the standardization of

CT simulation protocol, RT dose to PTV, and follow-up schedule

lasted for 12 years, which might provide an informative database for

analyzing radiomics and clinical outcomes. The current results may

provide proof-of-concept information and practical procedures for

other hospitals trying to apply radiomics in each institute. A

prospective large-scale and multicenter study is required. Finally,

the data in this study are derived from one hospital. Although

internal validation was conducted for verification, further

multicenter analysis is required for external validation.
Conclusion

Radiomics features combined with clinical features and

dosimetric parameters have better performance than each
BA

FIGURE 6

Receiver operating characteristic curves of different predictive nomograms for 9-month survival. (A) The area under the curve (AUC) was 0.71
(95% CI, 0.62–0.79) in the radiomics-based nomogram. (B) The AUC was 0.61 (95% CI, 0.51–0.71) in the clinical nomogram.
BA

FIGURE 7

Calibration curves of (A) the radiomics-based nomogram and (B) clinical nomogram for the prediction of 9-month survival.
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significant feature and clinical nomogram. This study

recommends the development of a predictive model with

significant clinical features, radiomics features, and dosimetric

parameters. The multicenter analysis is warranted after the

standardization of treatment protocol, radiology imaging, and

radiomics data in all hospitals for external validation to ensure

the accuracy of the universal predictive model.
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