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Abstract

The extent of drug-induced liver injury (DILI) can vary greatly between different individuals.
Thus, it is crucial to identify susceptible population to DILI. The aim of this study was to
determine whether transcriptomics analysis of predose and postdose rat blood would allow
prediction of susceptible individuals to DILI using the widely applied analgesic acetamino-
phen (APAP) as a model drug. Based on ranking in alanine aminotransferase levels, five
most susceptible and five most resistant rats were identified as two sub-groups after APAP
treatment. Predose and postdose gene expression profiles of blood samples from these
rats were determined by microarray analysis. The expression of 158 genes innately differed
in the susceptible rats from the resistant rats in predose data. In order to identify more reli-
able biomarkers related to drug responses for detecting individuals susceptibility to APAP-
induced liver injury (AILI), the changes of these genes' expression posterior to APAP treat-
ment were detected. Through the further screening method based on the trends of gene
expression between the two sub-groups before and after drug treatment, 10 genes were
identified as potential predose biomarkers to distinguish between the susceptible and resis-
tant rats. Among them, four genes, Incenp, Rpgrip1, Sbf1, and Mmp12, were found to be
reproducibly in real-time PCR with an independent set of animals. They were all innately
higher expressed in resistant rats to AlLI, which are closely related to cell proliferation and
tissue repair functions. It indicated that rats with higher ability of cell proliferation and tissue
repair prior to drug treatment might be more resistant to AlLL. In this study, we demonstrated
that combination of predose and postdose gene expression profiles in blood might identify
the drug related inter-individual variation in DILI, which is a novel and important methodol-
ogy for identifying susceptible population to DILI.
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Introduction

Drug-induced liver injury (DILI) is the main adverse drug reaction and often life-threatening.
It is also a leading cause of drugs that never reach the market and being withdrawn after prod-
uct launch. The relatively low incidence and idiosyncratic nature of most cases of DILI suggest
that susceptibility to this injury might be determined by multiple genetic and acquired environ-
mental factors [1]. Pharmacogenomics, which aims to define the genetic determinants of drug
response, has been widely recommended as a potential approach of individualized drug ther-
apy to guide therapeutic strategies toward a better safety and efficacy profile [2]. The principal
goals of pharmacogenomics research on DILI are an elucidation of hepatotoxic mechanisms
and the prediction of DILI in individuals [3]. Nevertheless, acquired environmental factors
play an important role in individual metabolic phenotypes, modulating drug metabolism, effi-
cacy, and toxicity, such as age, sex, ethnicity, nutritional status, gut bacterial activities, disease,
and other drug use [4]. Such environmental complications will be limited the usefulness of pre-
diction of drug-induced responses that are based only on genomic differences [4-6].

Recognizing this important limitation of pharmacogenomics and the potential of acquired
environmental factors altering gene expressions [4], predose gene expression profiles have
recently been used to predict a subject’s response to potential drug intervention. Yun et al. have
recently devised a novel method that examines the innate gene expressions of biofluids and
biopsy tissues prior to drug treatment [7-10], which might identify susceptible population to
DILL This method has a major advantage as the fact that the derived gene expression profiles are
sensitive to both genomic and environmental influences. Moreover, a further crucial advantage
of this method is its openness to finding unexpected biomarkers as the global gene expression is
quantified simultaneously without prespecification of what those genes should be. However, one
critical problem existed in this method is that a number of inter-individual variation in predose
gene expression data before drug administration are not associated with drug responses, which
would further interfere with subsequent biomarkers screening for prediction the individual sus-
ceptibility to DILL In addition, if a large number of differentially expressed genes (DEGs) existed
in predose gene expression between the susceptible and resistant individuals, the validation of the
potential of these genes to predict susceptibility to DILI is time-consuming and expensive. Thus,
itis requiring a further screening method that could identify the drug responses-related DEGs in
predose gene expression profiles in an unbiased manner, which could discover the more reliable
biomarkers predictive of individual susceptibility to DILL

Knowing that what should be overcome, we decided to test the hypothesis that combination
of predose and postdose gene expression profiles of the susceptible and resistant individual ani-
mals contains sufficient information to allow the further screening of the DEGs in predose
data, which can identify candidate gene biomarkers related to drug responses prior to drug
treatment. Fig 1 shows the overall research strategy and experimental design for this study.
Briefly, to assess our hypothesis, we chose the commonly used analgesic APAP for this investi-
gation and compared the gene expression profiles in the blood collected prior to APAP admin-
istration with posterior to APAP treatment in susceptible and resistant Wistar rats. With this
approach, we could relate the intrinsic individual variation more specific to DILI, providing an
important clue for the determination of susceptible population to DILIL

Materials and Methods
Animals and ethics statement

Male Wistar rats (180—-200 g, Silaike Co. Shanghai, China) were housed in an environmentally
controlled room at 22 + 1°C with a relative humidity of 50% + 5%, and a light-dark cycle of 12
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Fig 1. The overall research strategy and experimental design for this study.

doi:10.1371/journal.pone.0141750.g001

h each. Food and water were provided ad libitum. All experiments involving laboratory animals
were approved and conducted in accordance to the guideline of the Institutional Animal Care
and Use Committee (IACUC) of Zhejiang University School of Medicine. Surgical procedures
were conducted under chloral hydrate (5% w/v, 0.6 mL/100 g body weight, Shanghai Qiang-
shun Chemical Reagent Co., Ltd., China) anesthesia, and all efforts were made to minimize
suffering.

Experimental design

To determine the intrinsic gene expression in blood for individual variation of APAP-induced
liver injury (AILI), we analyzed the gene expression profiles in the blood collected from indi-
vidual rats prior and posterior to APAP administration. In brief, the rats of first set were ran-
domly divided into two groups, control group (n = 5) and APAP group (n = 35). The predose
blood samples were collected via retro-orbital plexus from anesthetized animals into vacutai-
ner-ethylene diamine tetraacetic acid (EDTA) tubes (BD Diagnostic Systems Sparks, USA) for
RNA isolation. After a recovery period for 1 week, the rats were fasted for 12 h before once
orally administrated with APAP (TCI (Shanghai) Development Co., Ltd., China,

purity > 98%) at 1200 mg/kg in a 1% carboxymethyl cellulose sodium solution (China
National Pharmaceutical Group Co., China). After drug administration, the rats were fasted
for 2 h. The dose and treatment schedule were selected based on our preliminary experiments
that induced the liver injury adequately. The animals were anesthetized with chloral hydrate
(5% wi/v, 0.6 mL/100 g body weight) at 24 h after APAP administration. The postdose blood
samples were collected via inferior vena cava from anesthetized animals into vacutainer-EDTA
tubes for RNA isolation. The livers were immediately removed from each animal and the
excised samples from the left lateral liver lobe were used for histopathological examinations.
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Serum was collected from predose and postdose blood, and separated by centrifugation at 4000
rpm for 15 min at 4°C for biochemical analysis.

Then, based on ranking in the serum levels of alanine transaminase (ALT) after 24 h APAP
administration, five most susceptible (top 5 in ALT levels) and five most resistant rats (bottom
5 in ALT levels) were selected as two sub-groups that showed susceptibility or resistance to
AILI Moreover, microarray analysis was performed to the precollected blood samples of these
ten rats prior to APAP treatment, and the blood gene expressions in predose data were com-
pared between these two sub-groups to identify the DEGs for individual variation. Subse-
quently, we detected the postdose gene expression profiles of these ten rats that could further
screen the predose DEGs, which was aimed to relate intrinsic DEGs to drug responses for pre-
dicting the susceptibility of AILL The details of the further screening method were shown in
"Microarray data analysis" subsection. Finally, to investigate whether the DEGs obtained from
the further screening might identify the susceptible animals, we performed the real-time PCR
analysis to these genes with the blood samples precollected before APAP treatment from an
independent test set of 37 rats (two groups, control group (n = 5) and APAP group (n = 32)).
After a recovery period for 1 week, the rats were also treated with APAP as described above.
Serum and liver samples were collected 24 h after the APAP treatment for biochemical analysis
and histopathological examinations. The susceptibility to AILI based on the predicted results
from real-time PCR was compared through analysis of serum biochemistry and liver histopa-
thology after actual exposure to APAP. The details of prediction method were described in
"mRNA quantitation by quantitative reverse transcriptase polymerase chain reaction analysis"
subsection.

Histopathology

The livers were collected 24 h after the APAP administration with 10% formalin. Then the tis-
sues were embedded in paraffin, cut approximately 4 um thick, and stained with hematoxylin
and eosin (HE) for histological observation in a blind fashion.

Serum biochemical analysis

The parameters of serum samples, including ALT, aspartate aminotransferase (AST), alkaline
phosphatase (ALP), and total bilirubin (TBILI), were tested with a Roche COBASC 311 Auto-
matic Analyzer.

RNA extraction, purification, and microarray analysis

Within 24 h after collection, the total RNA was extracted from TRIZol Reagent (Invitrogen,
USA) after lysing red blood cells (TTANGEN, China). The RNA purification and quality assess-
ments were carried out as described previously [11]. Only RNA with RNA integrity numbers
greater than 7.0 and 28S rRNA/18S rRNA more than 0.7 was used for microarray analysis.
Affymetrix Rat Genome 230 2.0 chips were used according to manufacturer’s protocols as
described in our previous study (n =5) [11].

Microarray data analysis

Gene expression data from the Affymetrix Rat Genome 230 2.0 chips were loaded into Array-
Track® (http://www.fda.gov/ScienceResearch/BioinformaticsTools/ArrayTrack) for data man-
agement, analysis, visualization, and interpretation as previously described [11]. In brief, raw
microarray intensity data were normalized per chip to the same median intensity value of
1000. To exclude false DEGs due to low abundance transcripts, genes with normalized intensity
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less than 100 in all chips of predose gene expression data were excluded. The DEGs in predose
gene expression data were selected using the Welch's t-test within ArrayTrack™ with cutoff val-
ues of p < 0.05 and absolute fold change (FC) > 2 [12, 13]. For the further screening, the pre-
dose DEGs were divided into two categories based on the expression trends of the genes in the
two sub-groups before and after APAP administration. One category was FC (%) x FC(%) <
0, where FC(24) means the fold change of a single gene's expression in resistant subset prior
(R) and posterior (RA) to APAP administration; FC(%‘) indicated the fold change of a single
gene's expression in susceptible subset before (S) and after (SA) APAP administration. Taken
together, FC (%) x FC (%) < 0 reflected an opposite expression trend of a gene in the two sub-
groups before and after APAP administration, i.e., the gene was upregulated (or downregu-
lated) in susceptible group and downregulated (or upregulated) in resistant group after APAP
treatment, compared with predose gene expression data. The other category was FC(%4) x
FC(%) > 0, which suggested a consistent expression trend of a gene in the two sub-groups
before and after APAP administration, i.e., the gene was both upregulated or downregulated in
susceptible and resistant groups after APAP treatment, compared with predose gene expres-
sion data. At last, these two sets of the genes were sorted with the absolute values of the change
in descending order with two algorithms. When FC(24) x FC(%) < 0, we calculated the abso-
lute values of FC(*4) multiplied by FC(%); when FC(24) x FC(%2) > 0, we counted the values
of FC(*4) divided by FC(%) or FC(*) divided by FC(%), ensuring that the larger values
between FC(24) and FC (%) to be the numerator. Top five genes in each and total ten genes in
these two-trend sets were chosen for further investigation. The entire set of microarray data
was deposited in Gene Expression Omnibus (GEO) database with the number of GSE68065.

mRNA quantitation by quantitative reverse transcriptase polymerase
chain reaction analysis

To investigate whether the top 10 DEGs obtained from further screening might identify the
susceptible animals, real-time quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR) was conducted with the blood samples precollected before APAP treatment from
an independent set of 37 rats (two groups, control group (n = 5) and APAP group (n = 32)).
With the genes selected from further screening, 8 rats with the lowest expression (the fourth
quartile of total 32) and 8 rats with highest expression (the first quartile of total 32 animals)
were allocated to predicted susceptible and resistant groups based on the results of microarray
analysis and the risk allocation strategy described previously [14]. The susceptibility to AILI
was compared between these two groups through analysis of serum biochemistry and histo-
pathological examinations after actual exposure to APAP. The qRT-PCR reactions were carried
out as previously described [11, 15]. The sequences for the primer pairs used are listed in Sup-
plementary S1 Table. qRT-PCR data for each gene product were normalized to the levels of
18S rRNA transcript. The ratio of the target gene to the housekeeping gene (18S rRNA) was
calculated and expressed as 2"*“". This ratio was then used to evaluate the expression level of
the target gene of each animal. Based on a previous study [9], to determine the fold changes in
expressions among animals, the normalized gene expression of the target genes was divided by
the normalized expression of the same gene in the sample with the lowest level of the normal-
ized gene expression of the target genes, expressed as 22", In addition, the expression levels
of the candidate genes were also detected in liver tissues by qRT-PCR after exposure to APAP.
The data were normalized to the levels of 185 rRNA transcript and expressed as 274",

PLOS ONE | DOI:10.1371/journal.pone.0141750 October 29, 2015 5/17



@'PLOS ‘ ONE

Susceptibility to Acetaminophen-Induced Liver Injury

Statistical analyses

Statistical differences between susceptible and resistant groups were determined by one-way
ANOVA, followed by Student’s t-test. For all comparisons, a p value < 0.05 was considered to
be statistically significant.

Results
Individual difference in the liver injury after APAP administration

In order to predict the individual susceptibility to AILI, a representative outbred strain Wistar
rat was used in this study. As expected, severe liver injury was induced in a part of rats after
APAP administration, and inter-subject variation in AILI was observed as evidenced by the dif-
ferent extent of elevation in the levels of serum ALT, AST, TBILIL, and ALP parameters (Fig
2A-2D). On the basis of the ranking in serum ALT, APAP-treated rats were divided into two
sub-groups, susceptible (top five in ALT levels) and resistant groups (bottom five in ALT lev-
els). As shown in Fig 2E-2H, no significance was detected among control, susceptible and resis-
tant groups in these serum parameters before APAP treatment, but markedly higher levels of
serum ALT, AST, and TBILI were observed in the susceptible group compared with control
group after APAP treatment, and significantly higher levels of ALT and AST were noted in the
susceptible group compared with resistant group posterior to APAP administration. The
results of histological examinations such as necrosis and inflammatory cell infiltration in the
livers of all five susceptible rats also supported the results obtained from the serum biochemical
assays, whereas only hydropic degeneration of hepatocytes was observed in the livers of the five
resistant rats (Fig 3).

Gene expression analysis

We performed microarray analysis using the blood samples collected before and after APAP
treatment from the five most susceptible and five most resistant rats. First, the predose gene
expressions between these two sub-groups were compared to identify the DEGs for individual
variation before drug administration. As a results, 158 genes were identified to be statistically
different between the two sub-groups (p < 0.05 and fold change > 2). To further relate these
158 DEGs to drug responses, we screened them with postdose gene expression data, which was
based on the expression trends of these genes in the two sub-groups before and after APAP
treatment as described in “Materials and Methods” section. Briefly, if a gene from the 158
DEGs has the opposite expression trend in susceptible and resistant groups after APAP treat-
ment, it would be more likely to be a candidate biomarker for prediction the susceptibility to
AILL such as downregulated in susceptible group and upregulated in resistant group after
APAP treatment compared with the predose expression data. Simultaneously, if a gene from
the 158 DEGs has the consistent expression trend in susceptible and resistant groups after
APAP treatment and large difference was observed in the fold changes in these two sub-groups,
it would be also more likely to be a candidate biomarker for prediction the susceptibility to
AILL Thus, we used two algorithms to calculate the changes of these two situations as
described in “Materials and Methods” section. After ranking, top five genes in each trend set
with larger absolute values in the algorithms were chosen as candidate predose biomarkers for
detecting individuals susceptibility to AILI, i.e., total ten genes in these two-trend sets. Among
them, My17, Bmp2, Mmp12, Gprinl, and Sox11 had opposite expression trend in susceptible
and resistant groups after APAP treatments compared with predose data, whereas Rpgrip1,
Hrg, Incenp, Sbfl, and S100b had the consistent expression trend in these two sub-groups
(Table 1).
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Fig 2. Serum biochemical analysis prior and posterior to APAP administration. (A-D) The scatter plots of ALT (A), AST (B), ALP (C), and TBILI (D)
levels of each animal in the first set. (E-H) Comparison of the levels of ALT (E), AST (F), ALP (G), and TBILI (H) was performed in control, susceptible, and
resistant sub-groups before and after APAP treatment in the first set (n = 5). Values are represented as mean + SD. * p <0.05, ** p < 0.01 compared with
vehicle control. # p < 0.05 compared with susceptible sub-group. Con, control group; Sus, susceptible sub-group; Res, resistant sub-group.

doi:10.1371/journal.pone.0141750.9002

Prediction of the individuals susceptibility to AlLI by real-time PCR
analysis

Finally, to investigate whether the DEGs obtained from further screening might identify the
susceptible animals, we conducted the real-time PCR analysis with the blood samples precol-
lected before APAP treatment from an independent set of 37 rats (two groups, control group
(n=5)and APAP group (n = 32)). With the 10 genes selected from further screening, the
expression levels of four genes had a inter-individual variation in APAP group before drug
treatment (Fig 4). To evaluate whether the individual expression levels of these four genes,
Incenp, Rpgripl, Mmp12, and Sbfl, might predict the susceptible individuals to AILI indeed,
the rats were subdivided to four quartiles based on the predose blood gene expression levels.
The 8 rats had lowest gene expression levels of 32 rats, was predicted to susceptible group (first
quartile), and the 8 rats had highest gene expression levels of 32 rats, was predicted to resistant
group (fourth quartile), which was based on the results of the first set.

Then, by measuring the levels of serum biochemical parameters after APAP treatment, the
actual susceptibility to AILI was determined. As a result, the 8 predicted susceptible rats with
lower expression levels in the two genes, Incenp and Rpgrip1, showed significant higher ALT,
AST and/or TBILI levels than predicted resistant animals, while for the other two genes,
Mmp12 and Sbfl, the trend was the same, but no significant differences were detected between
these two predicted sub-groups (Fig 5, the data of ALP were not shown, because there were no
difference detected between the two sub-groups). The results of histopathological examinations
also showed that necrosis and inflammatory cell infiltration were detected in all the rats of pre-
dicted susceptible group, whereas hydropic degeneration of hepatocytes were observed in all
the rats of predicted resistant group (Fig 6). Furthermore, based on the levels of serum bio-
chemical parameters, ALT, AST, ALP, and TBILI, five most susceptible and the five most resis-
tant rats were selected, respectively. As shown in Fig 7, the expression levels of the four genes
showed differences between the two sub-groups in the selected rats based on the serum
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Fig 3. Representative images of rat livers after APAP administration with histopathological examinations of HE stain. The rats in control group
showed normal morphology of liver. Susceptible group exhibited massive hepatic injury including necrosis and inflammatory cells infiltration as arrows

indicated, whereas the rat in resistant group showed hydropic degeneration of hepatocytes (arrow). The magnification used was 400x. The scale bar is
20 pm.

doi:10.1371/journal.pone.0141750.g003
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Table 1. The expressions of the 10 genes in predose and postdose gene expression profiles which were identified as potential gene biomarkers to
distinguish between susceptible and resistant rats to AILI.

Gene_id_mfr Genebankacc Gene Locusid FC(X) FC(%) Absolute values of Values of FC(&)+FC(%4) or
name FC(24)xFC () FC(54)+FC (&4)

1371315_at AA891242 Myl7 289759 5.22 -3.05 15.92

1368945_at NM_017178 Bmp2 29373 1.19 -7.08 8.43

1368530_at NM_053963 Mmp12 117033  -1.61 4.81 7.74

1375050_at Bl294558 Gprin1 364676 -1.28 5.63 7.21

1387275_at NM_053349 Sox11 84046 1.61 -4.36 7.02

1375407 _at BG374229 Rpgrip1 305850 -5.95 -1.29 4.61

1368583_a_at NM_133428 Hrg 171016  1.03 3.46 3.36

1386903_at NM_013191 S100b 25742 3.25 1.02 3.19

1378669_at Al706871 Incenp 293733  1.11 3.40 3.06

1377174 _at AW434982 Sbf1 300147  1.02 2.99 2.93

doi:10.1371/journal.pone.0141750.1001

biochemical parameters, and the susceptible rats had the lower gene expression levels than
resistant rats, especially selected by ALT and/or AST in Incenp and Rpgrip1, which was in good
agreement with microarray and predicted results.

Additionally, the expression levels of these four genes in liver tissues were also detected in
the 5 most resistant and 5 most susceptible rats selected by ALT levels in the new set animals
after APAP administration. As the results, the four genes (Incenp, Rpgripl, Mmp12, and SbfI)
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Fig 4. The real-time PCR analysis of the gene expression of the selected blood genes prior to APAP administration in a new test set of rats. (A-D)
Scatter plots for the individual expression levels of Incenp (A), Rpgrip1 (B), Mmp12 (C), and Sbf1(D) of the new set of 32 rats in APAP group.

doi:10.1371/journal.pone.0141750.9004
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resistant group. (A) Incenp, (B) Rpgrip1, (C) Mmp12, and (D) Sbf1. Values are represented as mean = SD. * p < 0.05, ** p < 0.01 compared with resistant

group.
doi:10.1371/journal.pone.0141750.9005

were all higher expressed in the livers of resistant rats compared with susceptible animals after
drug exposure (Fig 8, although no significance was detected in Rpgrip1), which had the same

trend as blood samples before drug treatment. It indicated that these genes were related to the
susceptibility of AILL.

Discussion

As DILI is a critical problem in the world with new agents added every year, there is increasing
researches aimed at better understanding the mechanisms and individual susceptibility of DILI
[16]. The difference of inter-subject susceptibility is likely to arise from complex interactions
involved in environmental and genetic factors. It demonstrated that predose global gene
expression profiles of biofluids reflect inter-subject variation with respect to both genomic and
environmental influences, and hepatotoxicants can produce compound-specific changes in
postdose transcriptome of peripheral blood [17]. Thus, in this study, we combined the predose
and postdose gene expression profiles of blood samples to further screen the DEGs in predose
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Fig 6. Representative images of histopathological examinations of the rat livers between predicted susceptible and predicted resistant groups
after APAP administration in the new set of 32 rats with HE stain. Similar to the results of first set, the rats in control group showed normal appearance of
liver, whereas predicted susceptible group exhibited serious liver injury including necrosis and massive inflammatory cells infiltration as arrows indicated, and
the rat in predicted resistant group showed hydropic degeneration of hepatocytes (arrows). The magnification used was 400x. The scale bar is 20 ym.

doi:10.1371/journal.pone.0141750.9g006

data between susceptible and resistant rats to AILI, which aimed to relate the intrinsic individ-
ual variation more specific to AILI and identify more reliable gene biomarkers for prediction
individuals susceptibility prior to drug treatment. Although a few studies suggested that rats
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Fig 7. The expression levels of Incenp, Rpgrip1, Mmp12, and Sbf1 between the five most susceptible rats and the five most resistant rats in
precollected blood samples prior to APAP administration in the new set of 32 rats. The five most susceptible rats and the five most resistant rats were
selected based on ranking in the ALT, AST, ALP, and TBILI levels after APAP treatment, respectively. The expression levels of individual animals of these
genes were calculated as described above and in "Materials and methods". (A) Incenp, (B) Rpgrip1, (C) Mmp12, and (D) Sbf1. Values are represented as
mean + SD. * p <0.05, ** p < 0.01 compared with susceptible group.

doi:10.1371/journal.pone.0141750.g007
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Fig 8. The expression levels of Incenp, Rpgrip1, Mmp12, and Sbf1 in the liver tissues of the 5 most resistant and 5 most susceptible rats after
APAP administration in the new set of 32 animals. The 5 most resistant and 5 most susceptible rats were selected by ALT levels. (A) Incenp, (B) Rpgrip1,
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are represented as the mean values. * p < 0.05, ** p <0.01 compared with susceptible group.

doi:10.1371/journal.pone.0141750.9008

are much more resistant to APAP hepatotoxicity than mice and are not a valid model for
mechanistic studies [18-20], many researchers have continued to use this species for exploring
the potentially hepatoprotective compounds and the mechanisms of AILI in recent years [21-
25]. In this study, rats were chosen as model animals rather than mice since they could provide
enough blood for both transcriptomics and biochemistry analyses in the predose and postdose

periods. After further validation, we suggested that the expression levels of Incenp and Rpgrip1
in the blood might identify the susceptible individuals to AILI before actual exposure to APAP.
APAP is a drug caused approximately 50% cases of acute liver failure in the United States
and Great Britain [26], thus, it was chosen as a model drug in this study. Moreover, inter-indi-
vidual variation in response to APAP is a regulatory concern and a hot topic in DILI. Recently,
Liu et al. identified that betaine-homocysteine methyltransferase 2 can affect susceptibility to

AILI in mice using an integrative genetic, transcriptional, and metabolomic analysis in multiple
inbred mouse strains [27]. Harrill et al. also demonstrated that utilization of inbred mouse
strains is a valuable tool for evaluating individuals susceptibility to AILI by genetic polymor-
phisms analysis or global gene expression profiles [28, 29]. Welch et al. suggested that proteo-
mic analysis can identify the potential susceptibility factors in AILI [30]. However, these
studies have examined the influential factors of inter-subject susceptibility to AILI after drug
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treatment, and therefore, possibly many indicated biomarkers could be the result of secondary
responses to pathophysiological changes by APAP. The ability of systems biology approaches
to predict susceptibility to DILI prior to drug treatment has been demonstrated both in human
and rodents in the recently studies. For instance, urine metabolite profiles obtained before the
start of treatment were sufficient to distinguish which of the subjects would develop liver injury
after given a single toxic-threshold dose of APAP in outbred strain rats [31], whereas urine
metabolite profiles obtained shortly after the start of APAP treatment in maximum recom-
mended daily dose, but prior to ALT elevation, could distinguish responders from nonre-
sponders in human [32]; Yun et al. have recently devised a novel method that examines the
innate gene expressions of biofluids and biopsy tissues prior to drug treatment to predict the
susceptibility of DILIL including AILI [7-10]. Particularly, they identified protein kinase A
inhibitor o as a potential biomarkers for screening the susceptibility of AILI [10]. Nevertheless,
one critical disadvantage existed in these studies is that a number of inter-individual variation
in predose data before drug treatment are not associated with drug responses, which would fur-
ther interfere with subsequent biomarkers screening for prediction the individual susceptibility
to DILL Besides, the large number of inter-individual variation existed in predose data would
hinder the efficiency of further validation. Thus, in this study, we demonstrated that combina-
tion of predose and postdose gene expression profiles contains sufficient information to allow
the further screening of the inter-individual variation in predose data, which deeply considered
the changes of signal gene's expression both before and after drug treatment in susceptible and
resistant animals and could identify more reliable biomarkers related to drug responses to pre-
dict individuals susceptibility of AILL

In this study, 158 genes were found to be statistically different in their expression levels
between susceptible and resistant sub-groups prior to APAP administration. After further
screening with postdose gene expression data by the two formulas mentioned above, 10 genes
would be the more reliable candidate biomarkers. Of these genes, the expression of Incenp and
Rpgrip1 was verified to closely relate to individual susceptibility to AILI with an independent
set of animals. Incenp encodes inner centromere protein. The latter forming a complex with
Aurora-B and Survivin, regulates the stability of bipolar spindle-kinetochore attachment in
mitosis and chromosome segregation and cytokinesis [33]. Overexpression of Incenp would be
suggestive of an increase in a cell population with chromosomal instability [34]. Downregula-
tion of Incenp was observed in the mice spleens after APAP treatment, indicating anti-prolifer-
ative effects in immune cells [35], whereas Incenp-immunoreactive cells were significantly
increased in livers after APAP treatment [34]. In this study, the expression levels of Incenp
were higher in resistant rats than those of susceptible rats in predose data. In this regard, we
inferred that rats with innately higher expression of Incenp might be resistant to AILI, because
these rats may have more possibility to induce cell proliferation and tissue regeneration. Sup-
porting this in part, several proteins involved in cell proliferation and tissue regeneration were
more highly expressed in the livers of resistant mice compared with susceptible mice in AILI
after APAP treatment [30]. The expression of Rpgrip1 in blood was also observed to be innately
higher in the resistant rats to AILL Rpgripl was discovered in the retina, but multiple splice
variants and protein isoforms were found in various tissues in the rodents and human, includ-
ing liver [36, 37]. The changes of Rpgripl expression are associated with tissue growth factors
[37]. Thus, we speculated that increased resistance to AILI in the rats with innately higher
expression of Rpgripl might be the result of enhancing tissue growth ability to APAP-induced
tissue damages.

Although there was no significant difference in the results of Mmp12 and Sbfl in the valida-
tion experiments between two sub-groups, the expression of Mmp12 and SbfI in blood was
also detected to be innately higher in the resistant rats to AILL. Mmp12 encodes a protein of the
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matrix metalloproteinase family which is involved in normal physiological processes as repro-
duction and tissue remodeling, as well as in disease processes [38]. Increases in MMP-9, -10,
and -12 proteins were observed in liver after treatment with hepatotoxin dimethylnitrosamine,
which were associated with tissue repair, metastasis, and tissue remodeling [38]. Other MMPs
also increased in the liver in response to carbon tetrachloride (CCl,) administration, relating to
inflammatory reactions [39], as well as APAP treatment, which were associated with hepatocel-
lular damage and hepatic microcirculatory dysfunction [40]. Moreover, MMP12 haplotype
may play a critical role in susceptibility to severe airway and lung injury in children with
chronic bronchitis and recurrent pneumonia [41]. Therefore, we inferred that increased sus-
ceptibility to AILI in the rats with innately lower expression of Mmp12 might be the result of
lacking tissue repair and remodeling ability to APAP-induced tissue damages. SbfI encodes
SET binding factor 1 which is a pseudo-phosphatase related to the myotubularin family of dual
specificity phosphatases. Although there were no reports about the relationship between SbfI
and liver, this gene has been implicated in cellular growth and differentiation [42]. In this
regard, innately higher expression of SbfI in resistant rats might be increased the tolerance to
AILI though cellular growth pathway.

Taken together, these four gene biomarkers were all closely related to cell proliferation
and tissue repair functions, which were innately higher expressed in resistant rats to AILL
Moreover, the expression levels of these four genes were all higher expressed in the livers of
resistant rats compared with susceptible animals after APAP treatment, indicating they were
indeed related to the susceptibility of AILI. Thus, we believed that rats with higher ability of
cell proliferation and tissue repair prior to drug treatment might be more likely resistant to
AILI Consistently, it has been demonstrated that the time of onset of tissue repair deter-
mines the extent of liver injury, and inter-individual differences in the magnitude of tissue
repair may contribute significantly to individual susceptibility to DILI [43]. To clarify the
results of this study further, how inter-individual differences in the magnitude of tissue
repair influence the individual susceptibility to AILI should be elucidated such as in vivo
siRNA experiments to these genes. Additionally, there was a situation should be indicated.
Some rats with high expression in one or more than one of the four genes prior to drug treat-
ment but exhibited mild or moderate susceptibility to AILI (data not shown). This might be
from the contribution of other unidentified factors, which also observed in the susceptibility
of CCl,-induced hepatotoxicity [9].

Conclusion

In this study, we first proposed a method for the further screening of the intrinsic individual
variation in the predose gene expression profiles, which can identify more reliable candidate
biomarkers related to drug responses for detecting individuals susceptibility before drug
treatment, and this method is also suitable to other system biological approaches, such as
proteomics and metabonomics. More importantly, although further studies should be con-
ducted with other hepatotoxicants or species to validate this approach, this study has shown
the potential applicability of combination of blood gene expression prior and posterior to
drug treatment as a novel and practical method to discover reliable biomarkers for prediction
the susceptible population to DILI. However, the contribution of drug metabolism to the sus-
ceptibility of AILI was not addressed in this study, such as the individual differences in the
formation of reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) by cytochrome
P450 enzymes. The excess NAPQI is a leading cause of AILI. Despite this, our results suggest
that further studies are needed on the functions of the genes controlling tissue repair in the
susceptibility of AILL."
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