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Heart failure is a leading cause of death worldwide. While there are multiple etiologies
contributing to the development of heart failure, all cause result in impairments in
cardiac function that is characterized by changes in cardiac remodeling and compliance.
Fibrosis is associated with nearly all forms of heart failure and is an important contributor
to disease pathogenesis. Inflammation also plays a critical role in the heart and
there is a large degree of interconnectedness between the inflammatory and fibrotic
response. This review discusses the cellular and molecular mechanisms contributing to
inflammation and fibrosis and the interplay between the two.
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INTRODUCTION

Cardiovascular disease is the leading cause of death worldwide and represents an immense
health and economic burden (Benjamin et al., 2019). It is comprised of a group of conditions
affecting the blood vessels and heart, culminating in impaired cardiovascular performance. Heart
failure, the clinical manifestation of cardiovascular disease, is characterized by fibrosis, chamber
remodeling and a reduction in ventricular compliance. Cardiomyocytes have limited capacity for
regeneration thus, injury to the heart, leading to death of cardiomyocytes, results in clearing of
dead cardiomyocytes and repair through fibrotic scar tissue replacement. This helps maintain the
structural and functional integrity of the heart, but results in impairments in contractility and
cardiac function when excessive. Ischemic heart disease is the leading type of cardiovascular disease
and results in a fibrotic scar, however, fibrosis is a major contributor to many forms of heart disease
and is recognized as a pathological hallmark in the heart (Travers et al., 2016).

Inflammation is a major regulator of the reparative response after cardiac injury. Following
injury, there is an acute, intense inflammatory response that is important for initiating healing
(Prabhu and Frangogiannis, 2016). Later immune responses promote repair. Proper timing and
magnitude of inflammatory responses is critical for normal healing. Persistent inflammation can
promote further tissue destruction while insufficient responses prolong the injurious stimuli.
Inflammation regulates all aspects of cardiovascular health including cardiac fibrosis. There is
a high degree of interconnectedness between immune cells and fibroblasts with each regulating
the other’s function. While recently these responses have been increasingly studied, inflammatory
events that occur in the heart continue to not be fully understood. This further need to understand
the mechanisms of cardiac repair is exemplified by the fact that no large-scale immunomodulatory
or anti-inflammatory therapeutic strategies have been successfully translated into clinical practice.

CARDIAC FIBROSIS

Cardiac fibrosis is the process of pathological extracellular matrix (ECM) remodeling resulting
in abnormal matrix composition leading to impairments in cardiac contractility and function.
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Fibrosis is involved in nearly all types of heart disease including
various ischemic and non-ischemic etiologies (Liu et al., 2017).
Initially, ECM deposition is protective and important for wound
healing, but excessive or prolonged deposition can lead to
impairments in tissue function. Fibrosis leads to a stiffer and
less compliant heart, ultimately contributing to the progression
of heart failure.

In the mammalian adult heart, cardiomyocytes are organized
in a network of parenchymal cells, which includes a large
number of fibroblasts, and ECM proteins. The ECM is composed
predominantly of fibrillary collagens with type I collagen being
the predominant form and type III collagen representing a
smaller fraction along with other proteins such as fibronectin and
elastin (Rienks et al., 2014). The ECM serves as a scaffold for cells
and is also important in transmission of contractile forces in the
normal myocardium.

Cardiac fibroblasts are the predominant cell type involved
in cardiac fibrosis. They reside in the interstitium, epicardial
and perivascular regions of the heart. Studies assessing fibroblast
numbers have varied depending on species, technique and
markers used, but regardless, it is appreciated that there is an
abundant fibroblast population in the heart (Nag, 1980; Banerjee
et al., 2007). Due to a lack of fibroblast specific markers, studies
involving fibroblast have been difficult and likely represent
a heterogeneous population of cells and numbers likely vary
depending on the species studied, age and gender (Nag, 1980;
Camelliti et al., 2005; Banerjee et al., 2007).

While fibroblasts are plentiful in the non-pathological heart,
their function remains poorly understood. Resident fibroblasts
originate from the embryonic epicardium (Gittenberger-de
Groot et al., 1998). Under normal conditions, fibroblasts
contribute to the homeostasis of the heart through the
contribution of ECM, which serves as a structural scaffold
for cardiomyocytes, distributes mechanical forces and mediates
electrical conduction (Travers et al., 2016). Fibroblasts also
contribute to matrix remodeling through the production of
ECM regulatory proteins including the matrix metalloproteinases
(MMPs) and TIMPs. Fibroblasts also have the ability to rapidly
respond to alterations in their microenvironment. They are
networked into the interstitial and perivascular matrix putting
them in a strategic location for serving as sentinel cells to sense
injury and trigger reparative responses (Kawaguchi et al., 2011;
Diaz-Araya et al., 2015).

In the healthy heart, resident fibroblasts remain in the
quiescent state, however, during pathological conditions, these
resident fibroblasts and other precursor cells become activated
and transdifferentiate into myofibroblasts. The origin of activated
cardiac myofibroblasts is less clear with potential sources
include resident fibroblasts, vascular endothelium, epicardium,
perivascular cells and hematopoietic bone marrow-derived
progenitor cells. There is substantial evidence that resident
fibroblasts proliferate and activate in response to pathological
stimuli (Fredj et al., 2005; Teekakirikul et al., 2010; Ali et al.,
2014; Moore-Morris et al., 2014) however, these studies do not
discount the possibility of other sources of activated fibroblasts.
With the advent of transgenic mouse models, lineage tracing
studies are beginning to be used to address this question.

Endothelial, epicardial and perivascular cells have been proposed
to undergo an endothelial-mesenchymal transition to acquire
a fibroblast, pro-fibrotic phenotype. Lineage tracing studies
have been performed to identify the contribution of these cell
populations to the fibroblast population after injury however,
many of the markers used such as Tie2 and vascular endothelial
cadherin are not specific to the cell population being studied
and immune cells express many of these same markers (Kisanuki
et al., 2001; Monvoisin et al., 2006; Zeisberg et al., 2007;
Russell et al., 2011; Ali et al., 2014; Kramann et al., 2015).
Similarly, hematopoietic bone marrow-derived progenitor cells
have also been proposed as a potential source of fibroblasts
during pathology. This is due to initial studies using GFP-labeled
bone marrow transplants where a large number of GFP-positive
cells were located in fibrotic regions after pressure overload
and myocardial ischemia (Haudek et al., 2006; Zeisberg et al.,
2007; van Amerongen et al., 2008). However, these findings may
be due to the presence of inflammatory cells in the fibrotic
region and not a transition of these cell populations into
myofibroblasts (Yano et al., 2005; van Amerongen et al., 2007).
Regardless, CD45-positive cells including monocytes can express
myofibroblast markers (Haudek et al., 2006) and it is known
that inhibition of monocyte recruitment diminishes the cardiac
fibroblast population (van Amerongen et al., 2007). Whether
this is due to the importance of early immune responses in the
recruitment and activation of fibroblast populations is unknown.
However, lineage tracing experiments using the Vav-Cre and
other lines suggest minimal contribution of hematopoietic cells to
the cardiac fibroblast population (Ali et al., 2014; Moore-Morris
et al., 2014, 2018).

The identification of fibrocytes in the circulation has renewed
the interest of cells of hematopoietic origin as potential fibroblast
contributors (Bucala et al., 1994). Fibrocytes are a unique
fibroblast progenitor population that expresses fibroblast markers
such as pro-collagen I and vimentin as well as hematopoietic
markers (Abe et al., 2001). They originate from hematopoietic
stem cells and have been shown to contribute to cardiac fibrosis
in several injury models (Mollmann et al., 2006; Zeisberg et al.,
2007; Xu et al., 2011).

Regardless of their origin, myofibroblasts appear shortly after
injury and have a fibroblast-smooth muscle cell phenotype,
with the acquisition of α-smooth muscle actin, contractile
functions and enhanced secretion of collagens and other ECM
components to promote scar formation. In accordance with
their hypothesized sentinel cell function, following insult or
injury, there is an upregulation of pro-inflammatory and pro-
fibrotic factors in cardiac fibroblasts, which culminates in
increases in fibroblast proliferation and the transition to a
myofibroblast phenotype.

Myofibroblasts are the major cell type responsible for ECM
and secretion. They are characterized by the development of
stress fibers and expression of contractile proteins such as
α-smooth muscle actin (Frangogiannis et al., 2000b; Santiago
et al., 2010). Myofibroblasts secrete collagen and other ECM
proteins to preserve the structural integrity of the heart.
Failure of the heart to adapt and meet the pressure-generating
capacity results in myocardial dysfunction and rupture. After
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ECM deposition, the tensile strength increases at the site of
injury leading to mature scar formation. While these processes
are initially adaptive, they can lead to the development of
adverse changes in compliance and structure, worsening the
progression of heart failure over time. Pathological remodeling
is characterized by fibroblast accumulation and excessive ECM
deposition. This leads to alterations in the heart’s architecture
and has additional consequences on cardiac function. Fibrosis
damages cardiac function due to the increased stiffness
in the ventricle, producing contractile impairments. ECM
and fibroblasts can disrupt the mechano-electric coupling of
cardiomyocytes, diminishing cardiac contraction and increasing
the risk of arrhythmia. Paracrine signaling from fibroblasts
can induce hypertrophy and further cardiac dysfunction.
Additionally, apoptosis resistant myofibroblasts can reside in
mature scars perpetuating these responses.

Cardiac fibrosis presents itself in three forms: perivascular,
reactive interstitial, and replacement fibrosis (Anderson et al.,
1979), which are exemplified in Figure 1. Reactive interstitial
fibrosis is adaptive to preserve cardiac structure and function
whereas replacement fibrosis fills areas cause by cardiomyocyte
death. Perivascular fibrosis, often occurring with other forms
of fibrosis, is characterized by increased collagen deposition
around vessels and microvasculature which function to provide
oxygen and nutrients to cardiac tissue (Ytrehus et al., 2018).
Perivascular fibrosis is heavily involved in hypertension and leads
to impaired blood flow hampering the delivery of oxygen and
nutrients to potentiate a pathogenic response (Kai et al., 2006).
Pressure overload models, such as transaortic constriction, have
a period of reactive interstitial fibrosis while the heart adapts
to the hemodynamic changes followed by replacement fibrosis
upon cardiomyocyte death. During myocardial infarction or
ischemia/reperfusion injury, where there is an acute, extensive
cardiomyocyte death, replacement fibrosis occurs, which fills the
region devoid of cardiomyocytes and prevent cardiac rupture.

Fibrosis is also an essential aspect of cardiac repair. Initially
it is a protective process and acts to preserve the architecture
of the heart through the deposition of connective tissue.
However, fibrosis can become pathological when progressive
and excessive, leading to aberrant scarring, further organ
damage and impairments in cardiac function. Ischemic diseases,
hypertension, valvular disorders, and primary/secondary
cardiomyopathies all include at least one of the three types
of fibrosis and ECM remodeling (Burt et al., 2014). As the
heart adopts a pathologic state, ECM remodeling and excessive
fibrosis in turn lead to changes in chamber dimension and
in some cases cardiomyocyte hypertrophy. As the injured
healing heart adjusts to meet the demands of the rest of the
body the myocardium around the fibrotic scar dilates. The
progressive increased load on the heart causes a further dilation
of the left ventricle, thereby increasing ventricular cavity
size. Due to the naturally quiescent non-proliferative state
of cardiomyocytes, existing viable cardiomyocytes undergo
hypertrophy to account for an increased volume load. These
changes lead to progressive ECM remodeling and interstitial
fibrosis resulting in decompensated heart failure.

INFLAMMATION IN THE HEART

Inflammation is an important defense mechanism that acts to
remove harmful stimuli and promote recovery. While some
wound healing and fibrotic processes can occur in the absence
of cellular immunity, inflammation is an important contributor
to cardiac health both in the normal and diseased state.
Inflammation of the appropriate timing, duration and magnitude
is critical for normal healing. Failure to activate sufficient
inflammatory responses can lead to persistence of the injurious
stimuli whereas failure to resolve inflammation can further
tissue destruction.

Under non-pathological conditions, cardiac macrophages and
other resident immune populations help regulate homeostasis.
While the role of immune responses in cardiac homeostasis has
been an understudied area, it is known that the heart has resident
populations of mast cells and macrophages that play an important
role in homeostasis and following injury (Sperr et al., 1994;
Frangogiannis et al., 1999). There are also small populations of
B and T cells present in the healthy myocardium (Pinto et al.,
2016). Under steady-state conditions, resident immune cells are
believed to play a sentinel role in surveilling against invading
pathogens, similar to what is observed in other tissues (Franken
et al., 2016). Mast cells are located in the perivascular areas
and contain stores of inflammatory mediators such as tumor
necrosis factor (TNF), histamine and tryptase, which can be
quickly released following injury and represent an important
contributor to triggering inflammatory responses (Frangogiannis
et al., 1998a; Somasundaram et al., 2005).

The heart also contains resident macrophage populations
that are comprised primarily of CCR2- cells of embryonically
derived cells that originate from yolk sac macrophages and fetal
monocytes (Pinto et al., 2012; Epelman et al., 2014; Heidt et al.,
2014; Mylonas et al., 2015). There is also a small population
derived from CCR2+ monocytes. Some studies suggest that
resident cardiac macrophages die following injury and are
replaced by monocyte-derived CCR2-expressing populations
that are highly pro-inflammatory (Heidt et al., 2014). Outside
of pathogen surveillance, resident immune populations are
hypothesized to facilitate physiological turnover of cells and
ECM, debris clearance after changes in metabolic load, and also
play a role in the conduction system (Swirski et al., 2009). Gene
expression profiling has identified distinct profiles of CCR2-
macrophages in human myocardium compared to CCR2+
populations with enhanced expression of pathways involved in
cell growth and ECM formation (Bajpai et al., 2018). While
functional outcomes of these differences of these gene expression
differences is not well characterized, these findings are consistent
with the role of resident macrophage populations in other tissues
(Franken et al., 2016). Outside of the classic role of tissue
macrophages, cardiac macrophages have also been recognized as
having organ-specific functions. Resident cardiac macrophages
are enriched in the conduction system of the heart and depletion
disrupts electrical conduction in the heart (Hulsmans et al.,
2017). These studies have identified a relationship between
cardiomyocytes and macrophages through the formation of
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FIGURE 1 | Masson’s trichrome staining of the mouse heart demonstrating fibrosis (blue) in the healthy myocardium, interstitial fibrosis following isoproterenol
administration (30 mg/kg/d for 2 weeks), replacement fibrosis after myocardial infarction (4 weeks) or perivascular fibrosis following isoproterenol infusion
(30 mg/kg/d for 2 weeks). Red represents the cytoplasm and black represent nuclei. Animal procedures were performed in house with approval by the Institutional
Animal Care and Use Committee at the University of Missouri and in accordance to the National Institutes of Health Guidelines on the Use of Laboratory Animals.

gap junctions that enable cardiac macrophages to contribute to
steady-state electrical conduction.

Pathologically, inflammation regulates virtually all aspects
of cardiovascular health including cardiomyocyte contractility
and cardiac fibrosis and represents an important regulatory
mechanism. Following injury, acute inflammatory responses
occur that help remove dead or damaged cardiomyocytes, ECM
debris and initiate healing. Cardiac repair after injury is a finely
tuned and regulated series of events that is critical for adequate
healing (Figure 2). With the exception of myocarditis, other
forms of cardiac injury are considered sterile inflammation and
follow a similar series of events. This progression of events
has been well defined for myocardial infarction and include
the inflammatory, proliferative and maturation phases (Prabhu
and Frangogiannis, 2016). While these responses may not be
identical in timing, duration and magnitude between heart
failure etiologies, they are thought to be broadly applicable
to other forms of sterile cardiac damage (Fildes et al., 2009).
Following insult or injury, there is an acute inflammatory phase
characterized by infiltration of pro-inflammatory immune cell
populations that digest and clear damaged cells and ECM tissue.
This is followed by a reparative phase with the resolution
of pro-inflammatory responses and activation of reparative
responses such as myofibroblast accumulation, ECM deposition
and neovascularization. Appropriate magnitude and duration
of each event is critical for optimal repair. Early inflammatory
activation is needed for the transition to a reparative response
whereas an excessive inflammatory phase can further tissue
damage and lead to improper healing.

THE INFLAMMATORY PHASE

The inflammatory phase is characterized by the recruitment
of inflammatory cells to the site of damage (Prabhu and
Frangogiannis, 2016). Cardiomyocytes are more susceptible to
ischemic injury or damage than non-cardiomyocytes. Injury or
death of cardiomyocytes causes the release of danger-associated
molecular patterns (DAMPs) that bind to a cognate pattern

recognition receptor (PRR) on neighboring cells to initiate
inflammatory responses (Figure 3). A number of factors released
from damaged or dying cardiomyocytes have been identified as
DAMPs including mitochondrial DNA (Bliksoen et al., 2016),
the chromatin protein high mobility group box 1 (HMGB1)
(Lotze and Tracey, 2005), purine metabolites (Kono et al., 2010;
McDonald et al., 2010), sarcomeric protein fragments (Lipps
et al., 2016), and S100 proteins (Rohde et al., 2014). Additionally,
fragments of the ECM that arise from damage including biglycan
(Schaefer et al., 2005), decorin (Merline et al., 2011), hyaluronan
(Scheibner et al., 2006) and fibronectin (Gondokaryono et al.,
2007; Lefebvre et al., 2011; Sofat et al., 2012) have been shown
to activate PRRs to contribute to inflammatory responses.

DAMP activation of PRRs induces the production of
a cascade of inflammatory mediators including cytokines,
chemokines and cell adhesion molecules (Mann, 2011). PRRs
are present on cells of the innate immune system but can
also act on surviving resident cell populations including
cardiomyocytes (Kukielka et al., 1993; Frantz et al., 1999;
Tarzami et al., 2002), fibroblasts (Zhang et al., 2015; Turner,
2016) and endothelial cells (Kumar et al., 1997) to potentiate
the inflammatory cascade (Frantz et al., 1999). The best
characterized family of PRRs are the Toll-like receptors (TLR)
but others include nucleotide-binding oligomerization domain-
like receptors (NLRs) and receptor for advanced glycation
end-products (RAGE). Signal transduction by PRRs has been
extensively delineated and converges on the activation of
mitogen-activated protein kinases (MAPKs) and nuclear factor
(NF)-κB to regulate the expression of a large panel of
pro-inflammatory genes including cytokines, chemokines and
adhesion receptors (Akira and Takeda, 2004). These factors
enhance leukocyte recruitment to amplify the inflammatory
response, promote efferocytosis of dying cells and augment tissue
digestion by proteases and oxidases.

Due to their close proximity, wide distribution in the
myocardium, ability to rapidly respond to stimuli and potential
as a source of inflammatory mediators, fibroblasts have
been proposed to serve as sentinel cells in the heart.
Within days of tissue damage, cardiac fibroblasts acquire a
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FIGURE 2 | During the Inflammatory Phase, damage or death of cardiomyocytes activates resident fibroblasts and other cell populations to produce cytokines and
recruit pro-inflammatory leukocyte populations, primarily neutrophils and monocytes that differentiate into M1-like macrophages. This acute, pro-inflammatory
response transitions into a reparative response during the Proliferative Phase with the recruitment of reparative lymphocyte and M2-like macrophages populations.
Activated myofibroblasts secrete collagen and other extracellular matrix components. Pro-angiogenic factors are secreted that promote neovascularization. The
events conclude during the Maturation Phase with the apoptosis of reparative immune cell and myofibroblast populations and matrix crosslinking, resulting in mature
scar formation.

pro-inflammatory phenotype characterized by the secretion
of cytokines/chemokines including IL-8, IL-1β, CCL2, eotaxin
and TNF-α and the presence of matrix-degrading properties
(Sandanger et al., 2013; Sandstedt et al., 2019). The inflammatory
potential of cardiac fibroblasts has been extensively documented
in vitro (Heim et al., 2000; Lafontant et al., 2006). Stimulation
of cardiac fibroblasts with ATP results in a large release of
pro-inflammatory cytokines (Lu et al., 2012). A number of

different factors in addition to ATP are also known to cause
fibroblast activation including reactive oxygen species (ROS)
(Siwik et al., 2001; Lijnen et al., 2006; Lu et al., 2012) and
cytokines (Lafontant et al., 2006; Zymek et al., 2007; Turner
et al., 2009). Cytokines have been implicated in inducing an
inflammatory phenotype in cardiac fibroblasts and potentiating
cytokine and chemokine synthesis (Lafontant et al., 2006; Zymek
et al., 2007; Turner et al., 2009). They have also been shown to
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FIGURE 3 | Damage or death of cardiomyocytes leads to the release of DAMPs. DAMPs acting through PRRs on neighboring cardiomyocytes, fibroblasts, resident
immune cells, endothelial cells and other parenchymal cells of the heart promote cytokine and chemokine release. Immune cells migrate in response to
cytokine/chemokines in the heart and secrete TGF-β and other pro-fibrotic factors to promote fibrosis and myofibroblast conversion.

regulate expression of matrix-degrading proteases (Li et al., 2002;
Siwik and Colucci, 2004). However, the contribution of cardiac
fibroblasts in activating inflammatory cascades in pathological
settings is less understood. In vivo studies have been limited
due to the absence of specific markers for cardiac fibroblasts
(Kong et al., 2013). As a result, studies have been largely
descriptive. However, infarction models in mice show activation
of the inflammasome in cardiac fibroblasts, an indication

of the generation of active IL-1β (Kawaguchi et al., 2011;
Sandanger et al., 2013).

Endothelial and resident mast cell populations have also
been implicated in triggering the inflammatory cascade post-
infarction (Lakshminarayanan et al., 1997, 2001; Frangogiannis
et al., 1998a). As previously mentioned, there is a small
population of resident mast cells that plays an important
role in homeostasis in the normal myocardium and during
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pathological events. Expansion of the mast cell population
is associated with cardiac fibrosis in response to multiple
pathological challenges (Frangogiannis et al., 1998b; Patella et al.,
1998; Shiota et al., 2003; Wei et al., 2003). The mechanisms
associated with this expansion is not well understood. Stem cell
factor (SCF), which is known to be involved in the recruitment
and differentiation of mast cell progenitors, is upregulated in
hearts following myocardial infarction and may contribute to the
proliferation of resident mast cells (Frangogiannis et al., 1998b).
However, other studies suggest mast cell progenitors infiltrate the
myocardium from outside sources (Bujak et al., 2008). Regardless
of origin, mast cells are known to be vital in the pathogenesis
of cardiac fibrosis. Mast cell deficiency results in attenuated
perivascular fibrosis and reduced progression to decompensated
heart failure in a mouse model of pressure overload (Hara et al.,
2002). Pharmacological prevention mast cell product release
in spontaneously hypertensive rats reduced fibrosis, reduced
inflammatory cell recruitment and decreased pro-inflammatory
cytokines (Levick et al., 2009).

How mast cells influence fibrosis is also poorly understood.
Mast cells are known to have abundant numbers of granules
that store a wide range of mediators. This includes many pro-
fibrotic mediators including TNF-α (Frangogiannis et al., 1998a),
TGF-β (Shiota et al., 2003), and platelet-derived growth factor
(PDGF) (Nazari et al., 2016). However, these mediators are
produced by many cell types and the relative contribution of mast
cells has not been fully elucidated. Additionally, mast cells have
abundant expression of chymase, a protease implemented in the
angiotensin converting enzyme (ACE)-independent generation
of angiotensin II (Urata et al., 1990a,b). This mechanism may
represent an important mechanism in the progression of cardiac
fibrosis in the presence of ACE inhibition.

The cytokine rich environment present in the heart following
injury causes infiltration of pro-inflammatory immune cell
populations including phagocytic neutrophils and mononuclear
cells which clear the area of dead cells and ECM debris (Prabhu
and Frangogiannis, 2016). These responses are facilitated by
changes in the vasculature. Hypoxia compromises the vascular
endothelial cell integrity and barrier function, increasing vessel
permeability to facilitate leukocyte infiltration (Sansbury and
Spite, 2016). Neutrophils are among the first immune cell types
to infiltrate into the damaged heart in response to a number
of pro-inflammatory mediators including DAMPs, cytokines,
chemokines, endogenous lipid mediators (prostaglandins and
leukotrienes), histamine and complement components (Yan et al.,
2013; Puhl and Steffens, 2019). Neutrophils are continually
produced from hematopoietic progenitors in the bone marrow
through the process of granulopoiesis. They reside in specific
niches in the bone marrow through the action of CXCL12
(Katayama et al., 2006; Russell et al., 2011). Maturation of
immature neutrophils is regulated by granulocyte colony-
stimulating factor (G-CSF), which is produced in response to
IL-17 from γδT-cells and counteracted by IL-23 (Stark et al., 2005;
Liao et al., 2012; Yan et al., 2012; Savvatis et al., 2014). In this way
γδT-cells regulate neutrophil and macrophage infiltration and
have detrimental effects on remodeling in myocardial infarction
models (Yan et al., 2012). Following maturation, neutrophils

remain in the bone marrow through the actions of CXCR4 or
are release into the circulation by CXCR2-dependent signaling
(Tarzami et al., 2003; Devi et al., 2013).

Extravasation of neutrophils into the heart is dependent on
adhesion interactions between the neutrophils and endothelial
cells. Endothelial cells activated by PRR-dependent mechanism
rapidly upregulate pre-stored P-selectin. There is a slower
upregulation of E-selectin that is generated de novo (Ley et al.,
2007; Petri et al., 2008). Circulating neutrophils express selectin
ligands, which causes them to interact with the endothelium and
roll along the endothelial layer. The two selectins have partially
overlapping functions and bind P-selectin glycoprotein ligand 1
(PSGL1) leading to tethering of neutrophils and initiate rolling
(Ley et al., 2007). Lymphocyte function-associated antigen 1
(LFA1), which binds to intracellular adhesion molecule (ICAM)
1 and 2 on endothelium facilitates neutrophil rolling (Zarbock
et al., 2011). Rolling neutrophils respond to chemokines bound
to the endothelial surface to induce a conformational change of
integrins and endothelial cell surface molecules such as ICAM1
and ICAM2, enhancing their adhesion and resulting in arrest
(Detmers et al., 1990; Herter and Zarbock, 2013). It is thought
that full activation requires a two-step process initiated by
specific priming pro-inflammatory cytokines including TNFα

and IL-1β however other chemoattractants and growth factors
may also be involved (Summers et al., 2010). This priming
is also important for maximal neutrophil degranulation and
activation (Guthrie et al., 1984; Summers et al., 2010). Signaling
initiated by CXCL8 in humans (CXCL1, CXCL2 and CXCL5
in mice) via CXCR2 further activates neutrophils and promotes
their adhesion (Pruenster et al., 2009; Williams et al., 2011).
The neutrophils transmigrate through the endothelial junctions
and then the basement membrane through multiple effectors
including VCAM1, PECAM1, and VLA4 (Wang et al., 2006).
Many of these processes have been studied extensively in
other tissues and are believed to be directly applicable to
the heart, however, a careful examination of cardiac specific
neutrophil extravasation and transmigration process have not
been extensively investigated.

Once in the tissue, neutrophils release proteolytic enzymes
such as myeloperoxidase (MPO) and play an important role
in clearing the area of dead cells and matrix debris (Puhl and
Steffens, 2019). They may also amplify the immune response
through production of pro-inflammatory mediators (Boufenzer
et al., 2015) and have been shown to regulate recruitment of
pro-inflammatory monocyte populations to the heart (Alard
et al., 2015). While these actions are critical for proper healing,
neutrophils may also exert cytotoxic actions on cardiomyocytes
to exacerbate the injury (Simpson et al., 1988; Entman et al.,
1992; Ali et al., 2016). These cytotoxic effects occur through
the release of reactive oxygen species (ROS) and also release
of granules associated with adverse left ventricular remodeling
(Vasilyev et al., 2005; Ciz et al., 2012).

Following injury, this resident macrophage populations
expands (Yan et al., 2013). There are two distinct subsets of
monocyte recruitment to the damaged heart (Nahrendorf et al.,
2007). Pro-inflammatory, M1-like macrophages are recruited to
the heart shortly after neutrophils. This initial population of
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macrophages is derived from bone marrow progenitor cells and
release from splenic reservoirs. They are recruited to the heart
through the MCP-1(CCL2)/CCR2 axis (Swirski et al., 2009; Bajpai
et al., 2018). The first subset is pro-inflammatory and recruited
through the MCP-1(CCL2)/CCR2 axis. This pro-inflammatory
population is characterized by high Ly-6C expression (Dewald
et al., 2005). Infiltrating Ly-6Chigh populations are derived from
bone marrow progenitor cells and reservoirs of mononuclear
cells in the spleen that can be deployed quickly to the site of
inflammation (Swirski et al., 2009). These M1-like macrophages
are proteolytic with increased expression of proteinases such as
cathepsins and MMPs and are involved in ECM remodeling due
to being a major source of MMPs and TIMPs (Huang et al., 2012;
Khokha et al., 2013). Like fibroblasts, macrophages play a role
in ECM remodeling through the secretion of ECM components.
These classically activated macrophage populations serve as a
major source of pro-inflammatory cytokines including IL-12,
IL-23, IL-1, and IL-6 as well as being involved in phagocytosis.

THE PROLIFERATIVE PHASE

Suppression and resolution of inflammation is an active
process. While the mechanisms contributing to the initiation
of inflammation have been well characterized, resolution of
inflammation is not as well understood. Neutrophils that are
recruited initially during the inflammatory phase are short-
lived cells and rapidly undergo cell death primarily through
apoptosis, but also necrosis, which releases mediators that
promote the resolution of inflammation including lipoxins
and resolvins that suppress neutrophil transmigration and
promote neutrophil apoptosis (Serhan et al., 2008; Mantovani
et al., 2011; Geering et al., 2013). Dying neutrophils also
express decoy and scavenging receptors that deplete the area
of inflammatory mediators (Soehnlein and Lindbom, 2010;
Penberthy and Ravichandran, 2016). Phagocytosis of necrotic
neutrophils by macrophages clears the area of apoptotic cells and
induces a pro-resolving M2 macrophage phenotype characterized
by the secretion of suppressors of inflammation such as
transforming growth factor (TGF)-β, IL-10, interleukin receptor
associated kinase-M (Chen et al., 2012) and pro-resolving lipid
mediators such as lipoxins and resolvins (Sansbury and Spite,
2016; Horckmans et al., 2017). An anti-inflammatory/reparative
monocyte subpopulation is recruited to contribute to the M2-
like macrophage pool and contributes to the resolution of
inflammatory responses. Similarly, these pro-resolving, M2-like
macrophages secrete anti-inflammatory, pro-fibrotic and pro-
angiogenic cytokines including IL-10 and TGF-β to suppress
inflammation and promote tissue repair.

Dendritic cells infiltrate the damaged heart predominantly
during the reparative phase (Yan et al., 2013). They play
an important role in the resolution of inflammation, scar
formation and angiogenesis. Deletion of dendritic cells prolongs
the accumulation of Ly-6Chigh monocytes, pro-inflammatory
macrophages and pro-inflammatory mediators (Anzai et al.,
2012). Mice lacking dendritic cells have a reduction in endothelial
cell proliferation and worsened cardiac function following

myocardial infarction. Additionally, they have been shown to
play a role in activation of T cell populations, which play a role
in remodeling (Van der Borght et al., 2017). They also play an
important role in phagocytosis of foreign or damaged material
and antigen presentation making them an important link
between the innate and adaptive immune response (Dieterlen
et al., 2016; Van der Borght et al., 2017).

Lymphocytes migrate to the heart following injury and there
is emerging evidence for an important role of lymphocyte
populations in mediating cardiac fibrosis in both ischemic and
non-ischemic heart failure (Laroumanie et al., 2014; Nevers
et al., 2015; Bansal et al., 2017). The cause of T lymphocytes
in the non-ischemic myocardium is uncertain but may be a
result of mechanical-stress activation of neurohumoral pathways
(Amador et al., 2014; Li et al., 2017). In the ischemic heart,
T cells are recruited via chemokine-dependent mechanisms
primarily during the reparative phase (Dobaczewski et al.,
2010b). Cytotoxic T cells are activated after infarction and
may exert cytotoxic actions on healthy cardiomyocytes in a
mechanism that is thought to involve cross-reactive cardiac
antigens (Varda-Bloom et al., 2000; Ilatovskaya et al., 2019). B
cells are also recruited to the heart through poorly understood
mechanisms (Wang et al., 2019). They are thought to have
a negative impact on remodeling though their role is not
well defined (Adamo et al., 2018, 2020). B cells promote
mobilization of pro-inflammatory Ly-6Chigh monocytes through
the production of CCL7 and may affect the heart through
their role in antibody deposition (Zouggari et al., 2013; Adamo
et al., 2020). CD4+ helper T cells play an important role in
response to cardiac injury. Following myocardial infarction,
they are likely activated by cardiac autoantigens to promote
wound healing, resolution of inflammation, proper collagen
matrix and scar formation (Hofmann et al., 2012). Studies using
CD4+ T-cell deficient mice, mice lacking the MHCII genes
and OT-II mice that have defective T-cell antigen recognition,
have augmented infiltrating leukocytes and disrupted collagen
matrix formation Hofmann et al., 2012). Regulatory T cells
(CD4+ Foxp3+) are also critical for favorable wound healing,
scar formation and resolution of inflammation after myocardial
infarction, in part, through modulating macrophage polarization
toward an M2-like phenotype (Weirather et al., 2014). NKT cell
activation reduces leukocyte infiltration and adverse remodeling
following both non-perfused and reperfused myocardial
infarction partially through enhanced expression of IL-10
and other anti-inflammatory cytokines (Sobirin et al., 2012;
Homma et al., 2013).

Along with the repression of inflammation, there is induction
of mediators that activate mesenchymal cells. During the
proliferative phase there is abundant infiltration of fibroblasts and
vascular cells. Suppression of pro-inflammatory signaling such
as IL-1β and interferon-γ-inducible protein (IP)-10 allows for
growth and infiltration of cardiac fibroblasts (Palmer et al., 1995;
Koudssi et al., 1998). Fibroblast migration is a critical aspect of
fibroblast biology in the damaged myocardium. Fibroblasts must
migrate to the site of dead cardiomyocytes for optimal repair
in a manner that is dependent on their ability to degrade and
deposit matrix (Tschumperlin, 2013). Several factors have been
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shown to mediate fibroblast migration including leukotrienes
(Blomer et al., 2013), cytokines such as IL-1β and cardiotrophin-
1 (Mitchell et al., 2007; Freed et al., 2011) and growth factors
including fibroblast growth factor (FGF) and TGF-β (Detillieux
et al., 2003; Liu et al., 2008).

Fibroblast proliferation also plays an important role during the
proliferative phase. Studies demonstrate an intense proliferation
of fibroblasts in the injured heart (Frangogiannis et al., 1998b;
Virag and Murry, 2003). Many factors influence fibroblast
proliferation including the growth factors fibroblast growth
factor (FGF)-2 and platelet-derived growth factor (PDGF) (Booz
and Baker, 1995; Zymek et al., 2006). Other factors including
angiotensin II, mast cell-derived tryptase and chymase also play
a role. However, the relative importance of these factors is
not well defined.

Following infiltration and proliferation at the sight of injury,
fibroblasts differentiate into myofibroblast. Myofibroblasts arise
primarily through proliferation of resident fibroblasts (Fredj
et al., 2005; Teekakirikul et al., 2010; Ali et al., 2014;
Moore-Morris et al., 2014) and are characterized by the
expression of contractile proteins and the ability to secrete
large amounts of matrix proteins (Cleutjens et al., 1995b).
While myofibroblasts may become activated through several
potential mechanisms, transforming growth factor (TGF)-β is
the best characterized mechanism of myofibroblast activation.
TGF-β is upregulated in the damaged heart and induces
transcription of myofibroblast genes through canonical Smad-
dependent signaling (Dobaczewski et al., 2010a). Alternatively,
non-canonical signaling through p38 mitogen-activated protein
kinase (MAPK), also plays a role in myofibroblast conversion
(Hashimoto et al., 2001; Sousa et al., 2007).

Activated myofibroblasts secrete ECM to form the fibrotic
scar. Myofibroblasts are thought to represent the main source
of ECM deposition (Cleutjens et al., 1995a; Squires et al.,
2005). Secretion of structural proteins including collagens and
fibronectin as well as matrix metabolism through the expression
of MMPs and TIMPs are critical for fibrosis. At the end of
the proliferative phase, there is an ECM composed primarily of
collagen. Signals leading to the transition from the proliferative
to the maturation phase are not well characterized. Regardless,
fibrotic and angiogenic responses are halted, preventing the
expansion of fibrosis and leading to the maturation phase.

THE MATURATION PHASE

The maturation phase follows the proliferative phase and is
characterized by mature scar formation. During the maturation
phase, cross-linking of the extra cellular matrix occurs. Reparative
cells that are present during the proliferative phase become
deactivated and may go through apoptosis. The mechanisms
involved in the transition from the proliferative phase to the
maturation phase are largely unknown. Myofibroblasts undergo
quiescence, potentially due to a lessening of fibrotic growth
factors and decreased TGF-β and angiotensin II signaling. They
may also go through apoptotic death (Takemura et al., 1998).

INFLAMMATION IN MYOCARDITIS

Inflammatory cardiomyopathy or myocarditis occurs due to
inflammation in the heart. Unlike other forms of heart failure,
myocarditis is initiated by a pathogen or autoimmune response
and may produce a unique type of inflammation depending
on the causative agent. Myocarditis is commonly associated
with viral infection (Caforio et al., 2007), the Coxsackie virus
of group B (CVB) is the most studied, which leads to viral
particle processing by innate immune cells followed by antigen
presentation and activation of the antiviral cytotoxic CD8+
T cells and some CD4+ T cell populations. While viruses
of the adenovirus, enterovirus, and parvovirus families are
most commonly associated with myocarditis, other infectious
events including bacterial causes such as staphylococcus,
streptococcus and Clostridia infections, fungal diseases including
aspergillosis and actinomycosis, protozoan illnesses such as
Chagas disease and malaria and parasitic infections like in
schistosomiasis. Toxins and autoimmune disorders can also give
rise to myocarditis (Caforio et al., 2007). While the immune
response is unique depending on the cause of myocarditis,
common hallmarks include inflammatory cell infiltration, which
can lead to fibrosis. Inflammation in myocarditis is highly
linked to the severity of the disease (Kindermann et al., 2008).
Most individuals who have inflammatory cardiomyopathy see a
resolution of symptoms however, the type, extent and duration of
the inflammatory response determines whether myocarditis will
be resolved or progress to dilated cardiomyopathy and ultimately
heart failure. Patients with an acute hypersensitive myocarditis
seem to recover after a few days, while patients with giant cell
myocarditis and eosinophilia myocarditis more often progress to
heart failure (Fung et al., 2016).

Similar to other forms of injury, the noxious insult initiating
myocarditis causes damage to cardiomyocytes, stimulating the
recruitment of circulating immune cells. If the extent of damage
results in a loss of cardiomyocytes, the heart repairs itself
through the deposition of ECM and myocardial fibrosis. This
process can be exacerbated by continued inflammation due
to prolonged exposure to the pathogen or toxic agent, T
lymphocyte responses to specific antigens and persistent immune
responses due to antibodies against or similar to endogenous
heart antigens (Cooper, 2009).

INFLAMMATION IN HYPERTENSION

Hypertension involves both the innate and adaptive immune
system throughout the progression of the disease. Inflammation
is believed to be a contributing factor to the diseased state of
hypertension. T lymphocytes have been shown to have a role in
the onset of the disease in an Angiotensin II (Ang II)-induced
hypertension mouse model. In a RAG-1−/− mouse model null
of T and B lymphocytes, mice display a dampened form of
hypertension, while reintroduction of T cells recapitulated the
classical hypertension readouts (Guzik et al., 2007). A more
recent study closely investigated the role of B lymphocytes in
Ang II-induced hypertension and found depletion of B cells
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ablated the phenotype associated with the model and adoptive
transfer of B cells recapitulated the hypertensive phenotype
(Chan et al., 2015). In a similar Ang II infusion induced
hypertensive mouse model, immune cells of the monocytic
lineage were shown to be a key mediator in enabling vascular
dysfunction (Wenzel et al., 2011; Harrison, 2014). Ablation
of LysM+ monocytes in this model significantly dampened
vascular macrophage infiltration, aortic macrophage populations,
and inflammatory gene expression in vasculature. The common
accepted mechanism follows enhancement of hypertension
symptoms due to the stress put on vasculature and the release
of damage associated molecular patterns (DAMPs) causing a
secondary chronic inflamed state (Drummond et al., 2019). The
involvement of the immune system in hypertension further
exacerbates the disease state induced by high blood pressure.

CYTOKINES-MEDIATORS OF FIBROSIS

Many of the Th-2 cytokines were first recognized as having
pro-fibrotic properties including IL-4, IL-5, IL-10, and IL-13.
IL-4 has been shown to increase collagen and matrix protein
synthesis in fibroblasts (Fertin et al., 1991; Postlethwaite et al.,
1992) and deletion reduces myocardial fibrosis (Kanellakis et al.,
2012; Peng et al., 2015). IL-4 is pleiotropic in nature and effects a
variety of cell types including having immunosuppressive effects
on pro-inflammatory mediators (Hart et al., 1989; Levings and
Schrader, 1999). IL-13 has also been shown to directly activate
fibroblasts (Oriente et al., 2000) and plays a role in fibrosis and
deletion in mice aggravates healing after myocardial infarction
(Hofmann et al., 2014).

While many immune responses are thought to be a reciprocal
regulation between cell populations, Th-1 and Th-17 cytokines
also promote fibrogenesis (Mosmann and Coffman, 1989; Choy
et al., 2015). IL-17 has reported direct and indirect pro-fibrotic
properties (Li et al., 2014). Some Th1 cytokines, including TNF-α,
are pro-fibrotic while others, such as IFN-γ and IL-12, are anti-
fibrotic (Zhang et al., 2011; Han et al., 2012; Li et al., 2012; Kimura
et al., 2018; Lee et al., 2019).

INTERLEUKIN-1

IL-1α and IL-1β are upregulated in the injured heart and play
an important role in inducing the expression of other cytokines,
chemokines, adhesion molecules and growth factors (Guillen
et al., 1995; Herskowitz et al., 1995). Most cell types in the heart
are impacted by IL-1 family members, particularly IL-1β. It plays
a large role in pro-inflammatory leukocyte recruitment to the
heart following damage (Saxena et al., 2013). Notably, IL-1β has
been found to be particularly important in regulating cardiac
fibroblast function during the inflammatory phase. It is markedly
upregulated in the infarcted myocardium (Herskowitz et al.,
1995; Christia et al., 2013). Induction mediates inflammatory
signaling and ECM metabolism through its effects on proteases
(Bujak et al., 2008). IL-1β promotes fibroblast migration through
increasing the expression of proteins involved in ECM turnover

(Mitchell et al., 2007). IL-1β may also play a role in the conversion
of fibroblasts into myofibroblasts (Saxena et al., 2013). It has
also been linked to fibroblast proliferation where it has been
shown to inhibit proliferation through the modulation of cyclins,
cyclin-dependent kinases and their inhibitors (Palmer et al.,
1995; Koudssi et al., 1998). However, many of these studies were
performed in vitro and the actions of IL-1β in vivo is less clear.

In vivo studies assessing the role of IL-1β are more
confounding. Viral overexpression of IL-1 receptor antagonist
(IL-1ra) in the hearts of rats subjected to ischemia reperfusion
injury was protective through the inhibition of inflammatory
responses and decreased cardiomyocyte apoptosis (Suzuki
et al., 2001). Global IL-1RI knockout mice have decreased
inflammation and immune cell recruitment following
myocardial infarction, which culminated in an attenuated
fibrotic response (Bujak et al., 2008). Contrarily, neutralizing
antibody administration for IL-1β in mice in the acute phase
after myocardial infarction delayed the wound healing process
leading to increased incidence of cardiac rupture and enhanced
maladaptive remodeling long-term (Hwang et al., 2001). These
confounding studies demonstrate the increasingly appreciated
pleiotropic nature of many cytokines including the IL-1 family.

INTERLEUKIN-6

IL-6 has been extensively characterized for its role in increasing
fibroblast proliferation and myocardial fibrosis (Banerjee et al.,
2009). It is a member of a family of structurally related
cytokines including oncostatin-M and cartotrophin-1 that have
overlapping functions. IL-6 effects most cells of the heart. In
cardiomyocytes, IL-6 protects cells from death and promotes
hypertrophy (Sano et al., 2000; Smart et al., 2006). Inhibition of
IL-6 diminishes acute immune cell recruitment (Muller et al.,
2014). Lack of IL-6 protects the heart from fibrosis in several
models of heart failure (Gonzalez et al., 2015; Zhang et al., 2016).

INTERLEUKIN-10

IL-10 is upregulated in the injured heart (Frangogiannis
et al., 2000a). It is produced primarily by activated Th2
cells and monocytes that have anti-inflammatory properties
(Frangogiannis et al., 2000a). In macrophages, IL-10 suppresses
the synthesis of pro-inflammatory cytokines and chemokines
such as IL-1, IL-6, and TNF-α (Fiorentino et al., 1991). It
can also regulate ECM remodeling through the regulation
of MMPs and TIMPs (Lacraz et al., 1995). IL-10 knockout
mice have increased mortality and enhanced inflammation in
response to ischemia/reperfusion injury (Yang et al., 2000). Since
IL-10 is increased at later time points following myocardial
infarction and has potent anti-inflammatory effects, it would
be anticipated that IL-10 might play an important role in
the resolution of inflammation. However, studies have been
conflicting. Studies using IL-10 knockout mice showed that, while
mice have augmented acute inflammatory responses, resolution
of inflammation was unchanged (Zymek et al., 2007).
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TUMOR-NECROSIS FACTOR

TNF-α is a pleiotropic cytokine capable of effecting all cell types
involved in cardiac injury and repair. It is able to suppress
cardiac contractility and augment cardiomyocyte apoptosis
(Finkel et al., 1992; Yokoyama et al., 1993). Secretion by various
cell types involved in remodeling enhances production of pro-
inflammatory cytokines, chemokines and adhesion molecules
by immune cells. TNF-α can also effect ECM metabolism
through its ability to decreased collagen synthesis in fibroblasts
and enhance MMP activity (Siwik et al., 2000). While these
findings and studies showing that TNF-α knockout mice
have decreased inflammation and improvements in cardiac
remodeling and function following myocardial infarction suggest
TNF-α neutralization would be beneficial in the injured heart,
this has not been the case (Maekawa et al., 2002; Berthonneche
et al., 2004; Sugano et al., 2004; Sun et al., 2004). Inhibiting
TNF-α through gene therapy to express the soluble TNF receptor
produced deleterious effects in a mouse model of myocardial
infarction through increased incidence of cardiac rupture and
augmented cardiac remodeling (Monden et al., 2007b). Genetic
deletion of TNFR1/TNFR2 produced increased infarct size
and enhanced cardiomyocyte apoptosis following myocardial
infarction (Kurrelmeyer et al., 2000). These findings have been
proposed to be due to distinct TNF-α effects through different
receptor subtypes (Monden et al., 2007a), but may also be
attributed to the complex nature of TNF-α signaling on biological
processes in the heart.

INTERFERONS

Interferons (IFN) can be secreted by immune cells or fibroblasts
to effect a wide array of biological responses (Noppert et al.,
2007; Ivashkiv and Donlin, 2014). IFN-γ knockout mice have
a reduction in the myofibroblast marker α-smooth muscle
actin following angiotensin II administration (Han et al., 2012).
Similarly, mice lacking the INF-γ receptor have decreased cardiac
hypertrophy and fibrosis along with reductions in macrophage
and T cell infiltration following angiotensin II infusion (Marko
et al., 2012). However, these studies used global knockout mice
and fail to determine the specific cardiac contribution of immune
cells compared to fibroblasts.

TRANSFORMING GROWTH FACTOR
FAMILY

TGF-β1 has been proposed to be a master regulator in the
transition from inflammation to repair in the damaged
heart (Dobaczewski et al., 2011). Neutralization of TGF-
β1 worsens cardiac dysfunction and prolongs inflammation
in a model of myocardial infarction (Ikeuchi et al., 2004).
However, cardiomyocyte-specific knockout of TGF-β receptors
is protective and promotes anti-inflammatory and cytoprotective
signaling (Rainer et al., 2014). These studies suggest that the
detrimental effects of loss of TGF-β1 signaling is not likely

through directly impacting cardiomyocytes, but though loss
of anti-inflammatory actions and fibrosis. In addition to its
role in suppressing inflammation and promoting reparative
immune responses, TGF-β1 is critical for myofibroblast
transdifferentiation (Hashimoto et al., 2001; Wang et al., 2005;
Dobaczewski et al., 2010a).

Growth differentiation factor-15 (GDF-15) is also a member
of the TGF-β family that has been implicated in suppression of
inflammation after myocardial infarction. GDF-15 counteracts
integrin activation on leukocytes to curb pro-inflammatory
responses (Kempf et al., 2011). Knockout of GDF-15 in mice
augments inflammation and increases cardiac rupture following
myocardial infarction (Kempf et al., 2011). This is also reflected
in the patient population where patients with elevated plasma
GDF-15 are prone to increased mortality (Kempf et al., 2007).

CLINICAL PERSPECTIVES

Currently approved heart failure therapies target the short-term
clinical status to minimize symptoms and improve quality of
life, but long-term prognosis remains poor (Machaj et al., 2019).
Treatments aimed at preventing the progression of heart failure
or reversing maladaptive remodeling are an attractive target, but
have culminated in minimal success. Due to the involvement
of inflammation in all stages of disease progression, targeting
the immune response has been an ongoing area of interest
to address this unmet clinical need. In the past two decades
the field of cardiac inflammation has made numerous ventures
into clinical trials targeting inflammatory pathways. To date,
cytokine-targeted therapies have dominated with clinical trials
targeting TNF-α and IL-1β (Murphy et al., 2020).

Early studies identified TNF-α as a potential therapeutic
target due to its known role as a pro-inflammatory mediator in
heart failure. To date, several randomized, placebo-controlled,
anti-TNF-α studies have been performed. The RENEWAL
trial (Randomized Etanercept Worldwide Evaluation), testing
etanercept, and the ATTACH trial (Anti-TNF-α Therapy Against
Congestive Heart Failure), involving infliximab, showed no
indication of beneficial effects with treatment and the ATTACH
trial exposed adverse effects of anti-TNF-α therapy (Bozkurt
et al., 2001; Chung et al., 2003; Mann et al., 2004). These
initial studies targeting the inflammatory response demonstrate
our lack of understanding and under appreciation of the
complexity of immune system involvement in heart failure. TNF-
α is a widely expressed cytokine with pleotropic actions. This
includes a protective role in cardiomyocytes by preventing death
(Kurrelmeyer et al., 2000; Evans et al., 2018). Appropriate TNF-α
levels may also be necessary for adequate tissue remodeling and
repair (Anker and Coats, 2002).

IL-1β is another potential cytokine target for the treatment
of heart failure due to its up-regulation in heart failure, role
in pro-inflammatory responses and positive benefits from IL-
1β inhibition in preclinical trials (Van Tassell et al., 2015). The
CANTOS trial (Canakinumab Anti-Inflammatory Thrombosis
Outcome Study) was a randomized, double-blinded, placebo-
controlled, anti-IL-1β study investigating the use of the
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FIGURE 4 | Integrative schematic of inflammation and cardiac fibrosis. After a cardiac insult, the release of DAMPs from dying or damaged cardiomyocytes (CM)
triggers an inflammatory cascade through PRRs expressed on resident fibroblast, endothelial, mast cell, macrophage and other immune cell populations in the heart.
This results in the cytokine/chemokine-mediated infiltration of the immune cells, initially neutrophils then Ly-6Chigh monocytes that contribute to an increase in
M1-like macrophages into the myocardium. M1-like macrophages and neutrophils contribute to clearance of dead cells and ECM debris through phagocytosis.
Macrophages also contribute to ECM remodeling through the production of collagen and other ECM components and ECM turnover though the regulation of MMPs
and TIMPs. Macrophage engulfment of apoptotic neutrophils promotes and M2-like phenotype, which promotes the proliferation and migration of fibroblast and
promotes differentiation into myofibroblast, primarily through the action of TGF-β. Antigen presentation by phagocytic cells activate T lymphocyte populations that
contribute to fibrosis through poorly defined mechanisms. Myofibroblasts are the major source of ECM components and contribute to remodeling of the ECM. The
fibrotic response concludes with ECM crosslinking and the apoptosis or quiescence of immune cells and myofibroblasts, producing a mature scar.

monoclonal antibody canakinumab (Ridker et al., 2017). All
doses tested had a positive impact on inflammatory burden
as indicated by C-reactive protein. However, only the highest
dose examined (150 mg) was successful in reducing one of
the primary end points of the study, reoccurrence of non-fatal
MI, with no changes in other end points including stroke or
cardiovascular death.

The ACCLAIM trial (Advanced Chronic Heart Failure
Clinical Assessment of Immune Modulation Therapy) was a
double-blinded, placebo-controlled study using a device-based
non-specific immunomodulation therapy approach (Torre-
Amione et al., 2008). This study did not find a significant
reduction in cardiovascular hospitalization or mortality.
However, in certain populations, those without a previous
myocardial infarction and New York Heart Association (NYHA)

II heart failure, significant reductions in primary endpoints
were observed, suggesting that this approach may be beneficial
in certain groups. Important to note, the mechanisms of
immunomodulation are not well defined and the impact on
cytokine levels were not measured making the findings difficult
to interpret at a mechanistic level.

The clinical trials targeting inflammation for the treatment of
heart failure, with the exception of the CANTOS trial (anti-IL-
1β), have been largely disappointing (Van Tassell et al., 2015).
However, to date, strategies have broadly targeted inflammation
through either a generic approach or inhibition of cytokines that
have an array of functions on many cell types. It is also important
to note that these studies involve subsets of heart failure patients
and it should not be discounted that these approaches may be
valuable in certain patient populations such as inflammatory
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cardiomyopathies. These findings highlight our need for a
better understanding of how inflammation contributes to the
pathogenesis of heart failure. More recent preclinicial studies
targeting a specific signaling pathways and cell populations give
hope for future immunomodulatory therapies for the treatment
of heart failure. The CCL2/CCR2 axis that is important for
infiltrating pro-inflammatory monocytes has be targeting using
small molecular antagonists (Hilgendorf et al., 2014; Grisanti
et al., 2016; Liao et al., 2018; Patel et al., 2018), antibodies (Patel
et al., 2018), small interfering RNA (Leuschner et al., 2011),
lipid micelles containing CCR2 antagonists (Wang et al., 2018),
and microparticles (Getts et al., 2014). Antibody-depletion based
approaches targeting lymphocyte populations including CD3 and
CD4 antibodies for T cell (Nevers et al., 2015; Bansal et al.,
2017), CD25 for regulatory T cell (Bansal et al., 2019) and
CD22 for B cell (Cordero-Reyes et al., 2016) depletion all display
promise. However, if these and other preclinical studies translate
in humans remains to be seen.

THE IMPACT OF INFLAMMATION ON
FIBROSIS

It should be apparent that inflammation is a major regulator
of the reparative response after cardiac injury (Figure 4).
Inflammatory cells, such as neutrophils and macrophages,
infiltrate to the site of injury where they release numerous
pro-inflammatory mediators including tumor necrosis factor
(TNF)-α, interleukin (IL)-1β and IL-6. These cytokines play an
important role in the induction of resident fibroblast proliferation
and activation of myofibroblasts initiating the production of
ECM components (Christia et al., 2013). In turn, activated cardiac
fibroblasts upregulate various cytokine and growth factors
to influence healing via autocrine and paracrine-dependent
mechanisms (Zhao and Eghbali-Webb, 2001).

Monocytes/macrophages play an important role in the fibrotic
response following injury. While it is now recognized that
the historical view of macrophage polarization into M1 and
M2 phenotypes is an oversimplification and there are several
differentiation states that are dynamic in response to changes
in the environmental milieu (Xue et al., 2014), these distinct
populations play unique roles in their modulation of fibrosis.
Macrophage-derived TGF-β induces migration, growth and
activation of fibroblasts and promotes collagen synthesis (Fine
and Goldstein, 1987; Clark et al., 1997; Acharya et al., 2008).
Macrophages also represent an important source of MMPs and

TIMPs that influence matrix degradation (Huang et al., 2012;
Khokha et al., 2013). MMPs are also involved in the control of
chemokines to influence inflammatory responses (Van den Steen
et al., 2000; Dean et al., 2008; Song et al., 2013).

During the proliferative phase of cardiac repair, cardiac
fibroblast populations undergo expansion and conversion to
myofibroblasts (Travers et al., 2016). The conversion of
macrophages to a reparative phenotype promotes the recruitment
and expansion of fibroblasts through the secretion of pro-fibrotic
factors (Bajpai et al., 2018). These macrophages and recruited
lymphocyte populations contribute to the activation of fibroblasts
into a myofibroblast phenotype through cytokine release of
factors such as TGF-β (Dobaczewski et al., 2011). Myofibroblasts,
in turn, generate large amounts of ECM to repair the damaged
heart (Travers et al., 2016).

The interplay between the immune and fibrotic response is
extremely interconnected. Immune cells regulate all aspects of
fibroblast biology and fibroblasts, in turn, regulate immune cell
recruitment, activation and function. Dissecting the role of the
various mediators has proven to be difficult due to the pleiotropic
nature of many of these factors and their context-dependent and
cell type-dependent nature. Furthermore, lack of cell type specific
markers has hampered progress. Understanding the relationship
between inflammation and cardiac remodeling is an important
avenue of study due to its importance for recovery and represent
a significant potential area of therapeutic intervention.
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