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Abstract: The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of
ruminant nutrition research for many years. However, the overwhelming majority of investigations
have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant
nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources
for the host. This review summarizes the current findings on AF and, most importantly, discusses
their new application potentials in modern ruminant nutrition. Available data suggest AF can be
applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest
for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain
feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of
methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and
animal performance, obstacles in large-scale AF cultivation and applicable administration options
need to be overcome. At feedstuff level, silage production may benefit from the application of fungal
enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation
from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding
and future research efforts are called for to harness these potentials.

Keywords: additive; anaerobic digestion; cattle; enzyme; anaerobic fungi; herbivore; Neocalli-
mastigomycota; rumen; silage

1. Introduction

The metabolic processes in the rumen are of crucial importance in ruminant nutrition
and decisively influence the host supply with energy and valuable nutrients. Hence, the
rumen microbiota is of key interest in this interdisciplinary research field. Although it is
common consensus that the ruminal ecosystem comprises various distinct microbial groups,
i.e., bacteria, protozoa, archaea, fungi, and viruses [1], the myriad of microbiota-related
studies in ruminant nutrition, however, are predominantly focusing on bacteria. Whilst
also the domains archaea and protozoa gained attention in terms of methane emissions or
intra-ruminal nitrogen (N) recycling [2,3], AF (phylum Neocallimastigomycota) have yet
been widely neglected in the wider ruminant nutrition research. However, these obligate
anaerobes are commensals along the gastrointestinal tract of ruminants, being mainly
present in the forestomach [4], and truly vital for sufficient fiber degradation by means of
expressing various carbohydrate-active enzymes (CAZymes), which can be organized in
cellulosomes, as well as physically penetrating plant material via rhizoidal systems [5–7].

In fact, AF and their capabilities are highly recognized among microbiologists and
comprehensive scientific efforts have been made regarding their taxonomy, lifecycle, and
metabolic characterization, which recently was excellently summarized by Hess et al. [5].
Notwithstanding, AF appear to be equally relevant to ruminant nutritionists, who continu-
ally seek for strategies to optimize ruminal fiber degradation, a process in which AF are
indeed substantially involved [5,7]. Likewise, this microbial clade seems significant for
further aspects related to modern livestock feeding. Therefore, by portraying the current

J. Fungi 2021, 7, 200. https://doi.org/10.3390/jof7030200 https://www.mdpi.com/journal/jof

https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0001-5709-0500
https://doi.org/10.3390/jof7030200
https://doi.org/10.3390/jof7030200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jof7030200
https://www.mdpi.com/journal/jof
https://www.mdpi.com/2309-608X/7/3/200?type=check_update&version=1


J. Fungi 2021, 7, 200 2 of 15

perception of AF in ruminant nutrition and outlining their potential in this research field,
this review extends the perspective on AF and aims to stimulate scientific discourse on
their relevance in modern ruminant feeding as well as sensitize ruminant scientists for
these hidden champions in the gut. Since Hess et al. [5] provide an extensive status quo on
AF live cycle and taxonomy, the present review will not cover those aspects, albeit a new
fungal taxon has again been isolated in the meantime [8]. Similarly, the reader is further
encouraged to consult the article of Vinzelj et al. [9] for general basics on AF as well as
thorough considerations about their cultivation.

2. Current Perception of Anaerobic Fungi in Ruminant Nutrition

In terms of microbiota-related research, the field of ruminant nutrition is doing tremen-
dous efforts to understand how the gut microbiota can be shaped by feeding to optimize
rumen fermentation, nutrient provision to the host, as well as gut health and ultimately
prevent diseases along with improving animal performance. Thereby, major focus is placed
on the rumen, i.e., the gut segment that harbors a highly complex microbial community
enabling the energetic utilization of structural carbohydrates as well as providing key
nutrients, such as protein and vitamins, to the host animal [1,10]. In the last decades, the
hindgut microbiota also became a subject of increasing interest for ruminant nutritionists,
particularly in relation to high-grain feeding and associated microbial dysbiosis [11]. With
few exceptions and irrespective of gut segment investigated, bacteria represent the target
domain in nutritional studies with ruminants, as exemplified by the survey of Hender-
son et al. [12], who investigated the influence of diet on the ruminal microbiota composition
on a global scale, exploring bacteria, archaea, and protozoa. Anaerobic fungi, however,
have not been included in this specific study and although AF have been introduced
as potent fiber degraders in relevant ruminant nutrition journals very early [7], these
microorganisms remain mostly unconsidered so far [12–16]. Therefore, including AF in
future ruminant nutrition studies should be the logical outcome, as otherwise, a holistic
capture of the rumen microbiota and its implications on nutrition seem hardly feasible. As
a complemental note, the authors like to direct additional awareness to AF in the hindgut,
which may be more vital for equines at first sight. However, a considerable number of
active AF is present in the ruminant’s lower gut [4,17] and since concentrate-rich feeding
can shift substrate degradation from the rumen to the hindgut [18], it would be irrational
to disregard the fungal population in this part of the gastrointestinal tract.

Interestingly, the rumen simulation technique of Czerkawski and Breckenridge [19]
constitutes an in vitro system suitable for long-term incubation that is widespread in rumi-
nant nutrition and may be an excellent option for studying rumen AF in all its aspects. In
fact, this system has already been used in the past to explore these microorganisms [20–22]
and due to its continuous flow of the liquid fraction was actually deemed a better approach
for investigating rumen AF than batch cultures [20].

2.1. Ruminal Fiber Degradation

It is well established that AF contribute significantly to ruminal fiber degradation by
attacking plant cell walls in two ways, i.e., enzymatically, and physically [5–7]. Remarkably,
recent research showed the affinity of fungal CAZymes for recalcitrant fiber [23], which
may explain the particular significance of AF when feeding low-quality forage to ruminants.
The authors, however, will not review explicitly on the enzymatic repertoire of AF as fungal
CAZymes and the associated cellulosomes have been the subject of earlier reviews [5,24]
and a current list of all fungal CAZymes discovered so far is provided by Hess et al. [5].

The synergistic activity of CAZymes, either individually or organized as cellulosomes,
and mechanical penetration of plant cell wall by fungal hyphae results in an enhanced
cleavage of fibrous structures by AF [5], which will also increase the access for other
rumen cellulolytics and likely also proteolytics [2]. Indeed, cell wall degradation by AF
can be higher than by bacteria under certain in vitro conditions [25,26] but quantifying
the exact fungal contribution to fiber breakdown in the rumen is difficult. However,
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several in vitro and in vivo studies demonstrated the association between AF and an
improved fiber degradability [25–28], which is also suggested by recent in vitro data from
Ma et al. [26]. These authors investigated the impact of co-culturing methanogens with
either AF or bacteria on in vitro degradation of rice and wheat straw, observing higher
dry matter and fiber degradation in the presence of AF, the extent of which was similar to
lignocellulose breakdown by whole ruminal content. Interestingly, acetate production was
even higher in the co-occurrence of AF and methanogens than for whole ruminal content
or methanogens and bacteria [26], indicating a pivotal involvement of AF in providing this
milk fat precursor [29] to the host as also evidenced by others [30] and the generally high
acetate formation of AF [31].

Apart from fiber degradation taking place in the rumen, about 5 to 10% of microbial
carbohydrate degradation in dairy cows is assigned to the hindgut [11], meaning the
microbiota at this intestinal site, and in this way also AF, to be surely relevant regarding
total tract fiber degradation in ruminants. As mentioned before, mainly bacteria tended to
be routinely studied when investigating the rumen and hindgut microbiota under different
feeding regimes [12–16]. Thus, in order to understand better the complex mechanisms of
fiber utilization in the gut of ruminants, AF should be added to the list of microbial targets.

2.2. High-Grain Feeding

High-grain-induced gut disorders and their implications on animal health constitute
one major subject of intensive ruminant production systems [32] and various studies
have analyzed the effects on the microbiota in both the rumen and the hindgut [11,32–34].
Anaerobic fungi, however, have not been included in the majority of these investigations.
Available data predominantly rest upon quantitative real-time PCR and indicate that total
fungal abundances in general seem to diminish with increasing starch content of the
diet [35,36], which matches the lower ruminal fiber degradation that comes along with
such feeding regimes [37]. However, when looking at the fungal composition, a more
sophisticated impact on AF by diet becomes apparent. As found for bacteria [34], also
the AF richness and diversity in the rumen declines in response to high-grain feeding
of dairy cows [36,38,39], which was also observed in the rumen of goats switched from
low to high-grain [40]. However, not all taxa are affected negatively [36,41,42] and certain
ones indeed proliferate with concentrate-rich feeding, i.e., Neocallimastix, Piromyces, and
Feramyces [36,42]. In consequence, these AF could be of specific interest regarding high-
yielding dairy cows, which are typically fed high-grain diets during lactation and frequently
suffer from impaired ruminal fiber degradation [37]. Thus, complementing AF in future
studies on high-grain feeding will provide a more integrated view on alterations in the
gut microbiota, which in turn could evince alternative strategies to alleviate gut dysbiosis
and its consequences on ruminants. In addition, since parity has recently been recognized
as a biological factor that determines the ruminant’s resilience against grain-induced gut
dysbiosis and associated health disorders [32,43], it is worth an additional remark that the
ruminal AF community seems to be not affected by parity of dairy cows receiving low- or
high-grain diets [39].

So far, the investigations on the diversity of fungal community in ruminant nutrition
studies were based on sequencing the internal transcribed spacer 1 (ITS1) region, which
is still commonly accepted but will likely be outcompeted by the future use of the large
28S rRNA subunit—solely or in combination with ITS1 [5,31,44]. This new barcoding locus
shows a similar resolution as ITS1 [45] but is devoid of its drawbacks, such as a high het-
erogeneity within ITS1 sequence clones [31]. Consequently, prospective ruminant nutrition
studies can directly benefit from those refinements in phylogenetic marker candidates and
hence improve the knowledge acquisition of coming research.

2.3. Emission Reduction

Apart from high-grain feeding, reducing the environmental footprint of dairy and
meat production represents a further important subject of ruminant nutrition. Indeed, a
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sustainable agriculture is of high public interest and in that sense equally relevant to rumi-
nant nutritionists, who insistently pursue to reduce livestock-related emissions, primarily
methane, by the use of diverse dietary strategies. Thereby, options such as chemical in-
hibitors, nitrate, or lipids have been investigated concerning their effect on rumen methano-
genesis, fermentation, and microbiota with mainly archaea and protozoa as the main
targets of these methane mitigation concepts [3]. Despite this sound strategy with by all
means promising outcomes of 20–40% methane reduction [46], AF may constitute a further
facet for solving this challenge since methanogens and AF live in a close relationship [47]
as demonstrated by substantial cross-feeding of hydrogen and other metabolites [47–49].
Likewise, the fungal CAZyme expression and cell wall-degrading activity are increased
when culturing AF with methanogens [49–51], indicating a beneficial relation between
these microbial groups, which is confirmed by higher archaeal methane production from
straw when co-cultured with rumen AF than with rumen bacteria [26]. Moreover, methane
mitigation of up to 23% by grape seed meal supplementation was earlier associated with
decreased total fungal abundance rather than directly with methanogens [22]. Thus, it
seems indeed worth to have a closer look at AF regarding their enmeshment in ruminal
methanogenesis, particularly during dietary methane mitigation treatments.

In this context of livestock-related emissions, AF have previously attracted the atten-
tion of ruminant nutritionists regarding their participation in intra-ruminal N recycling and
the associated environmental pollution by N compounds [2]. Certain fungal strains, such
as Neocallimastix frontalis PNK2, possess high extracellular proteolytic activities [52] and
may contribute to an inefficient N utilization by ruminants. In contrast, AF administration
enhanced N retention in growing buffaloes [28] and the overall proteolytic capacity of AF
seems limited [2,26], meaning a definite statement in this regard seems yet not possible.

2.4. Nutrient Source

In addition to the better understanding of their function in the microbial gut commu-
nity, AF also matter as a protein source for the ruminant. The large majority of crude protein
absorbed in the duodenum originates from rumen microbes [53] and AF can represent up
to 20% of this microbial biomass [17], thus being surely relevant in terms of amino acid
(AA) provision to the host animal. Again, nutritionists have so far focused on microbial
protein derived from either rumen bacteria or protozoa [53,54]. In fact, rumen AF possess a
highly favorable AA profile and fungal AA were highly digestible for sheep, i.e., showing
90–98% true AA digestibility [55,56]. In spite of such values, extensive research is still
needed assessing the actual quantity of fungal protein reaching the small intestine as AF
change in abundance under different feeding regimes [36] or may escape sequestration by
lasting in the rumen fiber mat.

Apart from constituting a protein source, AF such as Orpinomyces sp. are also substan-
tially involved in the ruminal biohydrogenation of linoleic acid [57,58], thus producing
conjugated linoleic acids that are absorbed by the host animal. These specific fatty acids
can exert diverse health benefits on the ruminant, e.g., a reduced prevalence for hyper-
ketonemia during early lactation as well as modulatory influences on bovine immune
cells [59,60], and are further discussed to have anti-carcinogenic effects in humans that
consume ruminant-derived products [61]. Consequently, AF significantly improve the
nutrient profile for the host, which should be considered when assessing the nutrient
supply of ruminants. Whether rumen AF can also synthesize provitamins and vitamins, as
has long been known for yeasts and other fungi [62], remains the subject of future research.

2.5. Feedstuffs

Microorganisms play a central role in animal feed science, either by being a major part
of the feedstuff, e.g., in brewers’ grains, or by their metabolic activity that is capitalized
on conserving feedstuffs for ruminants. Silages constitute a main forage source fed to
ruminants in all production systems worldwide and microbial additives are frequently
applied during ensiling to improve lactic acid fermentation in the silo [63]. Due to the
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outstanding relevance of silages in ruminant nutrition and the yet untapped potential of AF
in this forage conservation method, this field will be elucidated in a separate chapter below.

Likewise, probiotic feed supplements are commonly administered to improve the
performance and health of ruminants, particularly since concerns have arisen about the
use of antibiotic growth promoters [64]. Supplying exogenous AF to ruminants has been
tested sparsely with indeed promising outcomes, and the current applicability of AF as
microbial feed additives with its related obstacles will be thoroughly scrutinized in the
following chapter.

3. Anaerobic Fungi as Feed Additives for Ruminants

Beneficial effects of the probiotic AF strain Piromyces sp. FNG5 on ruminal fermenta-
tion and performance of buffaloes fed wheat straw and concentrate have been demonstrated
by Paul et al. [28]. These authors observed improved ruminal degradation of fiber fractions
and organic matter, as well as a higher N retention and increased total tract digestibilities
of organic matter and fiber fractions in AF-treated ruminants, which was likely caused by
higher activities of fungal cell wall-degrading enzymes [28]. As outlined in Table 1, also
others showed enhanced growth and milk performance of calves and lactating buffaloes,
respectively, as well as higher ruminal fiber degradability in response to administration of
different AF strains [65–68]. Hereby, it is notable that most of these applied fungal strains
were isolated from non-domesticated ruminants, suggesting that wild herbivores may be
valuable reservoirs for future probiotic candidates.

Despite such indeed auspicious findings about treatments with AF cultures, the ad-
ministration form needs to be considered, too, as it is decisive for the practical meaning
and feasibility. The AF were introduced into the rumen on a daily or occasionally on a
weekly basis as fresh cultures using oral drenching [65–67], the rumen cannula [28,68], or
by immediately feeding fresh fungal cultures mixed with concentrate [28]. Such labori-
ous approaches are limited to academic purposes only but certainly not implementable
in work routines of ruminant livestock production. Due to the resilience of the rumen
microbiota against exogenously added microorganisms [69], a one-off drenching dose with
AF, however, would not provide a lasting effect and probiotic AF must be administered to
the animals continuously. The vast majority of feed additives for ruminants is supplied via
the diet and this may constitute the sole easy to apply option for AF-based probiotics, as
well. However, fungal cultures are highly susceptible to oxygen and in order to use them as
feed additives that need to be storable, further preventing measures are indispensable. In
this regard, the initial findings from Paul et al. [70] may be of particular interest, showing
that the weekly feeding of Neocallimastix sp. CF-17 cells, specifically encapsulated, and
hence protected from harmful influences, increased the growth performance of buffalo
calves during their first four weeks of life—although, it must be noted that the deployed
encapsulation enabled a protection of AF from air for only up to 12 h [70], thus pointing
out to the tedious development work still to be done. Apart from encapsulation methods,
tenacious AF resting forms that are commonly found in feces and withstanding air expo-
sure and desiccation for several months [4], might hold a further chance for the future
that should be pursued. Notwithstanding this, growing fungal cultures on a large scale
seems yet not possible [9,71], and besides investigating the suitability of AF encapsulation
and fungal resting forms, also advances in cultivation are the prerequisite to enable the
full-scale application of probiotic AF in ruminant livestock industry.
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Table 1. Overview of studies investigating anaerobic fungi (AF) as feed additives in ruminants.

AF Strain Investigated Ruminant Species AF Administration Form Results 1 Reference

Piromyces sp. FNG5 isolated
from wild blue bull

Buffaloes fed wheat straw ad
libitum with additional
concentrate
(up to 50% of DM intake)

Fresh fungal culture medium
mixed with concentrate before
morning feeding,
daily administered

• Increased total tract digestibility of DM 2, organic matter, NDF 3,
and ADF 4

• Increased nitrogen retention

[28]

Piromyces sp. FNG5 isolated
from wild blue bull

Buffaloes fed wheat straw ad
libitum with additional
concentrate
(up to 50% of DM intake)

Fresh fungal culture medium via
the rumen cannula,
daily, administered,

• Increased DM intake
• Increased in situ disappearance of NDF and ADF
• Higher ruminal concentrations of total SCFA5, acetate, propionate,

butyrate, valerate, iso-butyrate, and iso-valerate
• Higher abundance of total fungi, large holotrichs, as well as total,

cellulolytic, and hemicellulolytic bacteria in the rumen
• Higher ruminal concentrations of carboxymethyl cellulase,

microcrystalline cellulase, xylanase, acetyl esterase, ferulyl
esterase, and protease

[28]

Orpinomyces sp. C-14 isolated
from domesticated cattle

Crossbred calves fed wheat straw
and concentrate (50:50 on a DM
basis) with additional green oats
(1 kg/d)

Fresh fungal culture medium by
oral drenching, weekly
administered

• Increased daily and total body weight gain
• Increased total tract digestibility of DM, crude protein, NDF,

and ADF
• Lower pH and ammonia nitrogen concentration in the rumen

[65]

Orpinomyces sp. C-14 isolated
from domesticated cattle

Lactating buffaloes fed wheat
straw and concentrate (50:50 on a
DM basis) with additional green
corn (6 kg/d)

Fresh fungal culture medium by
oral drenching, daily
administered

• Increased milk yield and milk fat content
• Increased total tract digestibility of DM, organic matter, NDF,

and ADF
• Higher ruminal concentrations of total SCFA, ammonia nitrogen

and fungal zoospores

[66]

Piromyces sp. WNG-12, isolated
from wild blue bull

Lactating buffaloes fed wheat
straw and concentrate (50:50 on a
DM basis) with additional green
corn (6 kg/d)

Fresh fungal culture medium by
oral drenching, daily
administered

• Increased milk yield and milk fat content
• Increased total tract digestibility of DM, organic matter, crude

protein, NDF, and ADF
• Higher ruminal concentrations of total SCFA, ammonia nitrogen,

and fungal zoospores
• Higher feed efficiency (milk yield in relation to DM intake)

[66]

Orpinomyces sp. C-14 isolated
from domesticated cattle

Buffalo calves fed wheat straw,
concentrate and green oats
(45:45:10 on a DM basis)

Fresh fungal culture medium by
oral drenching, daily
administered

• Increased total body weight gain and higher feed conversion ratio
• Increased total tract digestibility of DM, crude protein, NDF,

and ADF
• Higher ruminal concentrations of total SCFA, ammonia nitrogen,

and fungal zoospores, as well as lower ruminal pH

[67]
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Table 1. Cont.

AF Strain Investigated Ruminant Species AF Administration Form Results 1 Reference

Piromyces sp. WNG-12, isolated
from wild blue bull

Buffalo calves fed wheat straw,
concentrate and green oats
(45:45:10 on a DM basis)

Fresh fungal culture medium by
oral drenching,
daily administered

• Increased total body weight gain and higher feed conversion ratio
• Increased total tract digestibility of DM, crude protein, NDF,

and ADF
• Higher ruminal concentrations of total SCFA, ammonia nitrogen,

and fungal zoospores, as well as lower ruminal pH

[67]

Orpinomyces sp. KNGF-2
isolated from Korean native
black goat

Sheep fed orchard grass and
concentrate (70:30)

Fresh fungal culture medium via
the rumen cannula before
morning feeding,
daily administered

• Increased ruminal concentration of total SCFA and acetate, as well
as lower pH 3 h post-feeding

• Increased ruminal concentration of propionate 9 h post-feeding
• Higher abundances of fungi and bacteria in the rumen
• Increased enzymatic activity of cellulase and xylanase
• Increased nitrogen retention
• Increased total tract digestibility of DM, crude protein, NDF,

and ADF

[68]

Orpinomyces sp. KNGF-2
isolated from Korean native
black goat

Sheep fed orchard grass and
concentrate (70:30)

Supernatant of fungal culture
medium (i.e., fungal enzymes)
via the rumen cannula before
morning feeding,
daily administered

• Increased ruminal concentration of butyrate 3 and 6 h post-feeding [68]

Neocallimastix sp. CF-17 isolated
from feces of wild cattle

Buffalo calves fed wheat straw ad
libitum with additional 1 kg
concentrate and 1 kg
green fodder

Encapsulated fungal cells
(rhizomycelia and
zoospores) mixed with
concentrate, weekly administered

• Increased body weight gain
• Increased total tract digestibility of organic matter and NDF
• Higher ruminal concentrations of total SCFA, carboxymethyl

cellulase, and xylanase
• Higher abundance of fungi, as well as total, cellulolytic, and

hemicellulolytic bacteria in the rumen

[70]

Neocallimastix sp. CF-17 isolated
from feces of wild cattle

Buffalo calves fed wheat straw ad
libitum with additional 1 kg
concentrate and 1 kg
green fodder

Fresh fungal culture medium by
oral drenching,
weekly administered

• Increased total tract digestibility of DM and organic matter
• Higher ruminal concentrations of total SCFA, carboxymethyl

cellulase, and xylanase
• Higher abundance of fungi, as well as total, cellulolytic, and

hemicellulolytic bacteria in the rumen

[70]

1 Results observed for anaerobic fungus-treated ruminants in comparison to the control group; 2 Dry matter; 3 Neutral detergent fiber; 4 Acid detergent fiber; 5 Short-chain fatty acids.
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Since the development of probiotic AF definitely maintains a long-term challenge,
another option for promoting rumen AF by feed additives is implied from yeast-based
research data. Indeed, supplementing yeasts to high-grain fed dairy cows alleviated fungal
dysbiosis in the rumen as shown by higher AF richness, as well as increased abundances
of specific genera, e.g., Neocallimastix [38]. Similarly, Chaucheyras et al. [72] have earlier
demonstrated a promoting effect by yeasts on the germination and cellulolytic activity
of Neocallimastix frontalis in vitro. Thus, there seems to be chance that no direct AF-based
probiotic is needed, but live yeast preparations that are already common feed additives
in ruminant nutrition [64] could shape the AF community beneficially. It is therefore
conceivable that ameliorations observed in response to yeast supplementation [64] were
partly due to changes in the fungal community, which should be further investigated.

Interestingly, yet to be clarified is the impact of feedstuff particle length, which in
general is an important aspect of ruminant nutrition research, decisively determining the
fermentative processes and health in the rumen and hindgut [13,73]. Recent in vitro data
revealed varying fungal fermentation activities in response to different grass leaf lengths
as incubation of Neocallimastix frontalis with long particles (4 cm) resulted in 18.4% more
gas and higher relative acetate formation compared to its incubation with short particles
(0.5 cm) [74]. Although it remains to be solved, whether this in vitro scenario can be
transferred to the rumen, it would mean implications on the efficacy of potential AF-based
feed additives that could be different with different diet types.

It is worth of notice that AF may not necessarily be applied as direct-fed microbials to
be relevant to ruminant nutrition. Apart from their mechanical fiber breakdown, AF exert
numerous CAZymes, which can be organized in cellulosomes and that are highly involved
in cell wall degradation [5–7]. If isolated appropriately, such fungal enzymes could also
be convenient to use as feed additives. So far, the administration of fungal enzymes alone
exerts no effect on ruminal fermentation or host performance [68], which is likely ascribed
to the rapid degradation of the fungal enzymes in the rumen, thus impeding any potential
activity. Provided that the resilience of purified fungal enzymes can be increased, they
might become a feed additive in ruminant feeding. Chemical structure modifications,
as applied to saponins [75], or a protective agent, analogous to the secretory component
of immunoglobulin A that conserves this compound from digestion in the gut [76], may
increase the resistance of fungal enzymes in the forestomach and could therefore represent
a starting point for further research.

4. Anaerobic Fungi as Silage Additives

Ensiling aims to preserve fresh forages via rapid lactic acid fermentation with a
maximum recovery of dietary energy and highly digestible nutrients [77]. To achieve this,
a variety of microorganisms, their isolated enzymes, or manifold combinations are applied
as silage additives [63]. Using AF to affect the ensiling process beneficially, however, has
been overlooked until now. Instead, fungi are yet predominantly associated with poor
silage quality as the presence of yeasts and molds is linked to aerobic deterioration and
mycotoxicoses, respectively, both leading to decreased feed intake, reduced performance,
and impaired health of the animal [78,79]. Likewise, investigations on fungal communities
in differently produced mixed silages were also related to detrimental fungi only [80].

However, silages may indeed be an application area for AF with great potential as
they form numerous CAZymes, which further can be arranged as cellulosomes, as well as
physically penetrate fibrous structures during their vegetative stage [5,6]. Thus, adding AF
at ensiling may lead to an enhanced cleavage of fiber and lignocellulosic biomass, which
then would result in an enhanced ruminal fiber degradability. Consequently, plant biomass
like straw that is yet widely unexploited in ruminant nutrition could get upvalued and
therefore become a more extensively used diet component in ruminant livestock production
systems. Such a mode of action was already indicated by two pilot studies investigating
the impact of AF inoculation on quality and ruminal degradation of rice straw or whole
crop maize silage [81,82]. The plant materials were ensiled with AF strains isolated from
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herbivore guts, which in both approaches led to an increased ruminal dry matter and fiber
degradability during subsequent incubations either in vitro [82] or in situ [81]. Remarkably,
compared to the control silages, whole crop maize silages treated with AF also showed an
improved silage quality, i.e., higher lactic acid concentrations along with a lower pH and
less acetic acid [82], which was also apparent for pH in AF-treated rice straw silages [81].

Although these data provide first evidence of the AF potential as silage additives, it has
to be noted that the two studies [81,82] on AF-treated silages were conducted at minor lab-
scale. Immense quantities of AF cultures would be necessary to inoculate the large volumes
of forage material sufficiently, which are moreover ensiled in very few days on cattle farms.
As the production of large amounts of actively growing AF cultures is by now not possible
and long-term storage of AF cultures is inevitably associated with substantial viability
losses [71], an upscaling to typical silo bunker sizes seems not feasible—particularly when
further considering the associated logistical burden for punctually shipping the AF cultures
to deployment location without impairments in quality or viability.

Despite this clear limitation in producing AF cultures and in consequence also in using
AF as silage inoculants, data of Lee et al. [81] may already implicate a conceivable solution.
In fact, fungal populations declined very rapidly after ensiling and the concentrations of
thallus-forming units were similar to the control after 60 days [81]. Thus, silages may actu-
ally not provide conditions necessary for AF to survive and proliferate, which in turn also
precludes a physical penetration of fiber by fungal rhizoids. However, alterations in fiber
fraction concentrations in AF-treated silages were observed and still apparent after 60 days
of ensiling, such as a further decrease of the neutral detergent fiber content [81], suggesting
that not the AF but their secreted CAZymes and cellulosomes were responsible for the
differences in chemical composition and the significantly improved ruminal degradability
of silages.

Consequently, it appears that the enzymatic array of AF can be deployed as silage
additives. Indeed, AF-derived enzymes possess several advantageous properties, predesti-
nating them for this purpose: fungal CAZymes are widely expressed extracellularly [24,83]
and highly effective in degrading cell wall structures over a wide pH range (pH 4–8) [82],
which is further emphasized by the target affinity of AF CAZymes for recalcitrant fiber
components [23], i.e., those that are insufficiently degraded in the forestomach system [84].
The latter AF feature is of particular relevance because less robust fiber structures, such as
hemicelluloses, are also degraded by lactic acid-induced acidolysis in the silo [85] or else
can later be fermented efficiently by rumen microorganisms [84]. Thus, disassembling also
recalcitrant fibrous components would mean a more complete cleavage of plant fiber in
the silo than it is likely feasible so far, which may be particularly true for strawy biomass,
where enzyme additives are assumed to be more effective [63]. Apart from CAZymes, AF
form a variety of cellulosomes that can increase the cellulolytic activity immensely [86]
and in contrast to bacteria, fungal cellulosomes are not necessarily attached to the cell
wall but largely released into the surrounding [24,83]. Regarding the applicability in rumi-
nant nutrition, this would offer the possibility to culture AF and use their spent culture
medium (SCM), in which fungal CAZymes and cellulosomes are accumulated [68], as
silage additives (Figure 1).
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These fungal cultures may then be cultivated in continuous-flow cultures, where AF
showed up to 20 times larger production of cellulolytic enzymes than in batch cultures [20].
A lyophilization step may be included in order to facilitate convenient storage and ship-
ping without significantly impairing fungal enzyme activity [87], and might further be
combined with other technologies, such as ultrafiltration, to concentrate AF enzymes [88],
and therefore potentate their activity as a silage additive. Although growing of AF cultures
on a large scale is yet problematic, such production and processing of fungal SCM could
be conducted continuously and therefore better enable an upscaling of fungal enzyme
application to silo bunker sizes present in ruminant livestock production.

In fact, using AF-derived CAZymes should allow a much more controlled manipu-
lation of the ensiling process than it would be feasible with inoculating viable AF. First,
administering AF enzymes precludes the risk of AF metabolizing easily fermentable car-
bohydrates in favor of fiber due to catabolite repression, which would otherwise mean
an unintentional competition for nutrients between AF and lactic acid bacteria. Instead,
further substrate from fungal enzyme-induced lignocellulose solubilization may be avail-
able for the lactic acid bacteria, which in parts might explain the improved silage quality
observed in AF-inoculated silages [81,82]—or else these released nutrients would subse-
quently be readily accessible to the rumen microbiota, provided they are not metabolized
by yeasts after silo opening, thereby promoting aerobic deterioration of silages. Secondly,
literature describes a tannin-degrading activity by several AF strains [89], which may also
have implications on the outcome of ensiling. Tannins are frequently applied to preserve
true protein in silages [90] and tanninolytic AF could counteract this purpose. Combining
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tannins with AF-derived enzymes, however, would bypass this risk and could yield higher
nutritive value of silages, also in terms of protein quality.

5. Conclusions

Anaerobic fungi have yet been marginally perceived in ruminant nutrition, particularly
when compared to bacteria. However, AF are of outstanding significance for plant cell
wall degradation in the rumen—but rather than being relevant for fibrolysis only, AF
seem of key importance in other aspects of ruminant nutrition, as well, such as methane
formation and nutrient provision to the host. Consequently, it seems prudent and also
overdue to consider AF with greater emphasis in prospective ruminant nutrition studies.
Indeed, these microorganisms may likely contribute to the clarification of open questions
in ruminant feeding that remain unexplained with current knowledge. Regarding the
application options in ruminant nutrition, AF may be used as feed additives as well as in
silage production. Apart from limitations in the scalability of AF cultivation, advances
in AF administration are required to realize higher ruminal fiber degradation as well as
improved performance characteristics that have been shown in response to AF treatments
of ruminants. Likewise, silage production can become an important application area for
AF with their extracellularly produced CAZymes and cellulosomes enabling the successful
conservation of forages along with improving their ruminal fiber degradability. Therefore,
coming research initiatives should follow up the examination of AF to understand better
their role in the gut and how to exploit their application potential optimally, thus shaping
tomorrow’s ruminant nutrition.
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