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a b s t r a c t

Cell segmentation is a fundamental problem of computational biology, for which convolutional neural 
networks yield the best results nowadays. This field is expanding rapidly, and in the recent years, shape- 
constrained segmentation models emerged as strong competitors to traditional, pixel-based segmentation 
methods for instance segmentation. These methods predict the parameters of the underlying shape model, 
so choosing the right shape representation is critical for the success of the segmentation. In this study, we 
introduce two new representation-based deep learning segmentation methods after a quantitative com
parison of the most important shape descriptors in the literature. Our networks are based on Fourier 
coefficients and statistical shape models, both of which have proven to be reliable tools for cell shape 
modelling. Our results indicate that the methods are competitive alternatives to the most widely used 
baseline deep learning algorithms, especially when the number of parameters for the underlying shape 
model are low or the cells to be segmented have irregular morphologies.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Imaging, identifying, and morpho-measuring cells and their 
subcellular compartments are often the first step of fundamental cell 
biology research and drug discovery. Single cell segmentation is an 
important part of this, as it enables researchers to analyze the 
number of cells, their shapes, phenotypes or physiological state on 
microscopic images. In the recent years, convolutional neural net
works emerged as an effective tool for tackling segmentation tasks 
[6], among them, U-Net [23] and Mask-R-CNN [8] can be considered 
the most widely used ones. U-Net is a dense pixel classifier network, 
with an encoder-decoder structure originally used for semantic 
segmentation, however, it can be modified to perform instance 
segmentation as well and is still used in many biomedical applica
tions [11,17,21]. Mask R-CNN performs instance segmentation in two 
steps: first, the bounding boxes are regressed, after which the binary 
masks are produced inside the detected box. Mask R-CNN is still 
widely used, however, it requires a lot of hyperparameter tuning and 
training is also relatively slow [3]. The encoder-decoder structure is 
built up from ResNet (encoder) [9] and Feature pyramid network 

(FPN, decoder) [15]. Recently, a new generation of segmentation 
methods emerged that instead of per-pixel classification or 
bounding boxes, predict the parameters of an underlying cell model. 
This approach can be beneficial, because 1) instead of semantic 
segmentation, instance segmentation can be carried out much easier 
compared to the pixel-wise approach, 2) regressing shape de
scriptors can give extra information about the segmentation de
pending on what descriptors are used and 3) learning shape 
representations can be thought of as a regularization technique as 
well [13]. The most popular representations are star-convex poly
gons [24] and cubic B-splines [18] in 2D, and star-convex polyhedra 
[27] and spherical harmonics [5] in 3D. Choosing the right cell re
presentation is crucial to the success of these methods, as certain 
shape descriptors may perform better or worse on particular data
types or in general. There have been several studies about cell shape 
analysis unrelated to this application [22,28], but no quantitative 
comparison between a large number of representations for cell 
shape description has been carried out yet to our knowledge. In this 
study, our aim is to 1) extend the knowledge about shape-con
strained cell segmentation and the possible uses of other re
presentations and 2) provide information about which shape 
descriptors are the most appropriate for biological data. In this 
paper, we compare and quantitatively evaluate a large pool of pos
sible cell shape models on real and synthetic images. We also 
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introduce new cell representations with Fourier descriptors and 
statistical shape models, with two deep learning segmentation 
networks, similar in nature to the currently available StarDist [24]
and SplineDist [18] architectures, but relying on the proposed cell 
representations. The source code can be found at https://bitbucket. 
org/biomag/cellrepresentation.

2. Related work

2.1. Cell representation techniques

Modelling shapes with a small number of parameters has been 
studied for a long time [29]. One of the most well known tools for 
describing objects (when looking at them as parametric curves) are 
orthogonal functions, which are essential in approximation theory, 
as they can be effectively used to describe functions with infinite 
series.
Definition 1. Functions g and h are orthogonal on interval [a, b] with 
respect to a weight function w, if. 

= =g h w x g x h x dx, ( ) ( ) ( ) 0.
a

b

Let φ0, φ1, φ2, … be a system of orthogonal functions on interval 
[a, b], and let c0, c1, c2, … be constants. The generalized Fourier series

=
=

f x c( )
n n n0

represents f as a convergent series, where the coefficients cn can be 
calculated from
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The most well known set of orthogonal functions for describing 
shapes are trigonometric functions, which can be used for calcu
lating the Fourier series expansion of a contour. Besides that, poly
nomial basis functions (e.g. Legendre, Hermite, Chebyshev 
polynomials) and wavelet functions (e.g. Haar wavelets) can be 
utilized as well. Using these functions can be beneficial due to the 
simple and explicit computation of the coefficients of the basis 
functions in the series, however, one does not necessarily need the 
orthogonality property to accurately describe contours, for example, 
B-splines have been successful in this area as well [18]. A spline 
contour of order n is a piecewise polynomial function with a degree 
of n−1. B-splines of a given order can be thought of as basis functions 
in the space of spline functions, which means that any piecewise 
polynomial function with a degree of n−1 can be described by a 
linear combination of B-splines of order n. The “weights” of the B- 
splines are the control points, which describe the curve implicitly. 
Usually, cubic B-splines are used (n = 4), and a contour is described 
by a function

= =
=
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where M is the number of control points used, c is the vector of 
control points, and =t t( ) ( )M M

3 are the cubic basis functions for M 
number of control points.

Another possibility is to use statistical shape models (SSM-s) [4], 
where an object is represented by k landmark points. Given a set of n 
shapes, after performing a step of procrustes analysis [7], one can 
perform principal component analysis on the matrix of shapes. The 

eigenvectors corresponding to the highest eigenvalues will represent 
the most important shape variations from the mean shape in the 
training set. Using a few of these extracted eigenvectors along with a 
rotation, translation, and a uniform scaling parameter, we can ap
proximate any shape with the aforementioned parameters (as
suming that the shape to be approximated is similar to the shapes in 
the training set, on which the PCA was performed). Specifically for 
cell description, the star-convex polygon representation became 
widespread with the introduction of the StarDist segmentation 
method, however, it only guarantees convergence for star-shaped 
objects Fig. 1.

2.2. Cell segmentation with geometric priors

The most well known segmentation methods nowadays are 
based on per-pixel classification, among them, Mask-RCNN [8] and 
U-Net [23] are used most of the time as baselines. Recently, a lot of 
research has been focused on incorporating structural information 
into neural networks about the objects that have to be segmented. 
This can be achieved by either modifying the loss function, pre
dicting a parametric model instead of classifying each pixel or the 
combination of the two. In [13,20], authors have proposed a method 
where a shape encoder was incorporated into the neural network 
and the segmentations were based on the learned shape re
presentations. Other solutions are related to the classical roots of 
segmentation, predicting the parameters of active contour models 
[19]. Specifically for biomedical image segmentation, one of the 
most successful method was StarDist [24], which regresses the radial 
distances of the cell contour, followed by SplineDist [18], which 
achieves accurate segmentation by using an underlying B-Spline 
model. These shape-constrained methods, with addition to the 
common benefits of shape parameter models, also have the ad
vantage that they require a lot less hyper-parameter tuning and less 
network parameters in general compared to Mask-RCNN [24]. The 
Contour Proposal Network (CPN) is a very recent addition to the 
selection of segmentation methods utilizing shape prior information 
[26]. This network regresses Fourier coefficients, which are very 
natural and intuitive tools for cell shape description, as the most 
simplistic shape they can describe is an ellipsoid. One drawback of 
this method is that besides predicting the Fourier coefficients for the 
cell shape, the network also has a so-called refinement head, which 
further modifies the segmentation, making it hard to evaluate the 
descriptive capabilities of the coefficients themselves.

3. Methods

3.1. Cell representation

With this study, our aim is to find the most suitable cell re
presentations, so that we can incorporate them into convolutional 
neural networks for accurate segmentation results. For that, we 
tested 8 different cell representations to select the most expressive 
ones for segmentations. All of the representations are used to ap
proximate parametric, two-dimensional (2D) contours, so for eval
uating these techniques, we first convert the binary masks into 
discretized curves, and then approximate these with 1) Orthogonal 
polynomials (Chebyshev, Legendre, Hermite), 2) Wavelet series 
(Haar), 3) Star-convex polygon representation, 4) Cubic B-Splines, 5) 
Fourier series and 6) Statistical shape models. After the approx
imation, we convert back the approximated contours into binary 
masks. Based on the results presented in Subsection 4.3, the most 
efficient descriptors for the types of images included in our 
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experiment are star-convex polygons, B-splines, Fourier descriptors 
and statistical shape models. The first two representations have al
ready seen use in CNN-s, thus, our aim is to incorporate the latter 
two into neural networks.

3.2. Cell segmentation

Our network takes an input image, and predicts the parameters 
of the underlying cell model describing the object at pixel (i, j), thus 
yielding a prediction map = =C cˆ {ˆ }ij ij

n
n
N

0. For the Fourier-based re
presentation, we make one slight modification on one of the pre
dicted coefficients: instead of predicting cij

0 explicitly (which is the 
center of mass of the predicted contour), we train our model to learn 

cij
0, which describes the translation of the center of mass of the 

object relative to pixel (i, j). For the SSM-based representation, we 
predict the weights of the principal variation vectors and a relative 
translation, rotation, and uniform scaling parameter. Besides that, 
we also predict a probability value pij for every pixel (i, j) so that 
pixels with low object probability can be ignored. This step is done 
for every representation type. Once a prediction has been made for 
every pixel, a non-maximum suppression (NMS) step ensures that 
overlapping candidates are filtered out. Similarly to StarDist and 
SplineDist, we use a standard U-Net backbone (architecture un
altered compared to [24]) with an additional feature extraction layer 
at the end and we regress the object probabilities and shape de
scriptors separately (see Fig. 2). We used the following hyperpara
meters and augmentation strategy for training the models: Adam 

optimizer with learning rate λ = 3 × 10−4, batch sizes of 4, 300 epochs, 
no batch normalization and no dropout. We split the data into train/ 
test/validation sets by: 80%/10%/10%. For data augmentation, we 
used horizontal and vertical flips and standard color augmentation. 
The proposed architecture can be seen in Fig. 2. As for the training 
loss, we impose two different objective functions: 

1. For the Fourier coefficients, we calculate the loss function in a 
different way compared to CPN: we formulate the loss in the 
frequency space besides a binary cross entropy loss:

L L L= +p p C C p p p C C( , ˆ , , ˆ ) ( , ˆ ) ( , , ˆ ),Fourier ij ij ij ij BCE ij ij freq ij ij ij1 (2) 

where Lfreq is expressed by

L = +> = = =
p C C p

N N
c c c( , , ˆ )

1 ˆ 1 ˆ .freq ij ij ij ij p n

N
ij
n

ij
n

p n

N
ij
n

0 0

1
2 0 0

1
ij ij (3) 

2. In case of the SSM-based representation, we formulate a loss 
function similar to SplineDist: the predicted parameters im
plicitly define a contour, and the loss function expresses the 
Euclidean distance between the ground truth and the predicted 
contours Sij and Ŝij respectively, with sij

n denoting the n-th contour 
coordinate). This has to be done because ‘ground truth para
meters’ are not defined in this representation as opposed to the 
case of Fourier coefficients:

Fig. 1. Visual comparison of different cell representations. Star-convex polygons represent cells by the lengths of equiangular rays. The B-spline model implicitly defines the 
contour with the help of control points. Statistical shape models extract the most meaningful shape variations from a training dataset and def ines an unseen shape with the 
combination of the shape variations. The Fourier representation is defined by the sum of the modifications of unit circles rotating at certain frequencies.
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L L L= +p p S S p p p S S( , ˆ , , ˆ ) ( , ˆ ) ( , , ˆ ),SSM ij ij ij ij BCE ij ij contour ij ij ij1 (4) 

where Lcontour is expressed by

L = +> = =

=
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4. Results and discussion

4.1. Datasets

To quantify the capabilities of the aforementioned representation 
techniques and segmentation methods, we used shapes and images 
from 5 different datasets.

1. BBBC038v1: A common benchmarking dataset for cell segmenta
tion with star-convex shapes, available from the Broad Bioimage 
Benchmark Collection [1]. This dataset contains images from dif
ferent modalities, but we only use the fluorescence microscopy 
ones (497 images) similarly to [24]. The images have varying re
solutions, but we selected random crops of size 256×256 from 
them. The dataset contains ground truth annotations.

2. BBBC021v1: A dataset containing cytoplasm segmentations [2], 
available from the Broad Bioimage Benchmark Collection [16]. 
The original dataset contains 39,600 image files, but we only 
selected 5 of them, as this dataset was only used to evaluate the 
cell representation methods (no training required). The images 
were manually annotated by experts as there was no ground 
truth available in this set.

3. The Cancer Genome Atlas (TCGA): A set of histopathology 
images containing 21,623 annotated nuclei from 7 different 
cancer types [14]. We used the same images as the ones used in 
[10]. The images have a resolution of 1000×1000, from which we 

selected random crops of size 256×256. The dataset contains 
ground truth annotations.

4. KIMIA: This dataset contains binary masks of various objects that 
are used in the field of shape analysis [25]. We selected 13 dif
ferent shape classes from this set to evaluate the different cell 
representation methods. We used this dataset to evaluate the 
representation methods, thus closed contours were extracted 
from the binary masks to test the representation techniques.

4.2. Metrics

To evaluate the cell representation techniques, we used the 
common intersection over union (Jaccard index, or IoU) [12] metric:

= =
+

IoU x y
x y
x y

x y
x y x y

( , ) .
(6) 

For quantitative evaluation of the segmentation methods, we 
used the well adapted, official 2018 Data Science Bowl metric (DSB 

Fig. 2. Architecture of the proposed network. 

Table 1 
Shape representation scores averaged over all shapes on different datasets and 
parameter settings. Only the best performing representations with the highest scores 
(based on IoU) are shown. SSM: Statistical shape model, SC: Star-convex, BSpl: B- 
spline, FD: Fourier descriptors. 

nparams BBBC038v1 Synthetic BBBC021v1 KIMIA

3 SSM (0.877) BSpl (0.759) SSM, 
BSpl (0.701)

SSM (0.624)

5 SSM (0.905) BSpl (0.859) BSpl (0.775) FD (0.699)
7 SC (0.923) FD (0.919) FD (0.824) FD (0.779)
9 SC (0.942) FD (0.937) FD, BSpl (0.86) FD (0.824)
11 SC (0.95) FD (0.942) FD, BSpl (0.883) FD, 

BSpl (0.847)
13 SC (0.956) FD (0.946) BSpl (0.902) FD (0.874)
15 SC (0.958) FD (0.947) FD (0.912) BSpl (0.887)
17 SC (0.963) FD (0.948) FD (0.921) FD (0.908)
19 SC (0.965) FD (0.948) FD (0.928) FD, 

BSpl (0.919)
21 SC (0.967) FD (0.948) FD (0.933) FD (0.929)
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score, sometimes also referred to as “average precision”) [1] aver
aged over different IoU threshold values:

=Score
thresholds

S
1

,
thresholds (7) 

where

=
+ +

S
TP

TP FP FN
,

(8) 

and thresholds = {0.5, 0.55, …, 0.85, 0.9}. The reason why we do not 
use IoU for evaluation similar to the representation evaluation is that 
for the representations, we need a pixel-wise score to quantify the 
best approaches (as we want to find the representation with the best 
approximation properties), whereas for instance segmentation tasks, 
object-wise metrics are used such as (7).

4.3. Evaluation of shape representations

To quantify the capabilities of the representations mentioned in 
Section 3.1, we evaluated them on randomly selected objects 
(masks) from the BBBC038v1 (n_objects = 285), Synthetic (n_ob
jects = 118), BBBC021v1 (n_objects = 50), KIMIA (n_objects = 26) data
sets. Each object was approximated individually with every 
representation technique, and the average IoU score was calculated 
for every dataset. We selected the best performing representation 
method(s) for increasing number of parameters (see Table 1) to see 
which ones work particularly well for certain datasets, or whether 
there are techniques that have an advantage at low or high number 
of parameters. According to our results (see Fig. 3 and Table 1), the 
star-convex representation performed the best on cell masks from 

the BBBC038v1 dataset, however, for other types of shapes, it did not 
yield competitive scores. This can mainly be attributed to the 
morphologies of the shapes, as the BBBC038v1 dataset mainly con
sists of regular, radially convex cell shapes, whereas other datasets 
have higher variation in terms of possible shapes. For the Synthetic, 
BBBC021v1, and KIMIA masks, the Fourier representation and B- 
splines yielded the highest IoU scores. Polynomial basis functions 
and Haar wavelets did not gain an edge in either of the datasets 
mentioned before. For polynomial basis functions, this can be at
tributed to the fact that these representations are not specifically 
designed to approximate closed contours, whereas Haar wavelets 
performed similarly to Fourier descriptors despite not yielding the 
best IoU scores any tested dataset. Statistical shape models per
formed the best when the number of parameters used for the re
presentation were low, as this representation incorporates the most 
meaningful shape variations in the first few eigenvectors.

4.4. Evaluation of cell segmentation methods

To evaluate the efficiency of the different cell segmentation 
networks, we compared them on three different microscopic image 
datasets: the BBBC038v1, Synthetic, and TCGA. For reference, we use 
U-Net (2 class),1 Mask R-CNN,2 StarDist3 and SplineDist4 as baseline 
methods. We also measured the training time for every method, 
which can be seen in Table 2 (differences may be attributed to the 
different implementations of the algorithms). Our results indicate 
that if the objects to be segmented are star-convex, and the number 
of parameters for the cell model are high, then the star-convex 
polygon representation yields the highest scores. However, for only a 
few parameters, statistical shape models gave the best results on 
every dataset, which is expected, as the most meaningful principal 
variations should capture characteristic cell shape information. 

Fig. 3. Sample object from the KIMIA dataset and its reconstruction from 19 coefficients with different representations. 

Table 2 
Training time for the compared baseline methods. We measured the average time 
required to perform one step in an epoch. 

Fourier StarDist SplineDist SSM U-Net Mask R-CNN

Training time 
(ms/step)

850 ms 850 ms 870 ms 1100 ms 250 ms 2600 ms
1 https://github.com/zhixuhao/unet.
2 https://github.com/matterport/Mask_RCNN.
3 https://github.com/stardist/stardist.
4 https://github.com/uhlmanngroup/splinedist.
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When there are irregular, non star-convex shapes in the dataset (e.g. 
Synthetic), Fourier descriptors outperformed all of the other re
presentations. This can be observed both quantitatively and quali
tatively (Figs. 5, 6). As can be seen in Table 3, shape constrained 
methods were competitive with the baseline convoluational net
works in every dataset. An interesting, yet counterintuitive result 
that we could observe was that by increasing the number of 

parameters for the cell models, the segmentation performance did 
not necessarily increase (see Fig. 6). A possible explanation for this 
could be that for some representations, more parameters mean just 
some additional minor variations to the shapes, which increase the 
complexity of the model but don’t add substantial improvement to 
the representation itself (see Fig. 4), thus, they will just make the 
learning process harder Figs. 5, 6.

Fig. 4. Cell representation scores (average IoU) on the BBBC038v1 (left) and Synthetic (right) datasets. A performance plateau is observable for every cell model on both graphs. 

Fig. 5. Sample segmentation results on three different datasets with various shape model-based networks. For regular cell shapes, all representations yield acceptable results, 
however, for irregular objects (e.g. second row), the difference in performance is noticeable.

D. Hirling and P. Horvath Computational and Structural Biotechnology Journal 21 (2023) 742–750

747



Fig. 6. Performance of the segmentation networks on three different datasets (sample images: left, scores: right). y-axis denotes the final DSB score. 
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5. Conclusions

We reviewed and compared some of the most widely used shape 
representations from the literature and evaluated their efficiency on 
various datasets. Besides that, we also incorporated the most effec
tive representations (besides the ones already available) into an end- 
to-end, U-net based CNN and tested them on three different mi
croscopy datasets. We also compared our methods to other shape 
constrained cell segmentation models and well established base
lines. Although shape representation-based methods are competi
tive alternatives to the most well adapted deep learning algorithms, 
their real strength can be observed on particular datasets: Star- 
convex polygons work very well for regular, radially convex objects. 
Fourier descriptors are especially useful if there are irregular, non 
star-convex shapes in the dataset, whereas statistical shape models 
perform best when the number of cell model parameters are low. 
Finding optimal basis shapes suited for certain cell types could be an 
interesting continuation of this research, as well as studying the 
different optimal representations for various segmentation tasks. 
Further research could also focus on the exploration of how the 
weights of the pre-defined cell models can be effectively learned by 
neural networks.
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