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Abstract

Previously, we showed that Killer Immunoglobulin-like Receptor (KIR)3DS1 homozygotes

(hmz) are more frequent in HIV exposed seronegative (HESN) than in recently HIV infected

(HIV+) individuals. KIR3DS1 encodes an activating Natural Killer (NK) cell receptor (NKR).

The link between KIR genotype and HIV outcomes likely arises from the function that NK

cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123

HIV+ subjects for the frequency of KIR region gene carriage observed between-group differ-

ences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+

individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full

length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is

characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in link-

age disequilibrium with each other. We assessed which of the TB01 encoded KIR gene

products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seroneg-

ative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the

frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK
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cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing,

versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and

KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by

KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred respon-

siveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells

Introduction

Natural killer (NK) cells are a lymphocyte subset involved in early defenses to virus infected

and transformed cells [1]. They contribute to the elimination of these “altered self” cells, in

the absence of prior antigen sensitization, by direct cytotoxicity and by secreting cytokines

such as IFN-γ and TNF-α and chemokines such as CCL3, CCL4 and CCL5 [2–5]. NK cells

also act to bridge innate and adaptive immunity, by contributing to the activation of T and B

cells through dendritic cell activation and cytokine production [6].

NK cell activity is regulated by an array of cell surface receptors. The most diverse of these

are the structurally related polymorphic Killer Immunoglobulin-like Receptors (KIR) [7]. The

KIR gene cluster is located on the long arm of chromosome 19 (19q13.4) within the leukocyte

receptor complex [8]. KIR genes are organized into group A or B haplotypes [9–11]. The

group A haplotypes are comprised of four framework genes present in most KIR haplotypes

(KIR3DL3 at the centromeric end, KIR3DL2 at the telomeric end and KIR2DL4 and the pseu-

dogene KIR3DP1 in the middle) plus KIR2DL1, KIR2DL3, KIR3DL1, KIR2DS4 and KIR2DP1.

The KIR2DS4 locus encodes several variants having a frameshift mutation that prevents cell

surface expression [12, 13]. These are present at a high frequency in certain populations, such

that many individuals homozygous for the KIR group A haplotype have no activating KIR

(aKIR) [12]. The more diverse group B haplotypes include the framework genes with various

combinations of KIR2DL2, KIR2DL5A/B,KIR2DS1,KIR2DS2,KIR2DS3,KIR2DS5 and

KIR3DS1 [14–16]. Most KIR region haplotypes are composed of one of 3 centromeric and one

of 3 telomeric KIR motifs that include combinations of KIR genes in linkage disequilibrium

(LD) with each other [17]. The centromeric region is delimited by the framework genes

KIR3DL3 and KIR3DP1 while the telomeric region is delimited by framework genes KIR2DL4
and KIR3DL2 [18].

The engagement of inhibitory KIR (iKIR) by surface major histocompatibility complex

class I (MHC-1) or HLA antigens on neighboring cells during development is required for NK

cell education, a process that confers NK cells with functional competence [19, 20]. In mature

educated NK cells, the engagement of iKIR by HLA results in inhibitory signals. Virus-infected

and transformed cells with altered cell surface HLA expression can drive NK cell activation by

altering MHC-1 expression that reduces or interrupts inhibitory signaling through iKIR and

by inducing ligands that engage activating NK cell receptors (aNKR) [21].

Epidemiologic studies have found that some KIR and KIR/HLA genotype combinations

are associated with protection from HIV infection in HIV exposed seronegative (HESN) indi-

viduals. For example, co-expression of the high expression homozygous KIR3DL1 genotype

KIR3DL1�h/�y and HLA-B�57 occurs at a higher frequency in HESN than in HIV-susceptible

seropositive subjects as does the KIR3DS1 homozygous genotype [22, 23].

KIR2DS4 codes for an aKIR. Alleles at this locus can be broadly grouped into those encod-

ing cell-surface expressed (KIR2DS4�001-like) and truncated, non-cell-surface expressed

(KIR2DS4�003-like) variants [12, 13]. KIR2DS4�001 has been associated with HIV transmission
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in HIV discordant couples in Zambia, independently of its association with higher HIV viral

load in index transmitting partners [24]. Carriage of these alleles has also been associated with

poor outcomes such as low CD4 counts and/or high viral load in a cohort of HIV-infected

American youth and in HIV+ individuals in Lima, Peru [25, 26]. It is notable that the

KIR2DS4 and KIR3DL1/S1 genes are in LD with each other and with other KIR genes in telo-

meric KIR region motifs [17]. The KIR2DS4 and KIR2DS1 genes are in negative LD, suggesting

they may be alleles at the same locus [27, 28]. Carriage of KIR2DS1 and absence of a KIR2DS4
gene is a hallmark of the telomeric TB01 motif [17].

KIR2DL5 is presumed to be an iKIR based on its long immunoreceptor tyrosine-based

inhibitory motif (ITIM) containing cytoplasmic tail [29, 30]. The ligand for KIR2DL5 remains

unknown. The gene encoding KIR2DL5 is duplicated in some KIR group B haplotypes [31].

KIR2DL5A lies in the telomeric region next to KIR3DL1/S1, while KIR2DL5B is in the centro-

meric region [11, 32]. KIR2DL5 genes mark centromeric and telomeric group B haplotypes

[14]. While many KIR2DL5B gene products are not cell surface expressed, KIR2DL5A recep-

tors are expressed on the surface of CD56dim NK cells [29]. Based on LD with KIR2DL5A and

KIR2DL5B, KIR2DS3 and KIR2DS5 can also be present in the telomeric and centromeric

group B haplotypes [33, 34]. The KIR2DS3 and KIR2DS5 genes are in negative LD with each

other and have been proposed to be allele groups at the same locus [27, 28].

Given the LD between genes located in the telomeric group B KIR region and the previously

reported higher frequency of KIR3DS1 homozygotes (hmz) among HESN compared to HIV+

subjects, we investigated the differential frequency of other KIR region genes in these two pop-

ulations. The TB01 motif of linked KIR genes was found more frequently among HESN than

HIV+ subjects. We took advantage of the stochastic expression of KIR gene products on the

NK cells to investigate the contribution of KIR3DS1, KIR2DL5A, KIR2DS1 and KIR2DS5 to

NK cell responses to the HLA null cell line 721.221 (221).

Materials and methods

Ethics statement

This study was conducted in accordance with the principles expressed in the Declaration of

Helsinki and was approved by the Institutional Review Boards of the Comité d’Éthique de la

Recherche du Centre Hospitalier de l’Université de Montréal and the Research Ethics Com-

mittee of the McGill University Health Centre. All individuals provided written informed con-

sent for the collection of samples and subsequent analyses.

Study population

The study population for KIR region typing included a total of 545 individuals, of which 106

were HESN and 439 were HIV-infected individuals enrolled in the Montreal Primary Infection

(PI) cohort. HESN were recruited from the St. Luc cohort, a prospective cohort of active HIV-

negative injection drug users (IDU) at high risk for HIV acquisition [35] (n = 87), and among

HIV-negative partners of serodiscordant couples followed in medical clinics in Montreal

(n = 19). Information collected at follow-up visits included assessment of the frequency of

high-risk behavior for HIV acquisition, blood draws and monitoring of HIV serostatus. All

HESN subjects maintained a negative HIV enzyme immunoassay (HIV EIA) test despite at

least five reported HIV exposures. Parenteral exposure was defined as sharing needles with

known HIV-infected partners and mucosal exposure was defined as unprotected sex with a

known HIV-infected partner. None of the HESN subjects were CCR5Δ32homozygotes, a

genotype known to confer resistance to HIV infection [36, 37]. The Montreal PI cohort enrolls

individuals within 6 months of infection and follows them an average of every 3 months for up
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to 4 yrs. At each visit CD4, CD8 and plasma viral load measurements are done and peripheral

blood mononuclear cells (PBMC) and plasma are frozen and stored.

For functional assays, we studied 8 HIV–uninfected KIR3DS1 hmz, including 7 with at

least 1 Bw4 allele and 1 who was a Bw6 hmz with no Bw4 alleles at the HLA-A locus. All the

KIR3DS1 hmz were positive for KIR2DL5A and KIR2DS1 genes, 6 carried a KIR2DS5 gene and

none carried a gene encoding an expressed KIR2DL5B variant. All were negative for KIR2DS4.

Table 1 shows the HLA and KIR information for each of these 8 study participants.

Genotyping

Genomic DNA was extracted from PBMCs or Epstein-Barr virus (EBV)-transformed cells

using a QIAamp DNA blood kit (QIAGEN, Inc., Mississauga, Ontario, Canada). KIR region

typing was performed on 97 HESN and 123 HIV+ subjects using commercially available

reagents (KIR Genotyping SSP kit, OneLambda, Canoga Park, CA) according to manufactur-

er’s instructions. The presence of the following KIR genes was detected: KIR2DL1-2DL5,

KIR2DS1-2DS5,KIR3DL1-3DL3,KIR3DS1 and the pseudogenes KIR2DP1 and KIR3DP1. All

subjects carried the framework KIR genes, a KIR3DL1/S1 and a KIR2DL2/L3 gene. The subjects

who were KIR region typed, as well as an additional 9 HESN and 316 HIV+ subjects for a total

of 106 HESN and 439 HIV+ subjects, were typed for generic genotypes at the KIR3DL1/S1
locus using 2 sets of primers specific for KIR3DL1 and KIR3DS1 as previously described [23,

38]. A total of 105 HESN and 438 HIV+ subjects were tested for the presence of a KIR2DS4
gene and, if present, for KIR2DS4�001-like and KIR2DS4�003-like alleles by either KIR region

typing and/or using 2 sets of primers specific for KIR2DS4 and conditions described by Kulk-

arni et al. [38]. The presence of KIR2DL5, KIR2DS3,KIR2DS5 and KIR2DS1 genes was assessed

in 105 HESN and in 431, 321, 321 and 435 HIV+ subjects, respectively, by KIR region typing

and/or using 2 sets of primers specific for these genes [38]. All subjects positive for a KIR2DL5
gene were typed for the presence of a telomeric KIR2DL5A, a centromeric KIR2DL5B gene or

both using a modification of methods described by Du et al. [33]. KIR2DL5A and KIR2DL5B
genes were distinguished at 3 single nucleotide polymorphisms (SNP) at positions (-97, -84,

and +16) [33]. Additionally, when a KIR2DL5B gene was present, the SNP present at position

-97 was used to deduce whether it encoded an expressed gene product or one that was epige-

netically silenced [32, 39]. Testing for the presence of KIR2DS3 and KIR2DS5 genes was per-

formed on all individuals who carried KIR3DS1,KIR2DL5A or KIR2DS1 genes to ascertain

whether one of these was present, as would be expected of carriers of a canonical TB01 motif.

The presence of non-canonical telomeric motifs (i.e. other than TA01, TA02 or TB01 motifs)

were verified by repeat typing.

Table 1. KIR/HLA information on KIR3DS1 homozygotes providing cells for functional studies.

Donor HLA-A HLA-B HLA-C Bw4 KIR2DL5A KIR2DS1 KIR2DS5

1 01:01/02:03 37:01/46:01 01:02/06:02 Yes Yes Yes No

2 02:01/24:02 39:01/51:01 07:02/07:02 Yes Yes Yes Yes

3 02:01/03:01 27:05/47:01 02:02/06:02 Yes Yes Yes Yes

4 02:05/03:01 44:02/44:02 06:02/07:01 Yes Yes Yes Yes

5 24:02/68:01 18:01/18:01 05:01/07:01 Yes Yes Yes Yes

6 24:02/68:01 18:01/57:01 06:02/07:01 Yes Yes Yes Yes

7 02:01/32:01 27:05/51:01 05:01/14:02 Yes Yes Yes Yes

8 03:01/11:01 07:02/40:02 02:02/07:02 No Yes Yes No

https://doi.org/10.1371/journal.pone.0185160.t001
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Cells

Cryopreserved HLA-null 221 cells were thawed and cultured in RPMI medium supplemented

with 10% Fetal Bovine Serum (FBS); 2mM L-glutamine; 50 IU/mL penicillin and 50 μg/mL

streptomycin (R10) (all from Wisent, St Jean Baptiste, QC, Canada). PBMCs were isolated by

density gradient centrifugation (Lymphocyte Separation Medium, Wisent) and cryopreserved

in 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich, St Louis, MO); 90% FBS (Wisent).

NK cell activation by 221 cells

Cryopreserved PBMCs were thawed and co-cultured in R10 with 221 HLA-null cells at a 10:1

ratio for 6 hr at 37˚C in a humidified 5% CO2 incubator. Unstimulated PBMCs were cultured

alone as a negative control and PBMCs stimulated with 1.25μg/mL phorbol 12-myristate

13-acetate; 0.25μg/mL ionomycin (P/I) were used as a positive control to ensure that the NK

cells were viable and functional. CD107a-BV421 (clone H4A3, BioLegend, San Diego, CA) was

added at the start of the stimulation; Brefeldin A (5 μg/ml; Sigma-Aldrich) and monensin

(6 μg/ml, Golgi Stop; BD Biosciences, Mississauga, ON, Canada) were added 30 min after

starting the co-culture. After stimulation, cells were stained using the UV Live/Dead Fixable

Dead Cell Stain Kit (Invitrogen, Burlington, ON, Canada) to assess viability. Nonspecific inter-

actions with antibodies in the staining panel were minimized by using TruStain FcX reagent

(BioLegend), as per the manufacturer’s instructions. Cells were surface stained with one of 2

fluorochrome-conjugated antibody panels. Panel 1 included antibodies to the following speci-

ficities: CD3-BV785 (OKT3), CD56-BV711 (HCD56, both from BioLegend), KIR3DL1/S1-PE

(Z27, Beckman Coulter, Mississauga, ON, Canada) and KIR2DL5-PE-Vio 770 (Miltenyi Bio-

tec, Cambridge, MA). Panel 2 included antibodies to the following specificities: CD3-BV785

(OKT3), CD56-BV605 (HCD56) and KIR2DL1/KIR2DS1/KIR2DS3/KIR2DS5-FITC (HP-

MA4, all from BioLegend), KIR2DL1-VioBlue (REA284) and KIR2DL1/KIR2DS1-APC-Vio

770 (11PB6) (all from Miltenyi Biotec) and KIR3DL1/S1-PE (Beckman). After surface staining,

cells were fixed and permeabilized using Fix and Perm Kit (Invitrogen) reagents and stained

for intra-cellular IFN-γ with anti-IFN-γ-BV510 (B27, BD Biosciences, San Jose, CA). Samples

were washed, fixed with 2% paraformaldehyde (Santa Cruz Biotechnology, Santa Cruz, CA),

and acquired within 24 hrs.

Flow cytometry analysis

Between 4.0 x 105 and 1.0 x 106 total events were acquired for each sample using a calibrated

LSRFortessa™ X-20 flow cytometer (BD). Single stained control beads (CompBead; BD) were

used in every experiment to calculate compensation. Boolean gating was used to identify the

frequency of KIR3DS1+/- KIR2DL5+/-, KIR3DS1+/- KIR2DS1+/- and KIR3DS1+/- KIR2DS5+/-

expressing CD3-CD56dim NK cells positive for all possible functional subsets defined by

CD107a expression and IFN-γ secretion. For stimulations with 221 cells, PBMCs cultured in

R10 served as background controls. All data obtained were corrected for background. Flow

cytometry results were analyzed using FlowJo software (V9.8; TreeStar, Ashland, OR).

Statistical analysis

Statistical analysis and graphical presentation of genotyping results were performed using

GraphPad InStat 3.10 and GraphPad Prism 6 (GraphPad Software Inc, La Jolla, CA). Fisher’s

exact tests were used to compare proportional between-group differences for selected genes

and genotypes in HESN and HIV+ subjects. Results are reported in the following format:

(Odds Ratio [95% confidence intervals], p-value) unless otherwise specified. A p-value of less
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than 0.05 was considered significant. The Holm- Bonferonni method was used to adjust p-val-

ues for multiple comparisons. For functional studies, Friedman tests were used to test the sig-

nificance of differences between the frequency of four within-subject KIR3DS1+/- KIR2DL5+/-,

KIR3DS1+/- KIR2DS1+/- and KIR3DS1+/- KIR2DS5+/- CD3-CD56dim NK cell populations

responding to 221 cells. Wilcoxon tests were used to assess the significance of comparisons for

within-subject paired data sets for functional NK cell populations.

Results

KIR region typing

The KIR region is polygenic and thus varies in gene content from one individual to another [9,

11]. To determine whether the frequency of certain KIR genes within this region differed

between HESN and HIV+ subjects we screened for their presence in a subset of 97 HESN and

123 HIV+ individuals by KIR gene region typing. The frequency of KIR2DL2 and KIR3DL3
was considered separately as was the frequency of KIR3DL1 and KIR3DS1, which are allele

groups at the KIR2DL2/L3 and KIR3DL1/S1 loci, respectively. We also considered the presence

of a KIR2DS4 gene, and whether alleles at this locus belonged to the KIR2DS4�001-like and/or

KIR2DS4�003-like groups. As expected, the framework genes KIR2DL4, KIR3DL2, and

KIR3DL3 and the pseudogene KIR3DP1 were present in all subjects tested. Fig 1 and S1 Table

Fig 1. Killer Immunoglobulin-like Receptor (KIR) gene and KIR allele group frequencies in 97 HIV exposed seronegative

(HESN) and 123 recently infected HIV positive (HIV+) subjects. Shown on the y-axis are the percentage of HESN and HIV+

individuals carrying each KIR gene. Percentage refers to the number of subjects positive for each variable divided by the total number of

subjects tested for that variable. The framework genes KIR2DL4, KIR3DL2, KIR3DL3, and the pseudogenes KIR3DP1 were present in

all study subjects and are not shown in this this figure. Each gene shown on the x-axis is named without the “KIR” designation, i.e.

2DS1 = KIR2DS2, etc. ** = p’<0.01. This p-value refers to p-value corrected for multiple comparisons. This p’-value is shown over the

bar linking the 2 groups being compared.

https://doi.org/10.1371/journal.pone.0185160.g001
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show the frequency of each of these genes and allele groups in HESN and HIV+ subjects. The

only significant between-group differences noted was the frequency of KIR2DS4�001-like

alleles, which was lower in HESN than in HIV+ subjects (0.33 (0.18, 0.59), p = 0.0002, cor-

rected p (p’) = 0.003, Fisher’s exact test). The frequency of several other telomeric KIR genes

differed between HESN and HIV+ subjects, though these differences did not achieve statistical

significance. This prompted us increase the size of the study population to provide increased

power to observe significant between-group differences in telomeric KIR gene frequency.

We previously showed that the distribution of the KIR3DL1/S1 generic genotypes were in

Hardy-Weinberg equilibrium in HIV+ but not in HESN subjects [23]. The skewed distribu-

tion of KIR3DL1/S1 generic genotypes in HESN was due to an over representation of KIR3DS1
hmz among HESN. This observation was confirmed in a larger group of 106 HESN and 439

HIV+ subjects, however the significance of this finding did not survive correction for multiple

comparisons (Fig 2A and S2 Table).

Fewer HESN than HIV+ individuals carried a KIR2DS4 gene, though the statistical

significance of this difference did not survive correction for multiple comparisons (p = 0.03,

p’ = 0.36, Fisher’s) (Fig 2B, S2 Table). Fewer HESN than HIV+ subjects carried at least 1 copy

of a full length KIR2DS4�001-like allele, which encodes cell surface expressed receptors that

have the potential to exert an effect on NK cell function. There were no significant between-

group differences in the frequency of carriage of unexpressed KIR2DS4�003-like alleles

(Fig 2B, S2 Table). KIR2DS4 and KIR2DS1 are genes in the telomeric KIR region that are in

strong negative LD suggesting and that may be alleles at the same locus. Based on whether a

KIR2DS1 gene was also present it was possible to deduce whether 1 or 2 copies of full length

KIR2DS4�001-like or truncated KIR2DS4�003-like alleles were present in subjects that typed

Fig 2. Killer Immunoglobulin-like Receptor (KIR) generic genotype and allele group frequencies in HIV exposed seronegative

(HESN) and recently infected HIV positive (HIV+) subjects. Shown on the y-axis is the frequency of (A) HESN (n = 106) and HIV+

(n = 439) subjects positive for the three KIR3DL1/S1 generic genotypes, (B) HESN (n = 105) and HIV+ (n = 438) subjects positive for a

KIR2DS4 gene and carrying at least 1 copy of a KIR2DS4*001-like or KIR2DS4*003-like allele (C) KIR2DS4*001-like or KIR2DS4*003-

like allele groups among the 210 and 876 KIR haplotypes from HESN (n = 105) and HIV+ (n = 438) subjects, (D) HESN (n = 105) and

HIV+ (n = 431) subjects positive for a KIR2DL5, KIR2DL5A and KIR2DL5B gene, (E) HESN (n = 105) and HIV+ (n = 435) positive for a

KIR2DS1 gene, (F) TB01 motifs among the 210 and 846 KIR haplotypes from HESN (n = 105) and HIV+ (n = 423) subjects and (G)

HESN (n = 105) and HIV+ (n = 423) subjects positive for a homozygous TB01 motif. P’-values over the lines linking groups being

compared are corrected for multiple comparisons.

https://doi.org/10.1371/journal.pone.0185160.g002
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for only one of these allele groups. As shown in Fig 2C and S2 Table the frequency of

KIR2DS4�001-like alleles, was significantly lower in HESN than in HIV+ persons (p<0.001,

p’-value p = 0.01, Fisher’s) while that of KIR2DS4�003-like alleles did not differ between

groups. The frequency of KIR2DS1 carriers did not differ significantly between groups (1.38

[0.89, 2.13] p = 0.15, Fisher’s) (Fig 2D and S2 Table). The proportion of HESN and HIV+ indi-

viduals positive for a KIR2DL5 gene was not significantly different (p = 0.82, Fisher’s, Fig 2E,

and S2 Table). A KIR2DL5 gene can be present in either centromeric or telomeric group B KIR
haplotypes. Although the frequency of telomeric KIR2DL5A was higher in HESN than HIV+

subjects, this difference did not achieve statistical significance. (Fig 2E and S2 Table).

In summary, we found that absence of an expressed KIR2DS4�001-like allele was associated

with a reduced risk of HIV infection and confirmed a trend towards an association between

KIR3DS1 homozygosity and a reduced risk of HIV infection.

The telomeric KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1 gene

grouping is more frequent in HESN than HIV+ subjects

The most common KIR haplotypes are derived from combinations of three centromeric and

three telomeric motifs linked to each other by a recombination hotspot located between

KIR3DP1 and KIR2DL4 [17, 40, 41]. Fig 3 shows that KIR3DS1 is positioned within the telo-

meric group B haplotype TB01 motif, in LD with KIR2DL5A, KIR2DS3/S5 and KIR2DS1 [17,

40, 41].

HESN (n = 105) and HIV+ (n = 423) subjects were typed for KIR3DL1/S1 genotypes, and

for the presence of KIR2DL5A, KIR2DS1 and KIR2DS4 genes. All subjects positive for

KIR3DS1,KIR2DL5A and/or KIR2DS1were also typed for the presence of KIR2DS3 and

KIR2DS5, one of which should also be present in TB01 motifs. While most study subjects car-

ried canonical TA01/02 and/or TB01 motifs, 6 (5.7%) HESN and 58 (13.7%) HIV+ subjects

carried non-canonical telomeric KIR motifs. S3 Table provides information on the number of

individuals who carried non-canonical motifs and identifies how they diverged from canonical

telomeric motifs. All the non-canonical telomeric motifs were classified as non TB01.

Of the 210 and 846 telomeric KIR region motifs in 105 HESN and 423 HIV+ subjects 52

(24.8%) and 126 (14.9%), respectively were canonical TB01 motifs, a proportional between-

group difference that was statistically significant (p = 0.0003, p’ = 0.004, Fisher’s) (Fig 2F and

S2 Table). HESN were more likely to carry a homozygous TB01 motif than HIV+ subjects (11

of 105 [10.48%] HESN versus 15 of 423 [3.5%] HIV+ persons were TB01 homozygotes [3.18

Fig 3. Killer Immunoglobulin-like (KIR) haplotypes. Organization and composition of centromeric and telomeric KIR region genes.

https://doi.org/10.1371/journal.pone.0185160.g003
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(1.42, 7.15), p = 0.009, Fisher’s). However, the significance of this between-group difference

did not survive correction for multiple comparisons (Fig 2G and S2 Table).

The contribution of TB01 encoded gene products to NK cell responses to

HLA-null cell stimulation

Although the KIR3DS1,KIR2DL5A, KIR2DS1 and, when present, KIR2DS5 genes are in LD

they are stochastically expressed on NK cell populations. This prompted us to question the

contribution of NK cells expressing various combinations of these receptors to stimulation

with 221 cells. Of 8 KIR3DS1 hmz, all were positive for KIR2DL5A and KIR2DS1 and 6 were

positive for KIR2DS5. NK cells from these individuals were investigated for functional

responses to 221 cell stimulation. Fig 4A shows the gating strategy used to identify KIR3DS1+

and KIR2DL5+ NK cell populations that were stained with panel 1 antibodies. We used Bool-

ean analysis to examine the frequency of the 4 possible NK populations defined by KIR3DS1+/-

KIR2DL5+/- receptors before and following stimulation with 221 cells (Fig 4B). No significant

Fig 4. The frequency of NK cells expressing all possible combinations of KIR3DS1 and KIR2DL5 before and after stimulation with

721.221 (221) HLA-null cells. (A) Live singlet lymphocytes were gated on. From this population CD3-CD56dim NK cells were examined for

the frequency of cells expressing KIR3DS1 and/or KIR2DL5 or neither. (B) The frequency of NK cells on the y-axis expressing all possible

combinations of KIR3DS1 (3DS1) and KIR2DL5 (2DL5) on NK cells before and after stimulation with 221 cells (B). Each point represents

results from a single individual. Bar heights and error bars represent the median and inter-quartile range of each group.

https://doi.org/10.1371/journal.pone.0185160.g004
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difference in the frequency of expression of the 4 NK cell populations was noted indicating

that HLA-null stimulation did not alter the expression of these KIR on the NK cell surface.

We also used Boolean analysis to ascertain the functional responses to 221 cell stimulation

characterized by degranulation, as measured by CD107a, and IFN-γ secretion of the 4 possible

NK populations defined by KIR3DS1+/- KIR2DL5+/- receptor expression (S1 Fig). The

frequency of the double positive (3DS1+2DL5+) and KIR3DS1+ (3DS1+2DL5-) NK cells

responding to 221 stimulation was significantly higher than that of the single KIR2DL5+

(3DS1-2DL5+) and double-negative (3DS1-2DL5-) NK cell populations (Fig 5). This was the

case for all the functional subsets examined (Fig 5A, 5B and 5D), with the exception of the

total CD107a+ functional profile, where between-group comparison did not achieve statistical

significance (Fig 5C). There was no significant difference in the frequency of responding cells

characterized by any of the functional subsets for the double positive and single 3DS1+ NK cell

populations. A higher frequency of 3DS1+2DL5+ than 2DL5+ NK cells responded to 221 stim-

ulation for all functional subsets except total CD107a expression. The frequency of single

2DL5+ and double-negative 3DS1-2DL5- NK cells responding to 221 stimulation was not sig-

nificantly different for any of the functional subsets examined.

Fig 5. The frequency functional NK cells expressing all possible combinations of KIR3DS1 and KIR2DL5, KIR3DS1 and

KIR2DS1 and KIR3DS1 and KIR2DS5 responding to stimulation with 721.221 (221) HLA null cells. Shown in the y-axis are the

frequencies of NK cells expressing (A-D) all possible combinations of KIR3DS1 (3DS1) and KIR2DL5 (2DL5) (E) 3DS1 and KIR2DS1

(2DS1) and (F) 3DS1 and KIR2DS5 (2DS5) that responded to stimulation with 221 cells. (A, E) Frequency of all functional NK cells (%

total fxn cells), (B) NK cells secreting both IFN-γ and CD107a, (% CD017a+IFN-γ+ cells), (C) all NK cells expressing CD107a (% total

CD107a+ cells) (D, F), and all NK cells secreting IFN-γ (% total IFN-γ cells). Each point represents results from an individual subject. Bar

heights and error bars represent the median and inter-quartile range of each group. Lines linking 2 bars show comparisons between the

groups linked by the lines. * = p<0.05, ** = p<0.01.

https://doi.org/10.1371/journal.pone.0185160.g005
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Fig 6 shows the gating strategy used to identify KIR3DS1+, KIR2DS1+ and KIR2DS5+ NK

cells following staining with panel 2 antibodies. Boolean analysis was used to examine the

frequency of the 4 possible NK populations defined by KIR3DS1+/-KIR2DS1+/- and by

KIR3DS1+/-KIR2DS5+/- expression and for ascertaining the frequency of functional NK cells

responding to 221 stimulation by expressing CD107a and secreting IFN-γ within each of these

phenotypic NK cell populations (S1 Fig). A higher frequency of double and single KIR3DS1+

than KIR3DS1- NK cells responded to stimulation by exhibiting the sum of all functions tested

whether KIR3DS1 was expressed with KIR2DS1 or not (Fig 5E). This was also the case for total

IFN-γ secretion. Single KIR2DS1+ (3DS1-2DS1+) NK cells responded no better to 221 stimula-

tion than did double negative 3DS1-2DS1- NK cells. A higher frequency of single and double

KIR3DS1+ NK cells than KIR3DS1- NK cells responded to stimulation by secreting IFN-γ
whether KIR3DS1 was expressed with KIR2DS5 (2DS5) or not (Fig 5F). Single KIR2DS5+

(3DS1-2DS5+) NK cells responded no better to 221 stimulation than double negative

3DS1-2DS5- NK cells.

Together, these results support the conclusion that a higher frequency of KIR3DS1+ than

KIR3DS1- NK cells responded to 221 cells and indicate that KIR3DS1+ NK cells contributed

Fig 6. The gating strategy used to determine the frequency of NK cells expressing KIR3DS1, KIR2DS1 and KIR2DS5. Live singlet

lymphocytes were gated on. From this population, CD3-CD56dim NK cells were identified from which the frequency of NK cells expressing

KIR3DS1 (3DS1) was assessed. CD3-CD56dim NK cells were also gated on to determine the frequency of cells expressing KIR2DS1

(2DS1). This was accomplished by using the monoclonal antibody (mAb) REA284 specific for KIR2DL1 (2DL1) only, to bind this KIR making

it unavailable for recognition by a second mAb (11PB6) conjugated to a different fluorochrome that was specific for both 2DL1 and 2DS1.

This strategy permitted the separation of 2DL1+2DS1- NK cells from 2DL1-2DS1+ cells and 2DL1-2DS1- NK cells [42]. To detect KIR2DS5+

NK cells, the CD3-CD56dim 2DL1-2DS1- NK cells from the previous gate that bound to mAb HP-MA4 specific for 2DL1/2DS1/KIR2DS3

(2DS3)/KIR2DS5 (2DS5) were gated on. Since 2DS3 is not cell surface expressed, this mAb detected only 2DS5+ NK cells among those

negative for 2DL1 and 2DS1.

https://doi.org/10.1371/journal.pone.0185160.g006

Contribution of KIR gene products to HIV protection

PLOS ONE | https://doi.org/10.1371/journal.pone.0185160 September 22, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0185160.g006
https://doi.org/10.1371/journal.pone.0185160


more to NK functional responses to HLA-null cell stimulation than did KIR2DL5A+,

KIR2DS1+ or KIR2DS5+.

Discussion

HESN, compared to HIV+ subjects, were more likely to carry 1 or 2 copies of a telomeric TB01
motif and were less likely to carry a full length KIR2DS4�001-like allele. As most KIR3DS1 hmz

were also KIR2DL5A, KIR2DS1 and KIR2DS5 positive we investigated the functional potential

of NK cells expressing various combinations of the KIR receptors encoded by these genes to

stimulation with the HLA null cell line 221. Functional studies revealed that NK cells express-

ing KIR3DS1 alone or with any one of the KIR2DL5A, KIR2DS1 or KIR2DS5 receptors

responded better to 221 stimulation than NK cells expressing one of these KIRs alone without

KIR3DS1 or none of these receptors. These results suggest that of the KIR receptors encoded

by genes present within TB01 motifs, KIR3DS1 contributes most to NK cell responsiveness to

221 HLA null cells.

NK cells from subjects with no KIR2DS4 gene, or who carry only KIR2DS4�003-like alleles

do not express this receptor on their cell surface. On the other hand, NK cells from carriers of

KIR2DS4�001-like alleles do express a KIR2DS4 receptor on a subset of their NK cells. Merino

et al. reported that expressed KIR2DS4 was associated with poor outcome in the context of

HIV infection such as higher viral load, HIV transmission in HIV discordant couples and low

CD4 counts [24, 25]. This observation was confirmed by Olvera et al. in an HIV+ population

from Lima, Peru and may have depended on the co-carriage of HLA-Cw4, a presumed ligand

for this receptor [26]. Our results suggest that expressed KIR2DS4 is also associated with

reduced resistance to HIV infection. The mechanisms underlying these outcomes are not

understood. KIR2DS4 is an aKIR that is the product of gene conversion with the KIR3DL2
gene that has led to a reduced ability to recognize HLA-C ligands characteristic of KIR2D

receptors and an increased ability to recognize HLA-A�11:02 and HLA-A�03 ligands, the pre-

sumed ligands for KIR3DL2 [43]. Further investigations are needed to understand whether,

and if so how, KIR2DS4 expression is associated with negative outcomes in the context of HIV

infection and HIV exposure. The possibility that the impact of expression of KIR2DS4 on poor

HIV outcomes is due to other genes in LD with KIR2DS4 has not been excluded.

HESN cohorts have been studied to identify mechanisms underlying resistance to HIV. In a

cohort of Vietnamese HESN injection drug users (IDU), NK cells were found to be more active

than those from HIV uninfected persons who eventually seroconverted [44]. A study compar-

ing 25 HESN with 19 HIV+ IDU and 26 HIV uninfected persons found that HESN had KIR

and KIR/HLA expression profiles consistent with a lower threshold of NK cell activation and

higher ratios of KIR3DS1:KIR3DL1 transcripts [45]. A higher prevalence of KIR3DS1 or lower

frequency of KIR3DL1 in HESN than HIV susceptible subjects has been reported in several

studies, and this, often in the absence of an association with HLA-Bw4 [23, 45–48]. Overall,

these studies support the interpretation that HIV resistance may be due to NK cells that are

more easily activated, which is consistent with carriage of a group B KIR haplotype in which

larger numbers of genes encoding aKIR are present.

A study of HIV discordant and concordant couples found a role for alloreactive NK cells in

protection from sexual HIV transmission [49]. The implication that alloreactive NK cells may

play a role in HIV resistance could not be investigated here because the HIV+ index partner

to which HESN and HIV+ subjects in this study were exposed is unknown. However, these

studies highlight mechanisms other than carriage of aKIR that may be responsible for HIV

susceptibility/resistance. For example, carriage of KIR3DL1 high expression genotypes with

HLA-B�57 has been associated with a reduced risk of HIV infection in HESN and NK cells
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from individuals carrying this KIR/HLA combination are particularly responsive to stimula-

tion by HLA-null cells and by autologous HIV infected cells. NK cells from carriers of this

KIR/HLA combination have a superior ability to inhibit HIV replication compared to those

from carriers of the receptor or ligand alone or neither [22, 50, 51].

KIR genes in the telomeric and centromeric KIR regions are present in LD with each other.

This confounds the identity of the KIR gene product responsible for effects on HIV outcomes.

One would expect that if KIR genotypes influence HIV exposure outcome they would do so

through their effects on NK cell function. One way to test for NK cell functional potential is

to stimulate with HLA null cells. When this was done with NK cells from KIR3DS1 hmz who

co-carried KIR2DL5A, KIR2DS1 and KIR2DS5, but no KIR2DS4, genes the NK cells that

responded with the highest frequency were KIR3DS1+. Co-expression of KIR2DL5, KIR2DS1

or KIR2DS5 did not modulate the frequency of responding KIR3DS1+ NK cells nor did

KIR2DL5+, KIR2DS1+ and KIR2DS5+ NK cells respond to this stimulus any better that their

KIR2DL5-, KIR2DS1- or KIR2DS5- counterparts. In these study subjects, expression of

KIR2DS4 would not have played a role in NK cell responsiveness since none carried a

KIR2DS4 gene. Although some subjects were positive for a KIR2DL5B gene the alleles they car-

ried at this locus encoded unexpressed gene products, eliminating any role for KIR2DL5B+

NK cells in responses to 221 cells [32, 39]. The contribution of KIR2DS3 to NK cell functional-

ity is likely limited by its low expression on the cell surface [52]. Together these findings sup-

port the notion that, of the KIR genes in TB01 motifs, KIR3DS1 encodes a receptor that confers

NK cells with functionality, at least to HLA-null 221 cells.

HLA-F has recently been identified as a ligand for KIR3DS1 [53]. HLA-F is present on the

surface of 221 cells, which may explain why these cells stimulate KIR3DS1+ NK cells. Attempts

to find ligands for KIR3DS1 among HLA-Bw4 or among the HLA-Bw4 alleles having an iso-

leucine at position 80 of the HLA heavy chain (HLA-Bw4�80I) have largely failed [54–56]. An

exception to this are results reported by O’Connor et al. showing that KIR3DS1 can interact

with the HLA-Bw4�80I antigen HLA-B�57 when certain peptides, including some HIV

derived peptides, are present. [57]. However, if such interactions were contributing to NK cell

education they should tune down KIR3DS1+ NK cell responsiveness to 221 stimulation. Thus,

it is more likely that the interactions between KIR3DS1 and HLA-F is responsible for NK cell

stimulation by 221 cells. Since HLA-F is usually intracellular in resting cells it would not be

expected to contribute to NK cell education and tune down the responsiveness of KIR3DS1+

NK cells. However, it is cell surface expressed on activated cells, including HIV-infected CD4+

T cells. The interaction of KIR3DS1 on NK cells with HLA-F in HIV infected cells may explain

why KIR3DS1+ NK cells are superior to KIR3DL1+ NK cells in suppressing HIV replication

[53, 58]. This interaction may provide a mechanistic explanation for the association of

KIR3DS1with protection from HIV infection [53]. More needs to be done to explore the role

of KIR3DS1/HLA-F interactions in the recognition of HIV infected cells.

The ligand for KIR2DL5 has not been identified, though this receptor is likely an iKIR

based this receptor having intra-cellular ITIM motifs [30]. Other iKIR usually participate in

NK cell education resulting from their interaction with HLA antigen ligands during NK cell

development. Education is required for the development of functional potential and the trans-

mission of inhibitory signals to NK cells required for tolerance to self. These inhibitory signals

are interrupted when the ligand for iKIR are absent, which occurs in the setting of several viral

infections or cellular transformation. KIR2DS1 interacts with HLA-C2 group antigens, though

with a lower affinity than its inhibitory counterpart KIR2DL1 [59]. It can participate in NK

cell education, but tunes down NK cell activation potential if present with an HLA-C2 ligand,

presumably to avoid reactivity to self [60]. KIR2DS5 is cell surface expressed and appears to
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transmit activating signals when cross linked with antibodies binding this receptor [61]. How-

ever, the identity of it ligand is unknown.

The background level of functionality in the single positive KIR2DL5+, KIR2DS1+ and

KIR2DS5+ and double negative NK cell populations may either be due to co-expression of

other iKIR such as KIR2DL1/L2/L3 participating in NK cell education in subjects co-carrying

HLA-C ligands for these receptors or to inhibitory NK cell receptors such as NKG2A, which

interacts with ubiquitously expressed HLA-E complexed with epitopes from the leader

sequence of several HLA antigens [20, 62–64]. These receptor ligand interactions would be

expected to be more or less evenly distributed among the 4 KIR3DS1+/-/KIR2DL5+/- subsets as

well as among the 4 KIR3DS1+/-KIR2DS1+/- and KIR3DS1+/-KIR2DS5+/- subsets.

One of the limitations of this study is that autologous HIV infected cells have not been used

to stimulate NK cell populations defined by various combinations of their TB01 motif encoded

gene products. Although we know that HIV infected cells express HLA-F, the ligand for

KIR3DS1 it is possible, though as yet unknown, whether they express ligands for KIR2DL5,

KIR2DS1 and/or KIR2DS5 that could account for NK cell functionality that plays a role in

HIV control. This possibility requires further exploration.

In summary, despite this limitation, the higher frequency of TB01 motifs among HESN

than HIV+ subjects studied here would be consistent with the interpretation that their resis-

tance to HIV infection is related to their NK cells having a lower activation threshold due to

the presence of aKIRs whose genes map to this region and by expressing the KIR3DS1 receptor

able to mediate activating signals upon interacting with HLA-F on HIV infected CD4 T cells

and HLA-null 221 cells. This does not explain resistance to HIV in all HESN. Thus, further

investigation is needed to uncover other possible mechanisms underlying reduced susceptibil-

ity to HIV infection.
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Fonds de Recherche du Québec-Santé (FRQ-S) AIDS and Infectious Diseases Network. IL was

supported by a Ph.D. scholarship from FRQ-S and CIHR. NFB J-PR are members of the RI-

MUHC, an institution funded in part by the FRQ-S.

Author Contributions

Conceptualization: Zahra Kiani, Irene Lisovsky, Benjamin Tallon, Julie Bruneau, Jean-Pierre

Routy, Xiaoyan Ni, Nicole F. Bernard.

Data curation: Elise Jackson, Cindy Xinyu Zhang, Zahra Kiani, Irene Lisovsky, Benjamin Tal-

lon, Alexa Del Corpo, Louise Gilbert, Julie Bruneau, Jean-Pierre Routy, Xiaoyan Ni, Nicole

F. Bernard.

Formal analysis: Cindy Xinyu Zhang, Louise Gilbert, Nicole F. Bernard.

Funding acquisition: Nicole F. Bernard.

Investigation: Elise Jackson, Cindy Xinyu Zhang, Zahra Kiani, Irene Lisovsky, Benjamin Tal-

lon, Alexa Del Corpo, Louise Gilbert, Xiaoyan Ni, Tsoarello Mabanga, Nicole F. Bernard.

Methodology: Elise Jackson, Cindy Xinyu Zhang, Zahra Kiani, Irene Lisovsky, Benjamin Tal-

lon, Alexa Del Corpo, Louise Gilbert, Xiaoyan Ni, Tsoarello Mabanga.

Project administration: Nicole F. Bernard.
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