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Abstract: The animal hormone melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule
with multiple and various functions. Phytomelatonin is the melatonin from plants and was discovered
in 1995 in some species. Phytomelatonin is considered an interesting molecule in the physiology
of plants, as it seems to be involved in many actions, such as germination, growth, rooting and
parthenocarpy, including fruit set and ripening; it also seems to play a role during postharvest. It has
been studied in processes such as primary and secondary metabolism, photosynthesis and senescence,
as well as in the nitrogen and sulfur cycles. Phytomelatonin up- and down-regulates many relevant
genes related to plant hormones and key genes related to the above-mentioned aspects. One of the
most decisive aspects of phytomelatonin is its relevant role as a bioprotective and alleviating agent
against both biotic and abiotic stressors, which has opened up the possibility of using melatonin as
a phytoprotector and biostimulant in agriculture. In this respect, using material of plant origin to
obtain extracts rich in phytomelatonin instead of using synthetic melatonin (thus avoiding unwanted
by-products) has become a topic of discussion. This work characterized the phytomelatonin-rich
extracts obtained from selected herbs and determined their contents of phytomelatonin, phenols and
flavonoids; the antioxidant activity was also measured. Finally, two melatonin-specific bioassays in
plants were applied to demonstrate the excellent biological properties of the natural phytomelatonin-
rich extracts obtained. The herb composition and the protocols for obtaining the extracts rich in
phytomelatonin are in the process of registration for their legal protection.

Keywords: biostimulator; green chemistry; melatonin; phytomelatonin; plant protector; plant stress

1. Introduction

Phytomelatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995 [1–3]
and has since been detected in practically all plant species analyzed, although the actual
content varies widely with the plant species [4]. In general, aromatic medicinal plants seem
to have high phytomelatonin levels [5]. Relevant factors in this respect, which affect the
endogenous phytomelatonin content, are the growth and development conditions. Many
physiological studies have been carried out on the role of phytomelatonin in plants, ob-
serving that it acts as a protective biomolecule capable of counteracting physical, chemical
and biological stressors. Indeed, all the common stress agents studied in plants, whether
of a physical (heat, cold and ultraviolet radiation), chemical (salinity, alkalinity, drought,
waterlogging, heavy metals, mineral deficit/excess, pesticides and combinations of the
same) or biotic (virus, bacteria and fungi) nature, induce an increase in the endogenous phy-
tomelatonin level, activating the respective anti-stress response and increasing the tolerance
to the stressor [6–13]. In addition to its protective actions against stressors, other interesting
physiological functions have been attributed to phytomelatonin, including processes such
as germination, rooting, seedling growth, flowering, parthenocarpy, fruit set and ripening.
Other aspects related to phytomelatonin that have been studied include its role in photo-
synthesis, ripening and senescence, the primary metabolism (carbohydrates, lipid, amino
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acids, nitrogen, sulfur) and secondary metabolism (flavonoids, anthocyanins, carotenoids,
essential oils), including osmoregulation, and the regulation of the plant hormones auxin
(IAA), gibberellins (GAs), cytokinins, abscisic acid (ABA), ethylene (ET), jasmonates (JA),
salicylic acid (SA), polyamines, brassinosteroids and strigolactones [14–29].

The phytomelatonin biosynthesis pathway is well characterized, and was shown to
be different from animal cells in some steps [30,31], according to the following scheme
(Figure 1) [16,32].
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In plants, phytomelatonin induces many changes in gene expression, resulting in a
global biostimulatory action [14]. Due to the diversity of its actions, phytomelatonin was
proposed not only as a plant master regulator, but also as a novel plant hormone, since
its receptor (PMTR1), a plasma membrane receptor that interacts with G-proteins, was
identified in Arabidopsis [33]. Phytomelatonin acts as a regulator of the redox network
in plants, both directly and indirectly regulating the oxygen- and nitrogen-radical species
(ROS-RNS) levels and the expression of many regulation factors through the nitric oxide
and hydrogen peroxide signaling cascades, among other pathways. Hence, phytomelatonin
can regulate redox homeostasis, balancing ROS-RNS and the expression of related key
enzymes (NOS-like, NR, RbOHs, ASA-GSH cycle, antioxidant enzymes such as catalases,
peroxidases, superoxide dismutases, etc.) [15].

Its role as a stimulator of systemic acquired resistance (SAR) is noteworthy, favoring
the health of crops in possible bacterial, fungal and viral pathogenic infections. Phy-
tomelatonin has been used as an alleviating agent in several fungal diseases caused by
Botrytis cinerea, Phytophthora infestans, Phytophthora nicotianae, Plasmodiophora brassicae, Peni-
cillium digitatum, Fusarium spp. and Alternaria spp. [11,18,34]. Recently, it was demonstrated
that exogenous melatonin treatment is able to activate the plant defenses known as ETI
(effector-triggered immunity) and PTI (PAMP: pathogen-associated molecular pattern-
triggered immunity) in watermelon and Arabidopsis, according to transcriptomic data [35].
In the face of phytobacterial infections, phytomelatonin increases the resistance in the rice
bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoo) [36,37]. Exogenous
melatonin treatment revert the disorder Candidatus Liberibacter asiaticus in citrus (greening
disease) [38]. Additionally, melatonin treatments confer plant disease resistance against
bacterial blight in cassava [39–41]. In general, melatonin induces plant resistance through
the upregulation of defense genes such as plant defensin (PDF) and plant resistance (PR),
while also upregulating SA-, ET- and JA-associated genes and mitogen-activated protein
kinase (MAPK) cascades [11,16]. In the case of viruses, exogenous melatonin results in
the shortening of tobacco mosaic virus (TMV), viral RNA and virus particles in infected
Nicotiana glutinosa and Solanum lycopersicum plants [42]. Moreover, melatonin efficiently
decreases apple stem grooving virus (ASGV) from the in vitro virus-infected apple shoots
and so is used to generate virus-free plants [43]. In addition, in rice, melatonin treatments
increase resistance against RSV (rice stripe virus), which is one of the most pathogenic rice
viruses in East Asia [44].

Melatonin has been widely studied and its protective and biostimulator role in plants
has been clearly established. However, the use of synthetic melatonin is common in lab
experimentation. The possible use of plant material as a source of phytomelatonin-rich
extracts instead of synthetic melatonin (thus avoiding unwanted by-products) has been
discussed [45–47]. It should be remembered that melatonin is a hormone in animals and
humans, but it is also present in all other living beings, including prokaryotes, eukaryotes,
algae, fungi, insects and other animals, both aquatic and terrestrial. The possible use of
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synthetic melatonin in agriculture was widely discussed recently in an extensive review,
taking into account the legislation of the European Community (EC). In that review, the use
of natural extracts rich in phytomelatonin, with clear advantages and some disadvantages,
was proposed as an alternative [48].

In this work, several phytomelatonin-rich extracts obtained from selected herbs were
characterized, and the main biochemical components they contain were determined. The
different phytomelatonin contents of several types of herb extracts were measured by
LC-fluorescence and LC-QTOF/MS. Their richness in phenols, flavonoids and antioxidant
activity was analyzed. Additionally, two melatonin bioassays carried out in plants confirm
the excellent biological properties of the natural phytomelatonin-rich extracts obtained.
The objective of this article is to propose the use of herb extracts rich in phytomelatonin as
biostimulants and plant protectors in crops and in biotechnology.

2. Materials and Methods
2.1. Chemicals

The chemicals, solvents (methanol, ethanol and ethyl acetate) and reagents used
were from Sigma-Aldrich (Madrid, Spain). Milli-Q system (Milli-Q Corp, Merck KGaA,
Darmstadt, Alemania) ultra-pure water was used.

2.2. Plant Material

A selection of herbs was used. The selected herbs (SHB) and the extractive protocols
are in the process of registration for their legal protection, so their composition cannot be
revealed. SHB were treated according to the scheme in Figure 2. From SHB, three different
concentrated final products, so-called Phytomel-Agro (PTMA), were obtained. Both SHB
and PTMAs were analyzed to measure different chemical and biochemical parameters.
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2.3. Proximate Analysis

Samples of SHB and PTMAs were analyzed for moisture (Method no. 945.15), ash
(Method no. 942.05), crude protein (Kjeldahl method using a factor of 6.25, Method
no. 920.54), crude fat (Method no. 920.39) and dietary fiber (Method no. 985.29) contents,
according to the AOAC methods [49]. The data are expressed as % of fresh material.
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2.4. Biochemical Analysis

Total phenolic and flavonoid content, and hydrophilic antioxidant activity in SHB and
PTMAs were determined. Folin–Ciocalteu’s reagent was applied to determine the total
content of phenolic compounds [50]. Five hundred microliters of the sample was placed in
a glass test tube, and 0.85 mL of water, 50 µL of 1N NaOH and 50 µL of Folin–Ciocalteu’s
reagent were added. The reaction medium was allowed to react in the dark, at 30 ◦C for 1 h,
before the absorbance at 755 nm was measured with a UV-Vis spectrophotometer (Perkin-
Elmer, model Lambda 2S, Hamburg Germany). The results are expressed as moles of gallic
acid (used as standard) equivalents per gram of dry matter (DW) or oleoresin (ORS).

To measure the total flavonoid content, the aluminum chloride colorimetric method
was applied [50,51]. Quercetin was used as a standard. Quercetin (10 mg) was dissolved in
80% ethanol and then diluted to 12.5, 25, 50, 75 and 100 µg/mL. The diluted standard solu-
tions were separately mixed with 50 µL of 10% aluminum chloride, 50 µL of 1 M potassium
acetate and 0.85 mL of distilled water. After incubation at 30 ◦C for 30 min, the absorbance
of the reaction mixture was measured at 415 nm. A similar procedure was applied to SHB
and PTMAs samples for total flavonoid content analysis. The results are expressed as
moles of quercetin equivalents per gram of dry matter (DW) or oleoresin (ORS).

Hydrophilic antioxidant activity was measured in the samples using the method
described in [52,53], which is based on the ability of the antioxidants of a sample to reduce
the radical cation of 2,2′-azino-bis-3-(ethylbenzothiazoline-6-sulphonic acid) (ABTS·+),
determined by the discoloration of ABTS·+ and measuring the quenching of the absorbance
at 730 nm. This activity was calculated by comparing the values of the sample with a
standard curve of ascorbic acid and is expressed as moles of ascorbic acid equivalents per
gram of dry matter (DW) or oleoresin (ORS).

2.5. Phytomelatonin Analysis

Phytomelatonin content in SHB and PTMAs was determined by liquid chromatog-
raphy (LC) with fluorescence detection and by LC with time-of-flight mass spectroscopy
(LC-QTOF/MS) as in [7,54,55]. A Jasco liquid chromatograph Serie-2000 (Tokyo, Japan)
equipped with an online degasser, binary pump, auto sampler, thermo-stated column and
a Jasco FP-2020-Plus fluorescence detector were used to measure phytomelatonin levels.
An excitation wavelength of 280 nm and an emission wavelength of 350 nm were selected.
A Waters Spherisorb-S5 ODS2 column (SigmaAldrich, Spain)(250 × 4.6 mm) was used. The
isocratic mobile phase consisted of water:acetonitrile (80:20) at a flow rate of 0.2 mL/min.
The data were analyzed using the Jasco ChromNAV v.1.09.03 Data System Software (Tokyo,
Japan). Forcorrect identification, an in-line fluorescence spectral analysis (using the Jasco
Spectra Manager Software (Tokyo, Japan) compared the excitation and emission spectra of
standard melatonin with the corresponding peak of phytomelatonin in the samples [54].

Identification of phytomelatonin in plant extracts was also confirmed using an LC/MS
system consisting of an Agilent 1290 Infinity II Series LC (Agilent Technologies, Santa Clara,
CA, USA) equipped with an Automated Multisampler module and a High-Speed Binary
Pump, and connected to an Agilent 6550 Q-TOF Mass Spectrometer (Agilent Technologies,
Santa Clara, CA, USA) using an Agilent Jet Stream Dual electrospray (AJS-Dual ESI)
interface (Santa Clara, CA, USA). Experimental parameters for HPLC and Q-TOF were set
in MassHunter Workstation Data Acquisition software (Agilent Technologies, Rev. B.08.00,
Santa Clara, CA, USA) [55].

Samples (SHB and PTMAs) were filtered through 0.2 µm filters and Sep-Pack C18
filtered before analyzing. Standards or samples (20 µL) were injected onto a Waters XBridge
C18 5 µm, 100 2.1 mm LC column (SigmaAldrich, Spain), at a flow rate of 0.4 mL/min, and
thermo-stated at 40 ◦C. Solvents A (MilliQ water with 0.1% formic acid) and B (acetonitrile
with 0.1% formic acid) were used for the compound separation with an initial condition of
95% solvent A and 5% solvent B. After injection, the initial conditions were maintained
for 2 min, and then, compounds were eluted using a linear gradient 5–100% solvent B for
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8 min. A hundred percent solvent B was maintained for 2 min, and the system was finally
equilibrated at 5% solvent B for 3 min before a new injection.

The mass spectrometer was operated in the positive mode. The nebulizer gas pressure
was set to 40 psi, and the drying gas flow was set to 13 L/min at a temperature of 250 ◦C. The
sheath gas flow was set to 12 L/min at a temperature of 300 ◦C. The capillary spray, nozzle,
fragmentor and octopole 1 RF Vpp voltages were 3500 V, 50 V, 150 V and 750 V, respectively.
Profile data in the 50–300 m/z range were acquired for MS scans in 2 GHz extended
dynamic range mode. A reference mass of 121.0509 was used. Data analysis was performed
with MassHunter Qualitative Analysis Navigator software (Agilent Technologies, Rev.
B.08.00, Santa Clara, USA. The signal corresponding to phytomelatonin was extracted and
quantified with an m/z of 233.1285.

2.6. Biological Assay by Dark-Induced Senescence of Leaves

The bioassay was developed by Arnao et al. [6] and based on the protective effect of
melatonin against chlorophyll degradation during the dark-induced senescence of leaves.
Briefly, sterilized parsley (Petroselinum crispum) leaves (0.3 g FW) were incubated in 10 mM
potassium phosphate buffer (pH 6.0) in the presence of synthetic melatonin (0.1 and 1 mM)
and PTMA at different concentrations. Eight leaves were used in each treatment, which
was repeated 4 times. The chlorophylls retained in the leaves in each treatment were
analyzed after 5 days at 24 ◦C in darkness following the method described by Lichtenhaler
and Wellburn [56].

2.7. Biological Assay by Cotyledon Growth in Darkness

The bioassay based on the melatonin-induced growth of lupin (Lupinus albus) cotyle-
dons was developed by Hernández-Ruiz et al. [57]. Briefly, fully imbibed etiolated lupin
cotyledons, without the embryo, were incubated with synthetic melatonin and PTMAs.
The area and fresh weight of the cotyledons in each treatment were recorded initially and
after 48 h of incubation at 24 ◦C in darkness. Eight cotyledons were used in each treatment,
which was repeated 4 times. The increase in the area of lupin cotyledons was measured
using the software application Adobe Photoshop (San José, CA, USA).

2.8. Statistical Analysis

Statistical approaches were applied using the SPSS 10 program (SPSS Inc., Chicago,
IL, USA), using the LSD multiple range test to establish significant differences at p < 0.05.
The results are expressed as mean ± standard error (SE, n = 4).

3. Results and Discussion

A mixture of selected herbs (SHB) was used to obtain phytomelatonin-rich extracts
(PTMAs) (Figure 2). The protocols are currently in the process of registration for their
legal protection. These plants were from non-transgenic seeds and obtained by organic
culture. The green-extractive process applied permits to obtain stabilized and natural
phytomelatonin-rich extracts ready for use. The selected herbs (SHB) in a dried form were
subjected to a solid–liquid extraction step. Next, two different protocols were applied
(type I and II). In type I, only a simple filtration and evaporation of the solvent was
applied (Phytomel-Agro1). In type II, in addition to the filtration and evaporation steps,
two modifications were introduced: a centrifugation step for Phytomel-Agro2and an
ultrasound treatment step for Phytomel-Agro3.

Table 1 shows the results of the proximate analysis of the plant material (SHB) and the
final extracts (PTMAs). A high protein, carbohydrate and fiber content can be observed
in SHB; by contrast, low oil content is presented. An intensive concentration process to
obtain high phytomelatonin content in PTMAs was applied (Figure 2).
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Table 1. Proximate analysis of selected herbs (SHB) and the final products (PTMAs) (±standard errors of the mean of four
replicate experiments).

Components
(in %, as Fresh Material) SHB PTMA1 PTMA2 PTMA3

Moisture 89.61 ± 4.36 25.50 ± 2.28 11.61 ± 0.89 10.22 ± 0.81
Ash 0.37 ± 0.02 2.18 ± 0.12 Trace Trace

Crude proteins 3.50 ± 0.12 28.12 ± 2.11 5.72 ± 0.20 6.12 ± 0.40
Crude fat 0.55 ± 0.04 10.23 ± 1.09 54.84 ± 3.14 57.36 ± 3.82

Dietary fiber 2.34 ± 0.08 16.92 ± 1.58 0.97 ± 0.06 1.15 ± 0.07
NFEM* (~carbohydrates) 3.63 ± 0.22 17.05 ± 1.15 26.86 ± 0.41 25.15 ± 0.37

NFEM*, nitrogen-free extractive material.

Logically, the concentration process quantitatively affected all the parameters mea-
sured (Table 1). Thus, plant oils (crude fat) were the main component of PTMA2 and
PTMA3, in which phytomelatonin is perfectly solubilized and extracted.

Figure 3 shows a representative chromatograms (by fluorescence detection and by
Q-TOF/MS) of a concentrated extract (PTMAs), according to our previously published
data [54,55].
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Figure 3. (a) shows the representative chromatogram of a PTMA sample with liquid chromatography and fluorescence
detection. Fluorescence detection was programmed at λexc of 280 nm and λemi of 350 nm. The melatonin peak has a
retention time of 6.5 min. (b) shows the representative chromatogram and mass spectra of PTMA3 sample using liquid
chromatography with time-of-flight/mass spectrometry (LC-QTOF/MS).

Table 2 shows the phytomelatonin contents of the initial plant material (SHB) and of
the final concentrated product (PTMAs). Using these protocols, significant amounts of
phytomelatonin can be extracted and concentrated from these plants; between ~35–50 µg
of phytomelatonin by gram of oleoresin (ORS) in PTMA-2 and PTMA-3 can be obtained.
Regarding the ratio between the plant material necessary to obtain a quantity of PTMA3,
about 200–250 g DW of plants is needed to obtain 50 µg phytomelatonin. This amount
of phytomelatonin can be considered sufficient to prepare solutions with which to treat
agronomic plants [43].
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Table 2. Phytomelatonin analysis of selected herbs (SHB) and the final concentrated products
(PTMAs) (±standard errors of the mean of four replicate experiments).

Material Phytomelatonin Content

SHB 0.35 ± 0.02 µg/g DW
PTMA1 11.7 ± 0.9 µg/g ORS
PTMA2 35.0 ± 2.9 µg/g ORS
PTMA3 50.2 ± 3.7 µg/g ORS

DW, dry weight; ORS, oleoresin.

Table 3 shows the values of other biochemical parameters, such as total phenolic
and flavonoid contents and hydrophilic antioxidant activity. As is to be expected, the
SHB showed lower values of antioxidant activity and total phenols and flavonoids than
PTMAs due to the concentrating process applied. One of the most studied properties of
melatonin is its quality as a natural antioxidant. Although its effects as a biostimulator go
much further than that of a mere antioxidant [15], the fact that phytomelatonin is found
in a matrix with a considerable number of antioxidant molecules, such as phenols and
flavonoids, ensures a high antioxidant activity (AAH) (see Table 3), which preserves it.
Biochemically, phenols and flavonoids possess multiple beneficial properties for plants,
which add to the natural quality of the phytomelatonin-rich extracts (PTMAs) [58].

Table 3. Specific analysis of selected herbs (SHB) and the final products (PTMAs).

Parameter SHB PTMA1 PTMA2 PTMA3

Total phenolic content
(TPC)

(eq. gallic acid/g)

243.1 ± 21.2 nmoles/g
DW 13.6 ± 1.1 µmoles/g ORS 261.5 ± 21.7 µmoles/g

ORS
288.1 ± 23.0 µmoles/g

ORS

Total flavonoid content
(TFC)

(eq. quercetin/g)
56.5 ± 3.9 nmoles/g DW 4.4 ± 0.3 µmoles/g ORS 90.4 ± 8.1 µmoles/g ORS 95.3 ± 7.4 µmoles/g ORS

Hydrophilic antioxidant
activity (HAA)

(eq. ascorbic acid/g)
172.7 ± 9.6 nmoles/g DW 9.3 ± 0.9 µmoles/g ORS 152.6 ± 12.5 µmoles/g

ORS
162.7 ± 13.7 µmoles/g

ORS

DW, dry weight; ORS, oleoresin.

To find out if our obtained phytomelatonin-rich extracts had functional properties,
we applied them to two previously developed melatonin bioassays. In the first bioassay,
the senescence of parsley leaves treated with the melatonin solutions slowed down, as
estimated from the chlorophyll lost in leaves after dark incubation. Figure 4 shows this
effect of both PTMA3 extract and synthetic melatonin (sMEL) at different concentrations.
As can be seen, the response was concentration dependent, with the optimal response
obtained at 1 mM sMEL, similarly to that observed in the original bioassay in barley
leaves [6]. As can be seen, the PTMA3 extract also produced a similar response assMEL,
which means that our extracts were physiologically active in the bioassay.

The bioassay of the melatonin-induced growth of lupin cotyledons was based on
the growth-induction capacity of melatonin in plant tissues such as roots, cotyledons,
epicotyls and hypocotyls [57,59–61]. Figure 5 shows the effect of synthetic melatonin and
PTMA3 on cotyledon area expansion, as well as the increases in fresh weight, after 48 h
of incubation at 24 ◦C in darkness. As can be seen, the cotyledon area and fresh weight
increased with respect to the control incubation (buffer medium only) for both treatments.
Moreover, the phytomelatonin-rich extract PTMA3 showed an excellent physiological
behavior, stimulating cotyledon growth in a similar way to synthetic melatonin (sMEL),
according to our pioneering bioassay [57]. Of the three extracts obtained, PTMA3 is the
richest in phytomelatonin and, therefore, more active in the tests applied in Figures 4 and 5.
PTMA1 did not present a response in the applied tests, probably due to its low level of
phytomelatonin, or because it is a vast and more complex extract. Regarding PTMA2, we
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observed activity with less intensity in the tests, and therefore we focused on the most
active extract, PTMA3.
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According to our previous studies on the potential of melatonin on the inhibition of
chlorophyll degradation (test in Figure 4) and on cotyledon growth (test in Figure 5), auxin
and cytokinins are plant hormones that can test positive. Similarly, it seems that ABA affects
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it in a negative way [6]. For this reason, we have never maintained that phytomelatonin
can, exclusively, be the molecule responsible for these effects in physiological conditions.
In this sense, the role of phytomelatonin on foliar senescence was demonstrated. Melatonin
down-regulates several chlorophyll degrading genes through the senescence factor SAG12,
among others. The melatonin action is possibly cytokinin-mediated because melatonin
up-regulates cytokinin level and some signaling elements inhibit the senescent process
in a co-active melatonin–cytokinin collaboration [24]. In any case, we found a natural
extract that, being rich in phytomelatonin, can behave with excellent regulatory properties
of plant development, which can be applied to crops. However, the complete hormonal
characterization of PTMA3 is one of our immediate goals.

Phytomelatonin contents in wild plants and also in edible plants range from nanograms
to micrograms per gram of plant tissue. Generally, seeds, leaves, stems, seedlings and roots
present the highest phytomelatonin levels, and fruits the lowest. Medicinal aromatic plants
have significantly higher levels than seeds and fruits. Additionally, growing conditions
and harvesting, among other factors, affect phytomelatonin level in plant tissues [4,32].
After an arduous search and analysis of a multitude of aromatic medicinal plants, we
selected a group of herbs (SHB) to obtain PTMAs, which are rich in phytomelatonin. Our
process at the lab scale is laborious but provides concentrated extracts that are very rich in
phytomelatonin and available for use as an active material in natural agro-phytochemical
treatments as a plant growth regulator. In any case, our next challenge is to obtain new
extracts that are even richer in phytomelatonin and to make it economically profitable on a
large scale.

4. Concluding Remarks

In conclusion, the SHB and green-extractive processes described in this work enabled
us to obtain natural phytomelatonin-rich extracts (PTMAs), free of unwanted by-products.
In this case, the optimal phytomelatonin content of PTMAs was around 50 µg of phytome-
latonin by gram of oleoresin, reaching a sufficient concentration to be used as an initial
material in a variety of agricultural and biotechnological applications. Generally, crop
treatments with plant growth regulators or biostimulators may involve concentrations
in the order of 5–100 µM. The PTMAs obtained in this study are concentrated enough
to avoid any problems related to obtaining solutions for the massive treatment of plants.
Furthermore, the amphiphilic nature of phytomelatonin molecules means that they are
easily absorbed either by the roots or by the leaves. However, our group is engaged in
conducting stability, absorption and transport tests of the active substance in various crops.
The possible use of synthetic melatonin as a chemical in crops requires more exhaustive
studies for its possible legalization in different countries. However, the use of natural
extracts rich in phytomelatonin can be considered as an alternative with possibly fewer
legal obstacles.
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ASA ascorbic acid
COMT caffeoyl-O-methyl transferase
DW dry weight
ET ethylene
FW fresh weight
GAs gibberellins
GSH glutathione
IAA indole-3-acetic acid
JA jasmonic acid
NOS-like nitric oxide synthase like-activity
NR nitrate reductase
ORS oleoresin
PMTR1 phytomelatonin receptor
PTMA phytomelatonin-rich extract Agro
RBOH NADPH oxidase-dependent H2O2 production
RNS reactive nitrogen species
ROS reactive oxygen species
SA salicylic acid
SAR systemic acquired resistance
SHB selected herbs
sMEL synthetic melatonin
SNAT serotonin N-acetyltransferase
T5H tryptophan 5-hydroxylase
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