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Abstract

Modelling the emergence of foodborne pathogens is a crucial step in the prediction and pre-

vention of disease outbreaks. Unfortunately, the mechanisms that drive the evolution of

such continuously adapting pathogens remain poorly understood. Here, we combine molec-

ular genotyping with network science and Bayesian inference to infer directed genotype net-

works—and trace the emergence and evolutionary paths—of Salmonella Typhimurium

(STM) from nine years of Australian disease surveillance data. We construct networks

where nodes represent STM strains and directed edges represent evolutionary steps, pre-

senting evidence that the structural (i.e., network-based) features are relevant to under-

standing the functional (i.e., fitness-based) progression of co-evolving STM strains. This is

argued by showing that outbreak severity, i.e., prevalence, correlates to: (i) the network path

length to the most prevalent node (r = −0.613, N = 690); and (ii) the network connected-com-

ponent size (r = 0.739). Moreover, we uncover distinct exploration-exploitation pathways in

the genetic space of STM, including a strong evolutionary drive through a transition region.

This is examined via the 6,897 distinct evolutionary paths in the directed network, where we

observe a dominant 66% of these paths decrease in network centrality, whilst increasing in

prevalence. Furthermore, 72.4% of all paths originate in the transition region, with 64% of

those following the dominant direction. Further, we find that the length of an evolutionary

path strongly correlates to its increase in prevalence (r = 0.497). Combined, these findings

indicate that longer evolutionary paths result in genetically rare and virulent strains, which

mostly evolve from a single transition point. Our results not only validate our widely-applica-

ble approach for inferring directed genotype networks from data, but also provide a unique

insight into the elusive functional and structural drivers of STM bacteria.

Author summary

We study emergence and evolution of foodborne pathogens, and provide a new method

for public health surveillance dealing with genetically diverse and spatiotemporally
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distributed epidemic scenarios. The proposed method interprets the surveillance data

through genotype networks, and discovers how the most dominant strains of infection

emerge and adapt. The approach allows us to correlate the strength of epidemics with

genetic features of observed pathogens. This could open a way to predict and contain

epidemics closer to their source, enabling more timely and precise allocations of public

health resources, as well as efficient interventions during epidemics. This should make a

significant economic and social impact, improving health of the population, while also

safeguarding national and international supply chains.

This is a PLOS Computational BiologyMethods paper.

Introduction

Rapidly escalating outbreaks of infectious diseases directly and unexpectedly impact the lives

of people. The consequences are quickly seen in health and behavior, labour supply and pro-

ductivity, trade across regions, and in consumer and business confidence [1–3]. Foodborne

infections remain one of the highest-priority targeted diseases by the World Health Organiza-

tion due to the emergence of the antimicrobial resistance strains [4]. Of particular importance

is the Salmonella enterica subspecies enterica servora Typhimurium (STM)—the dominant

cause of salmonellosis—which is responsible for over 155,000 deaths with a estimated 93.8 mil-

lion human cases of the disease each year [5–7].

Since diverging from a common ancestor shared with E. coli, Salmonella co-evolved with

animal hosts for millions of years [8], and there are several more recent historical drivers cata-

lyzing this process. A shift from foraging to agriculture and domestication of animals led to a

notable increase in the risk of zoonotic diseases caused by interactions between wildlife and

livestock [9]. Industrialization and urbanization improved nutrition and standards of living.

We are now witnessing globalization during the Anthropocene transition, with a significant

spread of infections including rapidly mutating and drug resistant pathogens [10–12].

The constant evolution of STM, as well as its relentless adaptation within different ecologi-

cal niches, have produced its significant diversity, allowing for the proliferation of highly

adapted and virulent strains [13–15]. A continuing evolution of Salmonella within hosts is

driven by genomic variations that may occur during each infection, triggering adaptations to a

new niche—this process may result from changes in agricultural practices, the use of antimi-

crobial agents, or presence of immunocompromised hosts [8]. It has been observed that the

diversity of the STM influences the regional prevalence in individual strains [15–18], although

the driving forces within the STM population remain poorly understood [18].

The increasing complexity of disease transmission pathways creates a major bio- and health

security threat, impeding timely outbreak detection and an efficient containment close to the

source. Understanding the underlying mechanisms of such complexity remains a substantial

empirical and theoretical challenge, exacerbated by multiple scales of the evolution. While

slow bacterial specialization increases genetic variance over a longer time-scale, the rapid, sud-

den shifts in bacterial populations exhibit genetic branching and may cause abrupt transitions.

To this end, the main aim of this study is in tracing the emergence and evolutionary paths of

continuously adapting foodborne pathogens.

We develop a framework for inferring directed genotype networks from disease surveil-

lance data by combining high-resolution molecular genotyping with network science and

Bayesian inference. The resultant networks are used to relate the outbreak severity (average
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strain prevalence) and network attributes (e.g., closeness centrality), with certain patterns in

network dynamics revealing a strong evolutionary drive through a transition region. They

allowed us to quantify several key correlations with respect to the size of genetic clusters and

the length of evolutionary paths. These findings not only offer important insights into the evo-

lution of foodborne pathogens, but also provide rigorous tools for high-precision epidemic

modeling and prediction.

Emergence and evolution of dominant strains

Networks and various topological measures have been extensively used to model and quantify

interactions, as well as effects of those interactions on a global scale, in a variety of biological,

evolutionary and epidemiological contexts, ranging from molecules and genes, to individual

organisms [19–26]. The ability to function effectively arises in complex networks not from

individual nodes, but rather from the way they interact and process information [27–29]: the

function is constrained by the structure, and the structure reconfigures due to function. In this

study we consider the evolutionary aspect of epidemics as part of the “function” (i.e., fitness),

ascribed to rapidly adapting pathogens. We then relate this function to the “structure” revealed

in the network topology, formed by connecting genotypes of microorganisms observable over

time.

The accumulation of high-resolution genotyping data from public health surveillance has

opened new opportunities to examine emergence and evolution of dominant strains. While

relationships between infection cases during an outbreak have been previously represented as

pairwise distances and visualized as unweighted or weighted graphs [25, 30], the evolution of

pathogens rapidly occupying a niche and transitioning to an epidemic strength has not been

explained in terms of fine-grained evolutionary paths, inferred from longitudinal data. Thus,

our specific aim is to identify distinct evolutionary pathways within the STM population, and

show that emergence of virulent STM strains is guided by an evolutionary drive, rather than

with random sets of co-circulating STM genotypes [31, 32]. In doing so, we propose a general

network-based model of pathogens’ emergence and evolution, where directed genotype net-

works are inferred from disease surveillance data.

Using the model, we demonstrate that the network properties of the STM population as a

whole can be correlated with the strength of observed outbreaks. We argue that an ongoing

“arms race” between pathogens and other microorganisms trying to occupy the same niche,

while resisting immune defenses of the host, creates specific evolutionary drives. Our network-

based model formalizes this notion, offering a generic definition of genetic distance between

observed strains, coupled with a measure of their temporal synchrony. As such, it can be

applied to different pathogens and infectious diseases, genetically tracked over time.

Plasticity of genomic material is a fundamental biological property of microorganisms, and

so pathogen populations can be categorized into discrete genotypes according to genetic loci,

with a notable effect on the transmission. Often, new epidemics are triggered by novel geno-

types that evade the acquired immunity within the host population created by their predeces-

sors, e.g., influenza [33, 34] and other coronaviruses [35, 36]. Isolates from epidemiologically

linked hosts typically show indistinguishable DNA patterns, suggesting that high-resolution

molecular genotyping may offer an efficient approach to tracing foodborne epidemics and

identifying their origins.

In this study we focus on emergence and evolution of STM strains in Australia, where Sal-

monella remains the most important cause of severe foodborne disease, with considerable

morbidity and economic cost: the annual costs of foodborne diseases to the national economy

circa 2000 were estimated as A$1.249 billion annually [37, 38]. Moreover, the number of
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salmonellosis cases in Australia has doubled over the last decade despite increasing efforts in

public health control and prevention, and the notification rate exceeded 70 per 100,000 [39,

40]. In fact, Australia has more outbreaks of Salmonella than any other country [40]. Even so,

the notified and confirmed cases are only the “tip of the iceberg”, with about 9% of cases noti-

fied to public health authorities [6]. This greatly increases the risk, especially for vulnerable

groups, as foodborne infections are more likely to be fatal in people with compromised

immune systems, babies and the elderly.

Our analysis is carried out using high-resolution molecular “fingerprint” data on STM

pathogens and associated epidemics in New South Wales (NSW) since 2008, a unique set of

longitudinal data covering a decade of surveillance. This dataset comprises a collection of

17,005 isolates of non-typhoidal Salmonella, identified in the NSW State Enteric Reference

Laboratory in Sydney, Australia, between January 1, 2008 and December 31, 2016. Each isolate

was genotyped using multiple-locus variable-number tandem-repeats analysis (MLVA). This

dataset constitutes 98.7% of all isolated STM cases identified in NSW over the 3,287 day

period. The prevalence of a specific MLVA profile is obtained by adding up all occurrences of

the profile in the entire dataset. There are 1,673 unique MLVA profiles in the dataset consid-

ered in our study: importantly, new MLVA profiles were detected regularly (uniformly distrib-

uted) throughout the observational period, as demonstrated by Fig 1, which shows a diagonal

outline over the profiles sorted according to the date of their first detection.

The ability to predict STM activity up to several hundred days in advance by monitoring

changes in the diversity of the STM strains has been demonstrated in our previous work [25].

This was achieved by characterizing the outbreaks with non-linear but symmetric (undirected)

interactions between the strains. In this study, we consider both the temporal and genetic

proximity between strains, aiming to establish evolutionary directions of genotype changes, as

well as their paths. Fig 2 illustrates the directed genotype network inferred from the STM inci-

dence data, based on both the genetic and temporal distances between MLVA profiles.

The proposed network-centered view on the evolution of foodborne pathogens allows us to

identify and quantify preferential evolutionary pathways. In doing so we define a space map-

ping both the relative prevalence and spread of the pathogens. Then we examine several possi-

ble directions in this space, and identify dominant trends across these directions.

Model

We examine the emergence and evolution of strain properties using the dataset of genotyped

STM strains identified by MLVA. In MLVA, the “tandem-repeat” identifies the number of

repeated units for a particular nucleotide pattern in a genome. The numbers of repeats in sev-

eral fixed genetic locations (loci) are combined into a sequence of integers, e.g., 3-9-7-12-523,

and this sequence is referred to as the MLVA profile (see Materials and methods for details).

Crucially, MLVA profiles are similar for epidemiologically linked cases but differ between bac-

terial strains, ensuring a sufficient discriminatory power required for public health laboratory

surveillance and outbreak investigations [31, 41].

We utilize this dataset to infer a directed network where each node represents a unique

strain. Directed edges, connecting “predecessor” and “successor” profiles, are created on the

basis of both genetic and temporal proximity, accounting for (i) the genetic difference between

the repeated units for the respective loci, and (ii) temporal difference between the date of the

successor’s first detection and an observed occurrence of the predecessor during a period

before (or shortly after) this date. The temporal threshold of an edge requires that an existing

strain, within genetic proximity, occur within a certain number of days (“pre-window”) of the

new strain, or no-more than a certain number of days after it (“post-window”). The post-
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window accounts for possible delays in case isolation, e.g., from a delay in symptom-onset or

analysis. For two strains that are genetically close and have their first instances detected within

the post-window of each other this may lead to a bidirectional network edge. The Bayesian

inference algorithm that dynamically identifies plausible temporal pre- and post-windows,

given the genetic distance between predecessor and successor profiles, is described in Materials

and methods. Thus, the directionality of the inferred edge is determined by the chronological

synchrony of the reported STM cases, given their MLVA difference. By building the edge set

Fig 1. The 1,673 unique MLVA profiles isolated between 1 January 2008 and 31 December 2016. Each horizontal line

shows the temporal history of a given MLVA profile, with each point showing the day a sample was collected. The dataset

contains 17,005 cases of STM, which comprises 98.7% of all isolated cases in NSW over this 3,287 day period. The profiles

are sorted according to the date of their first detection—resulting in a diagonal outline—indicating that new MLVA

profiles are usually detected regularly throughout the observational period. Once detected, the profiles typically continue

to be observed in the dataset. Three actual case studies associated with outbreaks previously investigated by the Australian

Department of Health (see Materials and methods) are highlighted in different colors, illustrating distinct MLVA profiles

that are grouped according to their genetic and temporal proximity (that is, profiles with the same color lie on the same

inferred evolutionary path).

https://doi.org/10.1371/journal.pcbi.1008401.g001
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of potential predecessors for each node in the network (profile), we obtain the directed geno-

type network.

The dataset exhibits a heavy-tailed distribution of STM strains, in terms of frequency vs

prevalence, with most prevalent MLVA profiles occurring less frequently than other profiles

[25], and so we cluster similar profiles together in order to denoise the data. For each profile,

an overlapping clustering algorithm groups all neighbours of the profile within a certain

threshold distance Gmax, as described in Materials and methods. This allows us to compute the

average cluster prevalence approximating the average virulence across genetically close strains.

This clustering produces an underlying undirected network, where we characterize each node

(MLVA profile) in terms of two quantities: (i) the average prevalence of the immediate cluster

of the node, that is, the average prevalence of genetically close MLVA profiles, (ii) the centrality

of the node within the corresponding undirected genetic network (where network centrality

is suitably defined, see Materials and methods). The average prevalence of a network node

(MLVA profile) represents the average strength of outbreaks associated with the genetically

close strains. On the other hand, the centrality of the node within the entire weighted network

quantifies how genetically connected it is overall with other strains.

Fig 2. The directed network based on genetic and temporal distances between MLVA profiles, where each directed edge is obtained from Bayesian inference.

The network comprises 690 connected nodes and 1,020 directed edges, with each node representing an MLVA profile and each edge representing an inferred

evolutionary step. In addition, each profile may be associated with a cluster of other profiles within a genetic distance G. Formally, the cluster Ci associated with node i
is given by Ci = {j: Gij� Gmax}, for some thresholdGmax (Materials and methods). The size of the nodes represents the average prevalence within this cluster

approximating the average virulence across closely related strains. In this network, the node associated with the most prevalent cluster (profile 3-9-7-17-523) is

highlighted and circled in orange. The color of all other nodes illustrates their genetic distance to this reference node, from light green (closest) to dark (farthest). The

layout of nodes is given by Cytoscape’s edge-weighted spring-embedded algorithm, which groups together cliques of nodes. From this graph, we can capture a

potential evolutionary path between two connected nodes as a sequence of directed edges between them, as described in Model. We highlight three case studies as

paths in magenta, blue, and red that contain eleven, nine, and five STM strains respectively. These paths include profiles associated with outbreaks previously

investigated by the Australian Department of Health (see Materials and methods). The path shown in magenta includes (as the 9th node) profile 3-10-7-14-523, which

caused a significant outbreak in October 2013. The origin node of the blue path is profile 3-12-9-10-550, which was the source of an outbreak in January 2011. The

origin profile of the red path is 3-16-9-11-523, which is associated with at least two outbreaks in February 2014 and September 2015. In addition to the case studies

above, we illustrate the longest path (17 nodes) inferred from the dataset as a dashed black line with a source node near the top-left of the network. The origin of this

path is profile 3-12-9-12-523, which was consistently detected from January 2008 to November 2016, spanning the entire dataset.

https://doi.org/10.1371/journal.pcbi.1008401.g002
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Analysis of the undirected network produces the prevalence-centrality space, on which we

can project directed evolutionary paths. In other words, once the directed genetic network is

inferred through the process described above, we can identify directed paths within the net-

work, where each path links a series of STM strains that represent a sequence of potential

evolutionary steps from ancestors to descendants. If a path is sufficiently long, these genetic

changes (steps) may span a fairly long temporal period, and connect distant STM MLVA pro-

files, separated by a number of evolutionary/adaptive steps. In order to identify distinct evolu-

tionary paths, only unique paths are distinguished, with all sub-paths discarded.

In order to quantify the emergence and evolution along these genetic branches, we con-

struct and trace all evolutionary paths, formed by connecting a sequence of directed edges.

Formally, a path is a sequence of distinct directed edges each of which links two distinct con-

nected nodes in the inferred directed network. This complements the quantification of central-

ity obtained over the undirected network, by augmenting the centrality-prevalence space with

nodes which appear in the directed network. In other words, while every MLVA profile is pres-

ent in the centrality-prevalence space as a node in the undirected network, only some of the

strains are highlighted as nodes signifying detected genetic steps (colored nodes in Fig 3). Fur-

thermore, only a subset of these nodes may appear in sufficiently long paths, while some may

be limited to very short predecessor-successor steps.

Each path is traced in the centrality-prevalence space, by comparing its start and end

points, in terms of two characteristics: (i) the relative cluster prevalence; (ii) the relative cen-

trality, each of which may increase or decrease from start to end. An evolutionary drive is

expected to increase the average cluster prevalence along a path, denoted BT (bottom-to-

top), while the opposite direction (TB) would indicate a loss of fitness. We will refer to the

paths developing in BT direction as successful evolutionary paths (since the average cluster

Fig 3. Structure-function relationship in the genotype networks, mapping the centrality of profiles (x-axis) and their average cluster prevalence (y-axis). The size

of each point is proportional to the size of its corresponding cluster. The centrality is measured with respect to the complete undirected genotype network. The colour

shows the genetic distance of a profile to the reference profile (in orange, see Fig 2), with grey points indicating disconnected profiles. The gradient of colouring

indicates an evolutionary trend from low-to-high centrality (left to right) and then a reverse in direction from high to medium centrality (right to left). During this

trend, the average prevalence of the node clusters is increasing. Consequently, two branches can be distinguished: (i) from weakly-prevalent and peripheral nodes (the

bottom-left corner), towards a region comprising the profiles with high centrality (between 0.033 and 0.036) and medium cluster prevalence (between 12 and 32.1),

and (ii) from this region towards the reference profile (in orange), in the direction of increasing prevalence (bottom to top) but decreasing centrality (right to left). The

three case studies are shown in magenta, blue, and red, as well as the longest path (dashed black), with the source profile of these paths circled with the colour of the

path.

https://doi.org/10.1371/journal.pcbi.1008401.g003
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prevalence is increased along the path), and to the paths following TB direction as unsuccess-
ful evolutionary paths (as the cluster prevalence is decreased). A change in centrality may

also take two directions: left-to-right (LR, increasing centrality along the path), and right-to-

left (RL, decreasing centrality). The successful evolutionary paths that develop in the RL

direction will be considered exploitative, as the average cluster prevalence is increased at the

expense of the corresponding decrease in centrality. On the other hand, the successful evolu-

tionary paths which follow LR direction will be considered explorative, since an increase in

the cluster prevalence is accompanied by an increase in centrality. Tracing all possible

unique paths can reveal a particular signature in the centrality-prevalence space, relating the

function (i.e., fitness) and structure (i.e., centrality), and characterizing dominant evolution-

ary pathways in network terms.

Results

While pursuing our main aim of characterizing the general direction of the STM evolution

and its salient pathways, we illustrate the results with a study of three community outbreaks of

STM. These cases relate to outbreaks previously investigated by the Australian Department of

Health: (i) STM MLVA profile 3-10-7-14-523, which was first reported in January 2010 and

later caused a significant outbreak in October 2013; (ii) MLVA 3-12-9-10-550, which was first

reported in February 2008, and was later responsible for the outbreak in January 2011; and

(iii) profile 3-16-9-11-523, which first appeared in March 2010, and was associated with at

least two outbreaks in February 2014 and September 2015. In addition to these cases, we trace

the longest path (with 17 nodes) inferred from the dataset, originating from MLVA profile 3-

12-9-12-523, which was consistently detected from January 2008 to November 2016, i.e., this

path spans the entire interval captured by the dataset.

The inferred genotype network comprises 690 connected nodes (MLVA profiles) and 1,020

directed edges (evolutionary steps), while 983 nodes remain disconnected. Fig 2 visualizes the

corresponding paths within the entire network. The same paths in the centrality-prevalence

space are presented in Fig 3, where the prevalence is averaged over a cluster of neighboring

profiles within a genetic distance Gmax = 5, while the centrality is measured with respect to the

complete undirected genotype network.

In prior work, we demonstrated that the average strain prevalence is correlated with the

strain centrality [25]. However, this relationship is non-linear, with the most prevalent clusters

showing medium centrality, while nodes with the highest centrality exhibit medium average

cluster prevalence (Fig 3). Moreover, there are two branches distinguishable in the space

formed by node centrality and cluster prevalence. The first, lower, branch develops from

weakly-prevalent and peripheral nodes (the bottom-left corner of Fig 3), towards a region

comprising the profiles with high centrality and medium cluster prevalence, i.e., node central-

ity between 0.033 and 0.036, and cluster prevalence between 12 and 32.1. This region is

highlighted in Fig 4. It will be specifically analyzed later on, in terms of a transition to the sec-

ond, upper, branch which continues from this region in the direction of increasing prevalence

(bottom to top) and decreasing centrality (right to left), towards a reference profile shown in

orange in Fig 3. We find that the gradient of coloring, set with respect to the most prevalent

cluster (MLVA 3-9-7-17-523), i.e., our reference point, indicates the presence of an evolution-

ary pathway along the upper branch: from the highly-central nodes with medium cluster

prevalence towards the most prevalent and very “successful” clusters (i.e., right-to-left and bot-

tom-to-top). In addition, the gradient highlights a somewhat punctuated evolution along the

lower branch from the weakly-prevalent periphery toward highly-central, but not yet most
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dominant, nodes (i.e., left-to-right and bottom-to-top). This branch includes several separated

plateaus with mostly flat cluster prevalence.

Crucially, the centrality-prevalence space reveals that the branching occurs precisely at the

highly-central nodes, suggesting that a typical evolutionary path initially increases the average

strain prevalence by exploring the genetic space and making more genetic connections (thus,

increasing the centrality of the node). Then, after reaching a central place in the genetic net-

work, the evolution takes a turn toward exploiting the genetic space: at this stage, an evolving

strain becomes more distant from its genetic relatives, while increasing the average prevalence

of its immediate cluster. In other words, a reduction in the node centrality within the network

corresponds to a better occupation of the niche (stronger adaptation), coinciding with a signif-

icant growth in the STM transmissibility and resultant size of the associated outbreaks.

In order to further verify this observation, we trace the relative change in prevalence along

both successful and unsuccessful paths. Fig 4 visualises the expected value of the positive gain

in cluster prevalence, while bounding the contributions of all unsuccessful paths to 1 (using

kernel density estimation [42]; the accuracy of the density estimation is shown in S1 Fig). The

points with higher than 75% of the maximum expected value form a well-defined region

within the centrality-prevalence space. Specifically, it is shaped by high centrality (i.e., between

0.033 and 0.036) and medium cluster prevalence (i.e., between 12 and 32.1), and so emerges as

the transition region. The evolutionary paths starting from profiles contained within this

region tend to produce a higher average change in prevalence and are thus considered more

successful. Importantly, as the structure on the upper genetic branch is constrained, these

paths develop from right-to-left, exploiting the niche (RL-BT). The origins of explorative paths

Fig 4. The structure of the centrality-prevalence space, revealed by the expected value of the positive gain in prevalence. For every MLVA profile,

the point size is shown in proportion to the average change in prevalence. The size is set to one if the change is negative, so that the contribution of all

unsuccessful paths with negative change in prevalence is bounded. Colour intensity indicates the estimated density, given the average changes in

prevalence for all profiles. The transition region (intense red colour) is shaped by the profiles with high centrality and medium cluster prevalence, i.e.,

node centrality between 0.0329 and 0.0359, and cluster prevalence between 101.14 and 101.46. The evolutionary paths originating from profiles in this

region tend to produce the higher average change in prevalence, that is, these paths develop from right to left and from bottom to top.

https://doi.org/10.1371/journal.pcbi.1008401.g004
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also appear to concentrate within a particular region of the space, with relatively lower central-

ity around 0.025 and lower cluster prevalence below 10.

We also visualise the expected values of prevalence change along both successful and unsuc-

cessful evolutionary paths separately: Fig 5 overlays these two densities, and S2 and S4 Figs

show them independently, with S3 and S5 Figs illustrating the accuracy of the kernel density

estimations. In addition to the transition region, which again is clearly identifiable, we can

observe another dense region, formed by unsuccessful profiles with the centrality around 0.03

and the cluster prevalence just below 100. This region presents an emergent “barrier” for suc-

cessful exploitative paths (RL-BT), as the profiles contained within it tend to develop in the

opposite direction (LR-TB). In other words, not all successful exploitative paths proceed

through this bottleneck region on the way to become the most virulent, while genetically more

rare, strains.

Thus, the general evolutionary trend is reflected in the growing fitness of adapting patho-

gens (function) and the topology of the genotype networks (structure). While increasing the

average cluster prevalence, this pathway initially follows from low to high centrality (left-to-

right), and then reverses its direction from high to medium centrality (right-to-left). This func-

tion-structure correlation is also confirmed by Fig 6 which: (i) traces the average prevalence as

a function of the distance to the most prevalent (reference) node, as well as (ii) compares the

average prevalence with the size of connected components in the directed network. Firstly, the

average prevalence is shown to decrease as the distance to the reference node grows, with a

Fig 5. The structure of the centrality-prevalence space, revealed by the expected values of both successful and unsuccessful evolutionary paths. For

every MLVA profile, the point size is shown in proportion to the average change in prevalence: positive change is shown with red colour, and negative

change with blue. Intensity of each colour indicates the estimated probability density, given the average changes in prevalence for either positive or

negative profiles. Similar to Fig 4, the transition region (intense red colour) is shaped by the successful profiles with high centrality and medium cluster

prevalence. The evolutionary paths originating from profiles in this region tend to develop from right to left and from bottom to top, producing the

higher average change in prevalence. Conversely, the bottleneck region (intense blue colour) is formed by unsuccessful profiles with the centrality

around 0.03 and the cluster prevalence just below 102. The evolutionary paths originating from these profiles tend to follow the opposite direction: from

left to right and from top to bottom, reducing their prevalence on average.

https://doi.org/10.1371/journal.pcbi.1008401.g005

PLOS COMPUTATIONAL BIOLOGY Inferring evolutionary pathways and directed genotype networks of foodborne pathogens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008401 October 30, 2020 10 / 22

https://doi.org/10.1371/journal.pcbi.1008401.g005
https://doi.org/10.1371/journal.pcbi.1008401


high correlation between log prevalence and distance, calculated as r = −0.613 (N = 690,

p< 0.00001). In other words, the main evolutionary pathway is well-formed along both genetic

branches, despite being somewhat punctuated at the low-to-medium centrality branch, as indi-

cated by a step-wise character of the prevalence increases (Fig 6A). Secondly, as the prevalence

grows, the average size of the connected components within the directed genotype network

grows as well (Fig 6B). This high correlation between log prevalence and log component size

(measured as r = 0.739 (N = 690, p< 0.00001)) indicates that the network itself becomes more

interconnected along the main evolutionary pathway. It is interesting to contrast these two

log-linear relationships with the nonlinear pathway-reversal in the prevalence-centrality space

(Fig 3), where the centrality quantifies a more subtle topological role of individual nodes,

rather than the more coarse connectedness within multi-node network components.

Quantifying the proportions of different general directions that the evolutionary pathways

may take in the prevalence-centrality space has been equally illuminating for understanding

evolutionary drives. There are 1,020 directed edges in the entire genotype network, and these

edges yield 6,897 potential evolutionary paths. The absolute majority of the identified paths

(66% of the paths, or 4,532 out of 6,897 paths) lead from right-to-left (reducing centrality)

while going from bottom-to-top (increasing average prevalence). Furthermore, 72.4% of all

paths originate from the transition region described above, and 64% of the paths starting in

this region follow the RL-BT direction, amounting to 46.3% of all paths, see S6 Fig. We point

out that there are only 2.87% of the all 1,673 nodes in the transition region. These observations

strongly suggest a preferential evolutionary drive within the STM population (Fig 7). In other

words, these paths evolve in a certain direction, RL-BT, in the centrality-prevalence space

shown in Fig 3. We reiterate that the RL-BT direction is aligned with the “exploitative” branch

pointed towards the most prevalent nodes. Furthermore, there is a significant correlation

between the path length and the change in the average prevalence, measured as r = 0.497

(N = 6, 897, p = 0), see S7 Fig. Importantly, on this evolutionary pathway, longer paths are

more likely to achieve higher prevalence: as the path length increases, a higher number of

paths are associated with this dominant direction (RL-BT). As Fig 7 illustrates, this is not the

Fig 6. Prevalence as a function of the genotype network characteristics. Each point represents a node (MLVA profile), with the y-axis as the average

prevalence of that profile’s undirected cluster. A: this prevalence as a function of the distance to the reference node (the orange node in Figs 2 and 3). B: each

node’s prevalence is compared with the size of its connected-component in the directed network. The trend is punctuated: the prevalence increases in a step-

wise fashion with decreasing distance (from successful strains), or increasing connected-component size (connectivity of the node). For the sample size of

N = 690 connected nodes, the correlation between log prevalence and distance is r = −0.613 (N = 690, p< 0.0001) and between log prevalence and log

component size is r = 0.739 (N = 690, p< 0.0001).

https://doi.org/10.1371/journal.pcbi.1008401.g006
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case for three other possible directions, including the “explorative” branch pointed towards

both higher prevalence and higher centrality (LR-BT).

To complement this analysis, Fig 7B shows that a majority of the paths are within the range

of 6–12 edges. On the one hand, the smaller set of longer paths (above 12 edges) all decrease in

centrality—this mostly corresponds to exploitative adaptation (RL-BT). On the other hand,

another small set of shorter paths can be attributed to various directions of unsuccessful explo-

ration. Thus, explorative paths tend to be shorter than exploitative ones.

We note that three considered case studies, associated with outbreaks previously investi-

gated by the Australian Department of Health (see Materials and methods), include five, nine,

and eleven STM strains, as shown in Figs 2 and 3. For example, the path shown in magenta

passes through MLVA profile 3-10-7-14-523, which caused a significant outbreak in October

2013. This successful path is exploitative (RL-BT), with profile 3-10-7-14-523 appearing as the

9th node, within the bottleneck region. Another exploitative path, shown in red, starts at the

profile 3-16-9-11-523, which is associated with at least two outbreaks in February 2014 and

September 2015. The placement of this path on the upper branch indicates a strong potential

for further outbreaks linked to its geneteic relatives along the path. We believe that the analysis

of evolutionary paths in the centrality-prevalence space presents an effective means for classi-

fying specific case studies and informing disease surveillance in general.

We point out that, without clustering, the centrality-prevalence space is less structured, as

the individual profile prevalence is too noisy. We investigated several clustering thresholds

Gmax, and the structure of the centrality-prevalence space is preserved for clustering threshold

Gmax� 3, as shown in S11–S14 Figs, with the negative correlation between the distance to the

most prevalent node and the log-prevalence growing in absolute terms with the clustering

threshold Gmax, from r = −0.143 (N = 690, p = 1.62 � 10−4) for Gmax = 0 (singleton-clusters) to

r = −0.795 (N = 690, p< 0.00001) for Gmax = 10.

We compared the evolutionary paths and the preferential pathways for two different defini-

tions of genetic distance. As detailed in Materials and methods, the multiple-loci distance, Gffl,

Fig 7. Evidence for an evolutionary drive within the STM population. The 1,020 edges in the genotype network yield 6,897 potential evolutionary paths. The

subfigures show the proportion and number of paths evolving in a certain direction in the centrality-prevalence state space from Fig 3. This direction depends on the

start and end-points of the path: right-to-left (RL), left-to-right (LR), top-to-bottom (TB), and bottom-to-top (BT). For instance, the first case study (magenta) is

categorised as RL-BT (with ten edges), while the second case study (blue) follows the RL-TB direction (with eight edges). The absolute majority of paths (66%, or 4,532

paths) are shown to travel from the right-to-left (RL, decrease in centrality) and the bottom-to-top (BT, increase in prevalence), as shown in the figure legends. Further,

the correlation between the path length and the change in prevalence is r = 0.497 (M = 6,897, p< 0.00001). A: as the path length increases, a higher number of paths

are associated with this dominant direction. B: a majority of these paths are within the range of 6–12 edges; the smaller set of longer paths (above 12 edges) all decrease

in centrality, mostly capturing exploitative adaptation (RL-BT) with a minority attributed to unsuccessful exploration (RL-TB).

https://doi.org/10.1371/journal.pcbi.1008401.g007
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captures dispersed but limited genetic variations across several loci, while the single-locus dis-

tance, G†, quantifies local but variable genetic variations only within a single locus. Thus, Fig 7,

produced by using multiple-loci distance Gffl, can be contrasted with S8 Fig, which presents

corresponding results for single-locus distance G†. In the latter case, the correlation of path

length to change in prevalence is not tangible at r = −0.121. Although the preferential pathway

is still discernible in the direction (RL-BT), it is less dominant, with only 41% of the identified

paths following it (Fig 7A). A majority of the paths which are identified with the single-locus

distance G† are within a range of shorter paths (4–8 edges), as shown by Fig 7B. This compari-

son suggests that the multiple-loci distance, Gffl, which traces small genetic variations dis-

persed across several loci, is more suitable for identifying evolutionary paths.

We also showed that the preferential evolutionary pathway is independent of the role played

by STTR3 locus in MLVA analysis. To do so, we again used two distinct definitions of genetic

distance, Gffl and G†, applied to (i) the original pattern of MLVA profiles, with five loci, where

STTR3 locus is left unaltered, and (ii) the adjusted pattern of MLVA profiles, with five loci,

where STTR3 locus is corrected according to Larsson et al. [41], as explained in Materials and

methods. The re-assigned MLVA profiles do not seem to add much more power to either the

dominance of the preferential evolutionary pathway (RL-BT), or to the the correlation of path

length to change in prevalence. For multiple-loci distance Gffl, the correlation is larger and

positive, r = 0.269 (see S9 Fig), and for single-locus distance G†, the correlation is small and

negative, r = −0.0474 (see S10 Fig), but both values are less than the correlation of r = 0.497

(Fig 7A).

Interestingly, however, the multiple-locus distance Gffl applied to adjusted patterns with

five loci, yields even stronger dominance of the preferential evolutionary pathway, with 76% of

the paths following (RL-BT) direction. In addition, in this case, a clear majority of all identified

paths sits in the range of longer paths with 8–16 edges (see S10 Fig). This indicates that the

Larsson’s correction of the fifth locus may add some power to analysis of evolutionary paths,

but requires a more refined distance measure, in order to increase the correlation between the

path length and the change in the average prevalence.

In summary, the comparative analysis across two distance measures and two representa-

tions of MLVA profiles showed that the preferential evolutionary pathway is dominant in all

four combinations, with the best correlation given by the multiple-loci distance Gffl operating

on the original MLVA pattern. For the Larsson’s correction of the fifth locus, the multiple-loci

distance Gffl also outperformed the single-locus distance G†. Furthermore, the dominance of

the identified pathway was supported by observing a strong majority of longer paths contribut-

ing to evolutionary paths.

Discussion

We described a model inferring genotype networks formed by co-evolving individual bacterial

strains. This model explains dynamics of proliferating Salmonella strains, identifying their

dominant evolutionary pathways, and highlighting the epidemiological importance of consid-

ering the population dynamics holistically. The results demonstrate how network-based analy-

sis, facilitated through large-scale public health surveillance, can reveal salient evolutionary

dynamics of infectious diseases.

The proposed approach, explicitly connecting the function and genetic structure of evolv-

ing pathogens, provides a radically new method for public health surveillance dealing with

genetically diverse and spatiotemporally distributed epidemic scenarios. In contrast to existing

mechanistic approaches based on the search for pathogens with matching genotypes, it enables
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high-resolution monitoring of the population diversity of ongoing pathogens, identifying new

genotypes as reservoirs from which future epidemics might emerge.

This method can be naturally extended to whole-genome sequencing (WGS) data, further

increasing the resolution of evolutionary dynamics [43], as well as more general phylogenetic

studies [44, 45]. Another direction of future research is to consider the modularity of inferred

genetic networks, clarifying patterns of the punctuated evolution. Finally, emergence of dan-

gerous pathogens may be compared with tipping points in complex systems, not only in terms

of critical thresholds, but also in terms of the dynamic trajectories accumulating small changes

over time [46, 47]. A comprehensive treatment of the evolutionary function-structure dynam-

ics can explain how tipping points arise in the evolutionary dynamics of infectious diseases,

quantify disease outbreaks with respect to critical thresholds, and determine precursors to tip-

ping points.

Materials and methods

Multiple-locus variable-number tandem-repeats analysis (MLVA)

MLVA, as a method of genetic fingerprinting has proven sufficient to discriminate between

STM strains for the purpose of epidemiological profiling by public health laboratory [31]. The

multiplex Polymerase Chain Reaction (PCR) was performed to amplify the variable number

tandem repeats (STTR9, STTR5, STTR6, STTR10 and STTR3). The method is, however, com-

plicated by the fifth locus (known as STTR3), typically written instead as the entire locus frag-

ment size because it includes both 27 bp and 33 bp repeat units.

We address this by considering, in addition, the MLVA re-assigning method outlined by

Larsson et al. [41]. The reported STM genotypes are analyzed in two ways: (i) using the

unchanged STTR3 locus, e.g., 3-9-7-12-523, as well as (ii) considering instead the sum of the

corresponding 27 bp and 33 bp repeat units separately, e.g., 3-9-7-12-14, where 14 results from

adding up the corresponding counts of tandem repeats 2 and 12. In the absence of a corre-

sponding count of tandem repeats reported by Larsson et al. [41], we use a simple heuristic of

zero 27 bp repeats, and 33 bp repeats equal to the rounded locus fragment size divided by 37,

which serves as a close approximation to the reported values [41], e.g., 3-9-7-12-14.

Case studies. Our analysis is illustrated by three case studies, focussed on MLVA profiles

associated with some of the outbreaks previously investigated by the Australian Department of

Health. The MLVA profile 3-10-7-14-523 was first detected in January 2010, and later caused a

significant outbreak in October 2013 [48]. The MLVA profile 3-12-9-10-550 was first isolated

in February 2008, and was later found to be the source of an outbreak in January 2011 [49].

The MLVA profile 3-16-9-11-523 first appeared in March 2010, and is associated with at least

two outbreaks in February 2014 [50] and September 2015 [51].

Network-based modelling

Edge weights. The MLVA profile i is given by the vector pi = {pi1, pi2, . . ., piL}, where the

subscript denotes the loci, e.g., pi1 is the number of repeats in locus 1 for MLVA profile i, and

L is 5 loci. Let pi and pj be the the MLVA profiles for nodes i and j. Then, the L1 norm distance

dij, or the Manhattan distance, between these nodes can be computed as

dij ¼ jpi � pjj1 ¼ jpi1 � pj1 j þ jpi2 � pj2 j þ . . .þ jpiL � pjL j:

We used the Manhattan distance in inferring the undirected network, analogously to our pre-

vious work [25]. Unlike [25] which used only the MLVA representation with Larsson’s correc-

tion, here we consider both variants: the original representation and Larsson’s correction. In
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inferring the directed network, however, we define the distance G between two MLVA profiles

in two, more constrained, ways which capture two opposing perspectives. The first definition

setsmultiple-loci distance, Gfflij , as the number of loci which differ by at most one tandem-

repeat, that is, 1� Gffl � 5. Consequently, if two MLVA profiles i and j differ in any locus by

more than one tandem repeat, they are considered as unrelated (distance is Gfflij set to infinity).

The second definition, single-locus distance, Gyij, restricts the differences between the tandem-

repeats to only one locus, but allows profiles to disagree by more than one tandem-repeat. In

other words, the multiple-loci distance captures dispersed but limited genetic variations across

several loci, and may consider two profiles as genotypical neighbors if they differ by one tan-

dem-repeat in each of their loci (for example, distance Gfflij ¼ 3 indicates that the two profiles

differ in three loci, but only by one tandem-repeat in each). On other hand, the single-locus

distance quantifies local but variable genetic variations, and would consider genetic proximity

only when the profiles differ in one locus (for example, distance Gyij ¼ 3 means that the two

profiles disagree only in one locus, but by three tandem-repeats).

For either of the distance definitions Gij, without loss of generality, the edge weights are

given by the reciprocal of these distances, i.e.,

wij ¼
1

Gij
:

Clustering. Using the edge weights, we follow the study [25] in obtaining the overlapping

clustering of the undirected network nodes, by including all nodes within a certain distance

from a given node. Formally, the cluster Ci associated with node i is given by Ci = {j: Gij�
Gmax}, for some threshold Gmax. Following [25], we set Gmax = 5. Each node (i.e., profile) is

associated with at least one cluster, even if that cluster only contains a single node. An interest-

ing example is given by MLVA profile 3-9-7-12-622 (or 3-9-7-12-17 after the adjustment to

match the study of Larsson et al. [41]): it has the individual prevalence of only 1, having been

detected only once over the study period, but its average cluster prevalence is among the high-

est [25]. The reason is that there are multiple other MLVA profiles within the distance Gmax =

5 from this profile, and some of these cluster neighbours show very high individual prevalence.

The overlapping clustering algorithm that we employ aims to approximate the average viru-

lence across such genetic neghbourhoods, which may correspond to various clonal complexes,

groups, etc. S11–S14 Figs compare the centrality-prevalence spaces and the corresponding cor-

relations, obtained for different thresholds Gmax: 0, 3, 5, 10.

Centrality. Then the closeness centrality of an individual node can be computed as the

sum of the length of the shortest paths between nodes. In this work, as in [25], we use the nor-

malized form of closeness centrality, across N nodes:

li ¼
N
P

jGij
:

Within the network, we consider all directed paths, as unique sequences of directional steps.

These paths are then classified as having one out of four possible directions, by considering rel-

ative centrality and relative cluster prevalence of their start and end points: Top vs Bottom,

and Left vs Right, in the centrality-prevalence space. For example, a path with decreasing cen-

trality (from Right to Left), and increasing prevalence (from Bottom to Top) would be classi-

fied as RL-BT.
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Bayesian inference of directed network

Assuming that the evolutionary/adaptive steps among the strains are reflected within the

observed dataset, we built a statistical model to infer a directed genetic graph from the data.

The graph G ¼ fV; Eg comprises a vertex set and an edge set. The set V ¼ fV1;V2; . . .g repre-

sents all STM strains in the dataset, with each vertex Vi having an associated MLVA profile

Pi 2 R
5 as a vector of five numbers as well as a sequence of instances Ii = (Ii1, Ii2, . . .), with

Iin 2 Z
þ

capturing the nth date that the profile Pi was isolated. Our goal is to build the edge set

E ¼ fE1;E2; . . .g, where an edge Ek = Vi! Vj denotes a directed edge between two nodes Vi
and Vj.

To describe the inference of an edge, consider two vertices Vp and Vc of a graph that repre-

sent arbitrary MLVA profiles. We wish to infer the probability that the node Vp is a potential

parent (direct predecessor) of node Vc, i.e., is there an edge Vp! Vc? The temporal proximity

of Vp to Vc is denoted Δ and captures all detection dates of Vp relative to the first detection of

Vc found in the dataset, i.e., Δ = (Δ1, Δ2, . . .) where each Δn = Ic1 − Ipn. With this information,

we aim to infer the likelihood of an evolutionary/adaptive step, e.g., a mutation,M, which rep-

resents the true-false outcome of whether Vc evolved from Vp, for a given genetic distance G
(see Materials and methods for definitions of G). If the likelihood of this outcome is greater

than a certain threshold Pr(M j Δ, G)> α, then we include the edge Vp! Vc in the edge set E.

Although we can not compute the distribution Pr(M j Δ, G) directly from data, we can use

Bayesian inference to infer it indirectly. A large majority of the dataset comprises non-muta-

tions, i.e., self-sustaining outbreaks and continually circulating STM strains. Thus, instead of

inferring the probability ofM, we can compute the complementary eventM , i.e., the probabil-

ity that Vp is not a parent of Vc:

Pr ðM j D;GÞ ¼ 1 � Pr ðM j D;GÞ: ð1Þ

Using Bayes formula, this can be reformulated into distributions that are easily obtained from

data:

Pr ðM j D;GÞ ¼
Pr ðD j M;GÞPr ðM j GÞ

Pr ðD j GÞ
: ð2Þ

The main two distributions we are concerned with are Pr ðD j M ;GÞ and Pr(Δ j G), since

Pr ðM j GÞ is a constant over each genetic distance. That is, we can compute the distribution

as:

Pr ðM j D;GÞ /
Pr ðD j M;GÞ
Pr ðD j GÞ

: ð3Þ

Now, Pr(Δ j G) can simply be computed by choosing every genetic distance in the dataset and

looking at all relative occurrences. Using these data, we build a frequency distribution of all rel-

ative occurrences Δ within each genetic distance G; normalizing then gives us the probability

mass function Pr(Δ j G). In contrast, Pr ðD j M ;GÞ can be computed from scenarios where it

is highly unlikely that there was a mutation. These highly-unlikely scenarios are all instances

after the first detection of an STM strain. Computing these two functions, taking their ratio

and normalizing then gives the probability Pr(M j Δ, G) of there being a mutation within a

certain number of days Δ for each genetic distance G. Fig 8 illustrates the statistical inference

algorithm.

As stated, we now include the edge Vp! Vc if Pr(M j Δ, G)>α, where α is some statistical

significance threshold. However, each child (direct successor) could pertain to a number of
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Fig 8. Inference of an evolutionary step used in constructing edges in the directed genotype network. For every genetic distance G, we use Bayesian inference to

determine two temporal intervals that indicate potential evolutionary precedence. These intervals capture parent nodes that were isolated either before a child node

(pre-windows) or after a child node (post-windows). The arcs in the top subfigures are cumulative probability distributions (CDFs) of these intervals for different

genetic distances (number of loci modified) G. For a given level of (multiple comparisons corrected) statistical significance and genetic distance, the suitable pre-

and post-windows are obtained by inverting the CDF; shown as dashed blue and red lines. Given first detection of a potential offspring MLVA profile, all nodes

which are present during these intervals generate a directed edge to the offspring. The bottom subfigure illustrates inference of the four edges of the third case study,

where the first three evolutionary steps crossed genetic distances of G = 1, with the final step crossing two loci (G = 2). Shaded blue and red triangles show the

corresponding temporal intervals (i.e., combined pre- and post-windows) for G = 1 (blue) and G = 2 (red), in relation to the observational data points marked by

vertical solid lines.

https://doi.org/10.1371/journal.pcbi.1008401.g008
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potential parents for a given distance G, and so we are performing multiple hypothesis tests at

once. Thus, the significance threshold must be adjusted to account for the higher number of

false positives expected under this scenario. For this work, we use Bonferroni correction as a

conservative correction, which results in the threshold α being divided by the number of

potential parents we are testing for each child at every genetic distance G.

Supporting information

S1 Fig. The cumulative density function (CDF) of the expected value of the positive gain in

cluster prevalence (using the kernel density estimation): Actual vs estimated. The contribu-

tions of all unsuccessful paths are bounded to 1.

(TIF)

S2 Fig. Prevalence change for successful evolutionary paths. The structure of the centrality-

prevalence space, revealed by the expected value of only successful evolutionary paths. For

every MLVA profile, the point size is shown in proportion to the average (positive) change in

prevalence. Colour intensity indicates the estimated density, given the average positive changes

in prevalence. Similar to Fig 5, the transition region (intense red colour) is shaped by the suc-

cessful profiles with high centrality and medium cluster prevalence. The evolutionary paths

originating from profiles in this region tend to develop from right to left and from bottom to

top, producing the higher average change in prevalence.

(TIF)

S3 Fig. The cumulative density function (CDF) of the expected value of the cluster preva-

lence change along successful evolutionary paths (using the kernel density estimation):

Actual vs estimated.

(TIF)

S4 Fig. Prevalence change for unsuccessful evolutionary paths. The structure of the central-

ity-prevalence space, revealed by the expected value of only unsuccessful evolutionary paths.

For every MLVA profile, the point size is shown in proportion to the average (negative) change

in prevalence. Colour intensity indicates the estimated density, given the average negative

changes in prevalence. Similar to Fig 5, the bottleneck region (intense blue colour) is formed

by unsuccessful profiles with the centrality around 0.03 and the cluster prevalence just below

102. The evolutionary paths originating from these profiles tend to develop from left to right

and from top to bottom, reducing their prevalence on average.

(TIF)

S5 Fig. The cumulative density function (CDF) of the expected value of the cluster preva-

lence change along unsuccessful evolutionary paths (using the kernel density estimation):

Actual vs estimated.

(TIF)

S6 Fig. Expected number of paths. The structure of the centrality-prevalence space, revealed

by the expected number of evolutionary paths. For every MLVA profile, the point size is

shown in proportion to the number of paths that start from this profile. Colour intensity indi-

cates the estimated density.

(TIF)

S7 Fig. Length–prevalence correlation. Correlation between the path length and the change

in the average prevalence, measured as r = 0.497 (N = 6, 897, p< 0.00001).

(TIF)
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S8 Fig. Paths: Unadjusted (one locus). Constrained to genetic variations within one locus

only. Number of nodes N = 718, number of edges is 967, and the number of pathsM = 2, 304.

Correlation of path length to change in prevalence: r = −0.121 (M = 2, 304, p< 0.00001).

(TIF)

S9 Fig. Paths: Larsson’s correction (multiple loci). Constrained to genetic variations over

multiple loci with Larsson’s correction. Number of nodes N = 744, number of edges is 1,190,

and the number of pathsM = 23, 915. Correlation of path length to change in prevalence:

r = 0.269 (M = 23, 915, p< 0.00001).

(TIF)

S10 Fig. Paths: Larsson’s correction (single locus). Constrained to genetic variations within

one locus only with Larsson’s correction. Number of nodes N = 730, number of edges is 991,

and the number of pathsM = 2, 323. Correlation of path length to change in prevalence: r =

−0.0474 (M = 2, 323, p = 0.0224).

(TIF)

S11 Fig. Clustering threshold 0. The centrality-prevalence space for clustering threshold Gmax
= 0 (singleton-clusters). The centrality is measured with respect to the undirected genotype

network. The colour shows the genetic distance of a profile to the reference profile (the most

prevalent node), with grey points indicating disconnected profiles in the directed network.

Correlation between the distance to the most prevalent node and the log-prevalence r = −0.143

(N = 690, p = 1.62 � 10−4). Correlation between the log-component-size and log-prevalence:

r = 0.332 (N = 690, p< 0.00001).

(TIF)

S12 Fig. Clustering threshold 3. The centrality-prevalence space for clustering threshold Gmax =

3. The centrality is measured with respect to the undirected genotype network. The colour shows

the genetic distance of a profile to the reference profile (the most prevalent node), with grey

points indicating disconnected profiles in the directed network. Correlation between the dis-

tance to the most prevalent node and the log-prevalence r = −0.513 (N = 690, p< 0.00001). Cor-

relation between the log-component-size and log-prevalence: r = 0.734 (N = 690, p< 0.00001).

(TIF)

S13 Fig. Clustering threshold 5. The centrality-prevalence space for clustering threshold Gmax
= 5. The centrality is measured with respect to the undirected genotype network. The colour

shows the genetic distance of a profile to the reference profile (the most prevalent node), with

grey points indicating disconnected profiles in the directed network. Correlation between the

distance to the most prevalent node and the log-prevalence r = −0.613 (N = 690, p< 0.00001).

Correlation between the log-component-size and log-prevalence: r = 0.739 (N = 690,

p< 0.00001).

(TIF)

S14 Fig. Clustering threshold 10. The centrality-prevalence space for clustering threshold

Gmax = 10. The centrality is measured with respect to the undirected genotype network. The

colour shows the genetic distance of a profile to the reference profile (the most prevalent

node), with grey points indicating disconnected profiles in the directed network. Correlation

between the distance to the most prevalent node and the log-prevalence r = −0.795 (N = 690,

p< 0.00001). Correlation between the log-component-size and log-prevalence: r = 0.683

(N = 690, p< 0.00001).

(TIF)
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10. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, et al. Biodiversity redistribution

under climate change: Impacts on ecosystems and human well-being. Science. 2017; 355 (6332).

https://doi.org/10.1126/science.aai9214 PMID: 28360268

PLOS COMPUTATIONAL BIOLOGY Inferring evolutionary pathways and directed genotype networks of foodborne pathogens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008401 October 30, 2020 20 / 22

https://doi.org/10.1126/science.1244492
https://doi.org/10.1126/science.1244492
https://doi.org/10.3389/fimmu.2019.00549
https://doi.org/10.1371/journal.pone.0235654
https://doi.org/10.1371/journal.pone.0235654
http://www.ncbi.nlm.nih.gov/pubmed/32645023
https://doi.org/10.1086/650733
https://doi.org/10.1086/650733
http://www.ncbi.nlm.nih.gov/pubmed/20158401
https://doi.org/10.1371/journal.pmed.1001921
https://doi.org/10.1371/journal.pmed.1001921
https://doi.org/10.1016/j.tim.2018.06.001
https://doi.org/10.1073/pnas.1208059110
https://doi.org/10.1126/science.aai9214
http://www.ncbi.nlm.nih.gov/pubmed/28360268
https://doi.org/10.1371/journal.pcbi.1008401


11. Bakkeren E, Huisman JS, Fattinger SA, Hausmann A, Furter M, Egli A, et al. Salmonella persisters pro-

mote the spread of antibiotic resistance plasmids in the gut. Nature. 2019; 573(7773):276–280. https://

doi.org/10.1038/s41586-019-1521-8 PMID: 31485077

12. Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, et al. Evolution of Salmonella

enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PloS Genetics.

2020; 16(6):e1008850. https://doi.org/10.1371/journal.pgen.1008850 PMID: 32511244

13. Okoro C, Kingsley R, Connor T, Harris S, Parry C, Al-Mashhadani M, et al. Intracontinental spread of

human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nature genetics. 2012;

44(11):1215–1215. https://doi.org/10.1038/ng.2423 PMID: 23023330

14. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distinguishable Epidemics

of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts. Science. 2013; 341

(6153):1514–1517. https://doi.org/10.1126/science.1240578 PMID: 24030491

15. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, et al. Distinct Salmonella Enteritidis

lineages associated with enterocolitis in high-income settings and invasive disease in low-income set-

tings. Nature Genetics. 2013; 48:1211–1217. https://doi.org/10.1038/ng.3644

16. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, et al. Patterns of genome

evolution that have accompanied host adaptation in Salmonella. Proceedings of the National

Academy of Sciences. 2015; 112(3):863–868. https://doi.org/10.1073/pnas.1416707112 PMID:

25535353

17. Sotomayor C, Wang Q, Arnott A, Howard P, Hope K, Lan R, et al. Novel Salmonella enterica Serovar

Typhimurium Genotype Levels as Herald of Seasonal Salmonellosis Epidemics. Emerging Infectious

Diseases. 2018; 48:1079–1082. https://doi.org/10.3201/eid2406.171096 PMID: 29774859

18. Lan R, Reeves PR, Octavia S. Population structure, origins and evolution of major Salmonella enterica

clones. Infection, Genetics and Evolution. 2009; 9(5):996–1005. https://doi.org/10.1016/j.meegid.2009.

04.011
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