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Abstract

Background and Aims: Wearable inertial sensors may offer additional kinematic

parameters of the shoulder compared to traditional instruments such as goniometers

when elaborate and time‐consuming data processing procedures are undertaken.

However, in clinical practice simple‐real time motion analysis is required to improve

clinical reasoning. Therefore, the aim was to assess the criterion validity between a

portable “off‐the‐shelf” sensor‐software system (IMU) and optical motion (Mocap)

for measuring kinematic parameters during active shoulder movements.

Methods: 24 healthy participants (9 female, 15 male, age 29 ± 4 years, height

177 ± 11 cm, weight 73 ± 14 kg) were included. Range of motion (ROM), total range

of motion (TROM), peak and mean angular velocity of both systems were assessed

during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical

flexion/extension, and external/internal rotation) and complex shoulder movements.

Criterion validity was determined using intraclass‐correlation coefficients (ICC), root

mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower

limits of agreement).

Results: ROM and TROM analysis revealed inconsistent validity during simple (ICC:

0.040−0.733, RMSE: 9.7°−20.3°, bias: 1.2°−50.7°) and insufficient agreement during

complex shoulder movements (ICC: 0.104−0.453, RMSE: 10.1°−23.3°, bias:

1.0°−55.9°). Peak angular velocity (ICC: 0.202−0.865, RMSE: 14.6°/s−26.7°/s, bias:

10.2°/s−29.9°/s) and mean angular velocity (ICC: 0.019‐0.786, RMSE:6.1°/s−34.2°/s,

bias: 1.6°/s−27.8°/s) were inconsistent.

Conclusions: The “off‐the‐shelf” sensor‐software system showed overall insufficient

agreement with the gold standard. Further development of commercial IMU‐

software‐solutions may increase measurement accuracy and permit their integration

into everyday clinical practice.
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1 | INTRODUCTION

The assessment of upper limb function has become a viable tool in

clinical decision making for professions in the medical and athletic

field. In overhead sports, the monitoring of shoulder range of motion

(ROM) has been emphasized, to distinguish between physiological

adaptation and maladaptation.1,2 Due to the excessive forces and

repetitive loading of the shoulder complex, limited internal rotation

(IR) and increased external rotation (ER) ROM was observed when

comparing dominant and nondominant shoulders of baseball players

in 90° abduction (ABD).3 Similar side‐to side differences were evident

during shoulder vertical flexion (VFLEX), horizontal flexion (HFLEX)

and total range of rotational motion, which is defined as the total arc

of ER and IR.3–5 These adaptations may serve clinicians and trainers

as potential predictors for future injuries in overhead athletes.6–9

Additional kinematic parameters such as angular velocities may be

utilized as indicators for movement smoothness in clinical

rehabilitation.10–13

Traditional instruments to evaluate shoulder kinematics include

digital or analog goniometers as well as gravity‐based inclinometers.

However, goniometers are prone to in accuracy, since the obtained

angles rely on the type of joint and movement, investigators

experience, and patient positioning.14–16 Furthermore, they are

limited to static measurement conditions while only delivering

ROM output without additional kinematic parameters.

On the other hand, camera‐based motion capture (Mocap) is still

referenced as the gold standard for kinematic assessments of upper

limb segments due to its high accuracy.17–22 Yet, these systems may

not be suitable for clinical practice since they require a large amount

of preparation time, experienced operators, and a laboratory

environment to achieve valid results. A promising alternative to

objectively quantify body kinematics are portable devices such as

inertial measurement units (IMU).23,24 Major advantages of these

sensors compared to the gold standard are relative cost‐

effectiveness, reduced time investment and the capability to extract

real‐time data. IMU sensors are valid instruments which can be

applied in different field‐applications such as clinical or scientific

movement analysis, monitoring of activities of daily living as well as

sports performance assessment.25–27 Some specific examples may be

the assessment of postural sway,28 gait analysis,29–31 the evaluation

of jumping characteristics,32 fall detection.33,34

Concerning upper limb kinematics, Morrow et al. found an

accuracy of shoulder flexion angles up to 7° during a simulated

surgery compared to the gold standard.35 Similarly, Poitras et al. were

able to show an average error during shoulder elevation of ≤10.2°,

while reporting similar results for a complex lifting task.18,20,36 Yet, a

substantial variance of validity was found between studies in a

current systematic review by Walmsley et al. with ranges between

0.1° and 15.0° for upper limb ROM.37 The authors concluded that

validity tends to decrease with increasing task complexity.35–37

Although these results indicate sufficient validity, most investi-

gations utilized highly customized software and fusion algorithms as

well as adapted calibration methods. There is only limited evidence

for well‐established technology transfer of IMU systems into the

clinical field.38,39

A primary reason for this is the elaborate and time‐consuming

data processing procedures required (e.g., sensor set‐up and

calibration, adaptation of sensor‐fusion algorithms, data export),

which do not offer simple real‐time motion analysis. Therapists,

trainers, and other professionals should be able to set‐up IMU

systems in a time‐efficient manner, allowing for accurate data

capture and generation of clinically relevant parameters. Therefore,

such “off‐the‐shelf” solutions might be appropriate when quantifying

therapy progress or obtaining real time feedback regarding individual

movement quality. Without advanced technical knowledge and

training of the investigators, the transfer of valid IMU measurement

constructs into everyday clinical practice appears challenging.

Accordingly, this study aims to validate a commercial “off‐the‐

shelf” IMU sensor‐software system for the assessment of active

shoulder kinematics during single‐ and multiplanar movements,

compared with three‐dimensional camera system. Sufficient criterion

validity may be expected for kinematic parameters during single‐

plane shoulder movements.

2 | MATERIALS AND METHODS

2.1 | Participants

24 asymptomatic participants (9 female, 15 male, age: 29 ± 4 years,

height: 177 ± 11 cm, weight: 73 ± 14 kg) were included based on

similar research in this field.40–42 The cohort was recruited from the

university's campus and consisted of sedentary and recreationally

active adults to imitate a broad population. Inclusion criteria were age

of at least 18 years, the absence of any (acute or chronic) shoulder

pain, as well as understanding, and signing the provided written

informed consent. Ethical approval was given by the university's

ethics review board (grant number: 74/2020).

2.2 | Instrumentation

Kinematic data from two portable IMU sensors (Wave Track inertial

system; Cometa Systems) were compared against a 10‐camera

motion capture system (Vicon MX T10S; Vicon Motion Systems),

which is based on the requirements of the Vicon upper limb model

(3 degrees of freedom), which is an extended version of the Plugin‐

gait model for upper limb modeling. IMU data output was generated

automatically by a 6‐degree‐of freedom model utilizing a proprietary

sensor‐fusion algorithm of the integrated gyroscopes, acceler-

ometers, and magnetometers. The recommended calibration proce-

dures were completed for each sensor type based on manufacturer

guidelines. The following outcome parameters were extracted: ROM

[°] was calculated by subtracting the range of each movements end

position in relation to the range of the starting position. TROM [°],

was defined as the sum of both terminal ranges of each motion in
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relation to the starting position. Furthermore, minimum and maxi-

mum peak angular velocities (PAV [°/s]) were extracted from single

plane movements, whereas mean angular velocities (MAV [°/s]) were

obtained for all conditions.

2.3 | Preparations and testing procedure

Two portable IMU sensors were attached in a standardized way to

the participants sternum (10 cm below the jugular fossa) and the

frontal upper arm (15 cm below the acromion process) using rigid

tape (Figure 1). Manufacturer guidelines only provided the broad

requirements on placing the sensors on the upper arm and the

sternum without more specific recommendations (User manual—

EMG and MotionTools v. 6.0). In addition, 23 retroreflective markers

were attached to the participants torso and both arms with double

layered tape based on the “upper limb model”.21 The participants

were placed on a chair to minimize evasive movements of the trunk

during the measurements. Before data assessment, the participants

were asked to remain seated motionless in the neutral, anatomical

position (trunk upright, arms, and hands lateral at the trunk) for

calibration of the mocap system. Afterwards the “T‐pose” (arms 90°

abducted) calibration pose for the IMU sensors was repeated before

each measurement to align the sensor axes with the anatomical axis

(Figure 1). Subsequently, single‐ and multiplanar movements were

performed (movement characteristics are summarized in Table 1 and

in Supporting Information: Figure 3 in Supporting Information: File 1).

The arm to be tested was randomized, while each movement

condition was performed once in a self‐selected comfortable velocity

after one familiarization trial for each simple (abduction/adduction

[ABD/ADD], vertical flexion/vertical extension [VFLEX/VEXT], hori-

zontal flexion/horizontal extension [HFLEX/HEXT], external/internal

rotation [ER/IR]) and complex [PNF =multiplanar shoulder‐elbow

movement] shoulder movement.

2.4 | Data processing and data reduction

Kinematic IMU data was collected and processed using an “off‐the‐

shelf” software (EMG and Motion Tools; Version: 7.2.2.). Based on

the displacement of the attached two IMU sensors (represented by

thorax and upper arm) the resulting Euler angles were generated

using the pre‐defined sensor‐position mapping as required in the

“off‐the‐shelf” software. The ROM parameters were reported visually

as time‐angle plots for “ABD/ADD,” “VFLEX/VEXT,” and “HFLEX/

HEXT” in the software without further data processing. Angular

velocities were based on the gyroscope data from XZ′Y″ Euler angle

components which corresponds to the ROM parameter definitions

which were not presented instantly in the software interface but

made available after data export. For detailed analysis, all kinematic

data was exported as ASCII files and later processed in a table‐

calculation software (Microsoft Excel; Version 365). In the table

calculation software, time‐angle curves were plotted to define the

outward movement (movement initiation and return to starting

position), as well as the reverse movement (movement initiation and

return to terminal position) for all outcomes (Figure 2) except MAV.

MAV was calculated using narrower time windows instantaneously

after initiation and shortly before reaching terminal position of both

outward and reverse movements. This movement fragmentation

allowed for minimum and maximum calculations for ROM/PAV and

removing potential angle offsets retrospectively. As MAV may be the

most valuable indicator for the assessment of movement quality, PAV

was not calculated for ER/IR and PNF. Additionally, MAV was chosen

as it was assumed to be more robust against outliers because and it

allowed calculations in reduced time‐segments. Vicon data was

processed using Vicon Nexus (Version: 2.10.1. Vicon Motion

Systems). In Nexus, the upper limb model was applied for the

automatic execution of joint center calculations and to generate

kinematic data.21 Participant‐specific anthropometric data (e.g.,

elbow width, shoulder offset) were added to the model in Nexus,

whereas the IMU software did not allow model‐individualization.

Each joint angle and angular velocity of both systems were derived

from XZ′Y″ Euler rotation sequences. In Nexus the XZ′Y″ Euler angle

sequences for ROM and PAV/MAV were interpreted as follows: X=

“ABD/ADD,” Y= “HFLEX/HEXT”/“ER/IR,” Z= “VFLEX/VEXT.” Since

PNF is a multiplanar movement all three components of both systems

were used for interpretation (start and end phase for PNF‐X (=ABD/

ADD), PNF‐Y (=ER/IR/HFLEX/HEXT), PNF‐Z (=VFLEX/VEXT)). Sub-

sequently, it was exported into Excel‐format followed by the same

movement fragmentation and minimum/maximum calculations as

previously described. As both methods utilized different recording

(A)

(B)

F IGURE 1 Calibration (“T‐pose”) position of the participant.
(A) dorsal view, (B) frontal view. Reflective markers and two portable
IMU sensors were attached on the torso. IMU sensor calibration
pose. IMU, inertial measurement units.
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sampling frequencies (IMU: 147Hz, Vicon: 500Hz) outcome files

were resampled to a frequency of 200 Hz by reducing Vicon‐ and

interpolating IMU data. This step was necessary to match the

extracted outcome data sheets from both systems.

2.5 | Statistical analysis

Descriptive statistical analysis was performed for the anthropometric

and kinematic data (mean ± standard deviation [SD]). Criterion

validity was assessed by Bland and Altman analysis (bias and limits

of agreement (upper LoA: bias +1.96 × SD; lower LoA: bias

−1.96 × SD), Intraclass‐correlation coefficient (ICC, using a two‐way

mixed model) and root mean square error (RMSE [°] and [°/s]) were

calculated for ROM [°], TROM [°], PAV [°/s] as well as MAV [°/s] for

all simple and complex shoulder movements between the golden

standard (mocap system) and the “off‐the‐shelf sensor‐software

solution (IMU) using a statistics software (IBM SPSS statistics;

Version: 25.0. IBM Corp). Hereby, the outcomes of the mocap

system were used as the reference for the IMU values. Hetero-

scedasticity of data was assessed by visual inspection of the resulting

Bland and Altman plots for all outcome parameters.

3 | RESULTS

All participants were able to execute the movement tasks. Interpre-

tation of ICC indicators were based on those used in previous

investigations: poor (less than 0.5), moderate (between 0.5 and 0.7),

good (between 0.7 and 0.9) and excellent (greater than 0.9).36 Bland

and Altman analysis for the kinematic measures are summarized in

Tables 2 and 3 and Supporting Information: Figures 4 and 5 in

Supporting Information: File 2.

3.1 | ROM

Absolute ROM and TROM as well as ICC, RMSE and bias ± LoA

values are stated in Table 2. ICC of ROM analysis ranged between

0.048 and 0.727. Moderate correlations were shown for HFLEX

(0.727) and ADD (0.534) as well as VFLEX (0.522), respectively.

Overall, TROM assessment resulted in ICC ranges between 0.075

and 0.733, whereas moderate correlations were calculated for

HFLEX/HEXT (0.733). RMSE of ROM ranged from 9.7° to 23.3°,

the lowest values were calculated for HEXT (9.7°) and for PNF y start

(10.1°) movements. Overall RMSE of TROM was reported between

15.9° and 31.1°, whereas the lowest RMSE was demonstrated for

ER/IR (15.9°) and HFLEX/HEXT (17.6°). Systematic ROM errors (bias)

exhibited ranges between 1.0° and 55.9°, but the lowest values were

shown for PNF x start (1.0°) and HFLEX (1.2°), as well as TROM

(range: 4.2°–50.7°) HFLEX/HEXT (4.2°) and PNF x start/end (8.5°)

between the gold standard and the IMU “off‐the‐shelf” system.

Visual analysis of the Bland and Altmann plots revealed homosce-

dastic distribution of ROM data (see supporting Information: File 2).

3.2 | Angular velocities

Table 3 summarizes absolute PAV and MAV results as well as ICC,

RMSE and bias ± LoA values. Overall ICC PAV analysis ranged

(A)

(B)

F IGURE 2 Left: Participant performing
Vertical flexion (A) and vertical extension
(B). Right: angle‐time plots for Mocap (top: the
red arrow indicates the calculation of a
maximum) and IMU (bottom: the red arrow
indicates the calculation of minimum)
movement fragmentation (blue arrows
indicate beginning/end of movement) before
angle offset removal. Vertical flexion and
vertical extension with corresponding time‐
angle plots. IMU, inertial measurement units.
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between 0.202 and 0.865, whereas good correlations were shown

for HFLEX (0.865) and HEXT (0.838). Regarding MAV, ranges

between 0.019 and 0.786 were found and good correlations were

found for HFLEX (0.786). PAV RMSE resulted in ranges between

14.6°/s and 26.7°/s whereas the lowest RMSE were reported for

ADD (14.6°/s) and ABD (15.2°/s). Concerning MAV, ranges between

6.1°/s and 34.2°/s were present and the lowest RMSE were found

for VEXT (6.1°/s), as well as ABD (7.4°/s) and ADD (7.4°/s).

Systematic errors for PAV exhibited ranges between 10.2°/s and

98.5°/s and were lowest for HFLEX (10.2°/s), as well as MAV ranges

of 1.6°/s and 25.3°/s were calculated with lowest values for ADD

(1.6°/s) and HFLEX (4.6°/s), respectively. Additionally, for the

complex PNF movements, scattered data points in the Bland and

Altman plot may be indicating the appearance of heteroscedasticity

angular velocity data. During the single‐plane movements a mostly

homogeneous variation of data points was evident (see Supporting

Information: File 2).

4 | DISCUSSION

Portable sensor systems have become a growing field of interest,

for professionals performing clinical assessments in multiple

rehabilitative settings.12,29,43 This study aimed to validate a

commercially available “off‐the‐shelf” IMU sensor‐software system

for the assessment of shoulder kinematics during single‐ and

multiplanar movements. Although IMU systems generally may

exhibit sufficient validity for shoulder kinematics, there is consider-

able variability between studies due to the large amount of

customization of software and calibration methods.44–46 The

findings of the present experiment indicate that the investigated

“off‐the‐shelf” sensor system achieved the highest but still insuffi-

cient accuracy for assessing ROM and angular velocities in the

transverse plane, when compared to the gold standard. Never-

theless, more accurate results were expected but not attained for

the other single‐plane movements. Contrary to the present

investigation, El‐Gohary et al. reported a low RMSE during shoulder

ABD and VFLEX (<5.5°).47 The authors modified a biomechanical

model and the integrated fusion algorithm of the used IMU sensors

for the specific task. However, the used kinematic model was

applied to a modified inertial tracking algorithm which could reduce

magnetic field disturbances and accumulated sensor error drift over

time. Comparable values were obtained for shoulder elevation in a

recent investigation by Morrow et al. during functional tasks.35 The

authors fused the IMU sensor data into quaternion rotation

matrices before extracting the final Euler angles by using custom

software scripts. It could be argued that such cumbersome

procedures to assess valid kinematic data may not be accessible

for the majority of health professionals. Correspondingly, we aimed

to minimize the amount of customization and post‐record proces-

sing, deeming this simplification as crucial for the implementation of

such mobile systems into clinical practice. We therefore considered

our sensor‐software system to be a “black‐box” (=unmodified

application) which allows clinical professions to gain real‐time data

without further modifications of the software. However, this

approach of nonlaboratory data assessment led to major systematic

bias for the complex PNF pattern as well as simple shoulder ABD. In

this investigation angular velocity outcome parameters were

generally more accurate compared to ROM output. Since only

gyroscope data was used to extract velocity while ROM was

obtained by the internal fusion of all integrated sensors, the general

source of error may be identified in the used software rather than

the integrated hardware sensors. Within the software it was not

reported whether the calibration procedure was successful. Based

on that, a thorough investigation whether the IMU sensor axis

where in line with the anatomical axis of the shoulder joint was not

possible, which has a major impact on the kinematic parameters.

Without this and the missing information on the exact sensor

placement, the kinematic outcomes may have been influenced by

systematic measurement error, which could be supported by Bland‐

Altmann analysis. Additionally, the gold standard as well as the IMU

software utilized different biomechanical models. The Mocap

system is postulated to be more accurate as participant‐specific

parameters (e.g., shoulder offset and elbow width) are added to the

used model (Vicon upper limb model). Therefore, glenohumeral joint

center calculations and the corresponding kinematic data are more

precise due to individualization. The IMU software on the other

hand utilizes the identical standard parameters for every participant

to calculate the rotational displacement between the thorax and the

upper arm segment. These basic methodological differences were

expected but may not fully explain the differences in accuracy

between both systems observed in this investigation. In overhead‐

athletes it was shown that side‐to‐side differences of >5° in ER may

indicate increased risk of injury.2 With the calculated systematic

error of 25.9° this clinically important difference is exceeded by far.

Therefore, the used commercial “off‐the‐shelf” sensor‐software

system may not be mature enough for application in overhead

athletes or the general clinical population. Although time‐efficiency

was not assessed in this trial, it took a relatively short time (less than

10min) to prepare each subject, calibrate the IMU system and

evaluate all movement conditions. Additionally, the software

interface and set‐up procedure were straight forward and easy to

use. If the measurement errors were eliminated, the system could

allow health professionals to assess multiple dynamic tests without

interruptions, whilst gaining and extracting real‐time movement

data in the future.

4.1 | Limitations

A prevalent source of error in body‐worn sensor systems lies in soft

tissue artifacts, especially in the frontal and sagittal planes.48 Errors

due to muscle tension, sensor tilt and rotation were noticeable in this

investigation, which may have led to biased data peaks or the inability

to recognize motion. This problem may be solved by attaching the

sensors on bony landmarks at the elbow or by using skin‐tight circular
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straps like those used in a similar investigation.36 However, the exact

sensor positioning was not provided accurately enough in the

software. In addition, magnetic disturbances within the measurement

volume may have limited the precision of the used IMU sensor‐

software system. Although calibration procedures included the

magnetometers, sudden changes in the laboratory environment

may not be omitted. This may also explain the relatively large

amount of corrupted motion outputs in several trials. Following the

calibration procedures, it was not possible to track whether the

alignment of the sensors axis and the anatomical axis was successful,

which potentially biased all outcomes. In this regard, repeated

measurements for reliability assessment may have delivered viable

information on time‐ and measurement dependent sources of error.

Overall, the greatest limitation of commercially available systems is

that the integrated sensor fusion as well as output software cannot

be edited by the investigator. This makes it generally easier to handle

for clinicians but prohibits further interventions concerning individu-

alization or task specifications.

5 | CONCLUSIONS

Overall, limited agreement was evident between the portable “off‐

the‐shelf” sensor‐software system and the gold standard (Mocap).

Although the overall criterion validity may not be sufficient yet, it is

important to understand that commercially available and applicable

automatic processing software might be particularly important for

the professionalization of therapy and training practices. Further

research is necessary to investigate whether modified “off‐the‐shelf”

mobile sensor‐software systems are accurate enough to assess

clinically important adaptations in shoulder kinematics for athletic

and clinical populations.
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