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This paper solves the shortcomings of sparrow search algorithm in poor utilization to the current individual and lack of
effective search, improves its search performance, achieves good results on 23 basic benchmark functions and CEC 2017, and
effectively improves the problem that the algorithm falls into local optimal solution and has low search accuracy. This paper
proposes an improved sparrow search algorithm based on iterative local search (ISSA). In the global search phase of the
followers, the variable helix factor is introduced, which makes full use of the individual’s opposite solution about the origin,
reduces the number of individuals beyond the boundary, and ensures the algorithm has a detailed and flexible search ability. In
the local search phase of the followers, an improved iterative local search strategy is adopted to increase the search accuracy and
prevent the omission of the optimal solution. By adding the dimension by dimension lens learning strategy to scouters, the
search range is more flexible and helps jump out of the local optimal solution by changing the focusing ability of the lens and
the dynamic boundary of each dimension. Finally, the boundary control is improved to effectively utilize the individuals
beyond the boundary while retaining the randomness of the individuals. The ISSA is compared with PSO, SCA, GWO, WOA,
MWOA, SSA, BSSA, CSSA, and LSSA on 23 basic functions to verify the optimization performance of the algorithm. In
addition, in order to further verify the optimization performance of the algorithm when the optimal solution is not 0, the above
algorithms are compared in CEC 2017 test function. The simulation results show that the ISSA has good universality. Finally,
this paper applies ISSA to PID parameter tuning and robot path planning, and the results show that the algorithm has good
practicability and effect.

1. Introduction

With the continuous emergence of various optimization
problems, various algorithms and improved algorithms are
emerging [1-4]. The emergence of swarm intelligence al-
gorithm provides new ideas for solving various optimization
problems. The swarm intelligence optimization algorithm is
a meta-heuristic optimization algorithm that imitates the
behavior of biological populations or biological behaviors
and natural phenomena in the natural world. As the opti-
mization effect of swarm intelligence algorithms is recog-
nized by the public, swarm intelligence algorithms develop
continuously, and more and more new swarm intelligence
algorithms are proposed, such as firefly algorithm (FA) [5],

ant lion optimizer (ALO) [6], whale optimization algorithm
(WOA) [7], sine cosine algorithm (SCA) [8], crow search
algorithm (CSA) [9], Harris hawks optimization algorithm
(HHO) [10], slime mould algorithm (SMA) [11], hunger
games search (HGS) [12], Runge-Kutta method (RUN) [13],
and colony predation algorithm (CPA) [14].

Sparrow search algorithm (SSA) is a new group intel-
ligence optimization algorithm proposed by Xue and Shen
[15] in 2020. Inspired by sparrow foraging behavior, the
algorithm has obvious advantages over traditional intelligent
optimization algorithms, such as grey wolf Optimizer
(GWO) [16], particle swarm optimization (PSO) [17], and
genetic algorithm [18], with high stability, good search
accuracy, and fast convergence [19]. Despite its fast
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convergence rate, the algorithm is prone to fall into local
optimum and the results of optimization are random. To
overcome this shortcoming, many scholars have proposed
improved algorithms based on different strategies for the
sparrow search algorithm and successfully solved many
engineering problems. Based on the principle and model of
sparrow search algorithm, Lv et al. proposed a fusion al-
gorithm of bird swarm algorithm and sparrow search al-
gorithm [20] and a chaotic sparrow search algorithm [21].
The former uses the search mechanism of bird swarm al-
gorithm to add to the discoverers and followers of the
sparrow search algorithm, which changes the update
strategy of “full dimension reduction,” effectively breaks
through the local restriction of search, and strengthens the
global search ability; and the latter uses tent chaotic map to
initialize the population, which makes the population more
uniform. After one iteration, the second iteration of chaotic
disturbance and Gaussian variation is carried out according
to individual fitness and average fitness, which prevents local
aggregation in the optimization process, enhances its ability
to jump out of local optimization, and achieves good results
in the application of image segmentation. A chaotic sparrow
algorithm based on cubic mapping and elite reverse learning
to initialize population is presented by Tang et al. [22]. At the
same time, the sinusoidal algorithm is introduced, which
balances the development and exploring ability of the al-
gorithm. At the same time, when the algorithm comes to a
standstill, the Gauss Walk strategy is used to jump out of the
standstill, and its optimization performance is verified in 15
benchmark functions. Finally, the UAV track planning
simulation is carried out in the case of threat. Compared
with other optimization algorithms, the algorithm obtains
the safe and feasible track with the best cost and meets the
constraints. Ouyang et al. proposed a learning sparrow al-
gorithm [23] adding lens reverse learning during the dis-
coverer search phase makes the search more flexible and
increases the diversity of the population. A spiral guidance
mechanism is introduced to make the discoverer search
more precise. Then, a local search mechanism is added to
prevent the omission of high-quality solutions, and com-
pared with other swarm intelligence algorithms in 12 basic
test functions and CEC 2017 test sets, this shows good
optimization ability. Finally, the improved sparrow search
algorithm is validated in the robot path planning, and a
stable and safe optimal path is planned.

The above algorithms have made some improvements on
the basis of sparrow algorithm, but there are still some
shortcomings:

(1) There is still some randomness in the improved
method of population initialization, which does not
guarantee absolute uniformity of the population each
time it is initialized.

(2) The selected improved search strategy is subject to
regional limitations, is easy to exceed the boundaries,
and fails to perform effective global search in the
whole space, resulting in a large number of indi-
viduals exceeding the boundaries and still trapped in
local optimum.
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(3) By jumping directly to the discoverer, it is easy to
miss the optimal solution. The improvement of local
search accuracy is not significant, and there can be
more improvement in search accuracy.

(4) In terms of boundary control, the strategy of
updating to boundary is adopted for individuals
beyond the boundary, which does not make good use
of the individual location and reduces the diversity of
the population.

In order to solve the above problems, the sparrow
search algorithm based on iterative local search is proposed
in this paper. By variable helix factor and improved iter-
ative local search, the effective utilization and search of
individuals are improved. By adding a dimension by di-
mension lens learning strategy and change the focusing
ability of the lens, the algorithm converges faster while
helping to jump out of the local optimum, and improving
the boundary strategy, the population diversity is in-
creased. To verify the optimization performance of the
algorithm, ISSA PSO, SCA, GWO [16], WOA, MWOA
[24], SSA, BSSA, CSSA, and LSSA are tested and analyzed
on 23 basic functions. To further verify the universality of
the algorithm, the above algorithms are tested and analyzed
in CEC 2017 test function [25,26]. Finally, ISSA is applied
to PID parameter tuning [27]. The accuracy and conver-
gence speed of the tuned results are improved compared
with the SSA, which shows that the algorithm has good
practicability. The main contributions of this paper are as
follows:

(1) In order to improve the effective use and search of
individuals, a variable helix factor strategy is pro-
posed and boundary control is improved

(2) An improved iterative local search strategy is pre-
sented to improve the problem of low accuracy and
missing better solutions in the search process

(3) In order to improve the ability of the algorithm to
jump out of local optimization, a dimension by
dimension lens learning method is proposed to
change the lens focusing ability

(4) The versatility and flexibility of the algorithm using
benchmark functions and CEC 2017 functions are
validated

5 1s used to optimize arameters to he
(5) ISSA i d ptimize PID p help
quickly complete PID parameter tuning

(6) ISSA is used to optimize the robot path planning
problem and help get fast and stable results

The main work arrangement of this paper is as follows:
Section 2 introduces the basic sparrow algorithm. Section
3 introduces and analyses the ISSA. Section 4 compares
and analyzes the algorithm on the basic test function.
Section 5 compares and analyzes the algorithm on CEC
2017. Section 6 applies the algorithm to PID parameter
tuning. Section 7 applies the algorithm to robot path
planning. Section 8 discusses and provides future research
directions.
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2. Sparrow Search Algorithm

In the process of sparrow foraging, there are two behavioral
strategies: discoverer and follower. The individuals with
better positions in the sparrow population generally take
10%-20% of the total population as discoverers, while the
remaining individuals take part in the process. At the same
time, 10%-20% of individuals are randomly assigned as
scouters. The discoverer is responsible for leading the
population in search direction and finding food, while the
follower follows the discoverer to obtain food, and the
scouter is alert to environmental threats and warns the
sparrow population to move closer to a safe area.

In order to describe the process of sparrow foraging
through mathematical models, it is necessary to formulate
rules to simplify various behaviors of sparrows. The specific
rules are as follows:

(1) The individual energy of sparrow population de-
pends on individual fitness evaluation, and the in-
dividual energy of discoverer is higher than that of
discovers.

(2) Once the scouters in the sparrow population find the
threat of the external environment, they begin to
send out an alarm signal. When the alert value is
greater than the security threshold, the discoverers
direct the population to the security zone.

(3) Sparrows have flexible individual behavior strategies
and can switch between discoverers and followers.
As long as the individual energy reaches a certain
degree, they can become discoverers, but the pro-
portion between discoverers and followers in the
population remains unchanged.

(4) Sparrows with low energy may fly to other places for
feeding in order to obtain higher energy.

(5) When there is an external environmental threat, the
sparrows at the edge of the population will quickly
move to the safe area, and the sparrows in the middle
of the population will immediately swim away to get
close to other sparrows.

The discoverer is responsible for guiding the population
to forage or to the location of the safe zone. The location
update is described below:

—i
- X, exp<m>, if R, < ST,
ij = (1)
Xﬁ’j+Q-L, if R, >ST.

Among them, t represents the current number of iter-
ations, and M is the maximum number of iterations. Xj;
represents the current position of the i-th sparrow in the j-th
dimension. « € [0, 1] and is a random number. R, represents
an early warning value, ST is the security threshold, and
R, €0, 1], ST € [0.5, 1]. Q represents a random number that
follows a normal distribution. L represents a 1 xd matrix
with all elements 1. When R, < ST, this indicates that the
population environment is safe at this time, no predators are

found around them, and the discoverers can conduct ex-
tensive searches to guide the population to higher energy
levels. When R, > ST, this indicates that an individual within
a population has discovered a predator and issued an alert,
and that the discoverer quickly adjusts the search strategy to
flee the current location, leading the population to a safe
location.

In order to obtain high-quality food, followers follow the
discoverer or forage alone, so the location of followers is
updated as follows:

x Xt

1
X5 = (2)

Xg—l +'X§j _ X;rl' .AT.L, otherwise.

Among them, X, is the best position currently occupied
by the discoverer, and X, represents the worst position
currently. A is a 1 xd matrix with only 1 or —1 elements,
where A" = AT (AAT)™!. When i > n/2, this indicates that the
less adaptable 1st participant is not getting food, is very
hungry, and needs to fly elsewhere to get more energy; when
i<n/2, followers monitor the finder and compete for food
with the finder with a higher predator, thereby increasing
their energy.

When aware of the danger, the sparrow population will
make antipredation behavior, and its mathematical ex-
pression is as follows

t t t
Xbest + ﬁ : 'Xi,j - Xbest

> lfflifga

t+1 _
Xij = x.-x (3)
Xt ) +K' i,j worst lff _ f
Y (fi-fu)+e) 70 77

where Xj,.q represents the current global optimal position. 3
is the control step parameter and is a normally distributed
random number with a mean value of 0 and a variance of 1.
K is a random number belonging to [-1, 1], which controls
the direction of the sparrow’s movement as well as the step. f;
represents the fitness value of the current sparrow indi-
vidual. f, and f, are the current optimal and worst fitness
values, respectively. & is a very small real number that
prevents the denominator from being zero. When f;# f,
this indicates that the current sparrow is at the edge of the
population and that an individual is vulnerable to predators,
and it is necessary to approach other individuals in the
population center to reduce the risk of predation. When
fi=f 4 this indicates that individuals in the center of the
population are aware of the danger and need to flee from
their current location in order to avoid it.

3. Sparrow Search Algorithm Based on Iterative
Local Search (ISSA)

3.1. Variable Helix Factor. Followers occupy the majority of
individuals in the population. When i < (N/2), they have a
unique update mechanism that draw closer to the



discoverers quickly; it results in a fast convergence rate.
When i> (N/2), they have the ability to search globally.
However, the global search ability is not strong, limited by
the boundary of the search area, which tends to cause ag-
gregation at the boundary in the early stage, resulting in loss
of population diversity, easy to fall into the local extreme
phenomenon, and poor ability to jump out of the local
optimal.

The location update method of follower adopts the
random coeflicient that obeys the normal distribution.
Without considering the boundary, the coefficient has
strong global search ability. However, when considering the
boundary, this mechanism is detrimental to the individuals
who are at or near the boundary. Many absolute coeflicients
exceed 1. When the boundary is exceeded, it causes the
population individuals to aggregate at the boundary, does
not make full use of the current location, and results in a
significant decrease in population diversity and overall al-
gorithm performance. Based on this, a variable helix factor is
proposed to reduce the number of individuals beyond the
boundary, control the search step and direction, make full
use of the whole population space, the space for early search
is large, maintain the diversity of the population, and help
jump out of the trap of local optimum. Later local search is
more detailed, which greatly improves the search ability of
the algorithm, as shown in Figure 1.

The formula for the variable helix factor works as
follows:

H=a-cos(k-1-m), (4)
M
1, t<—,
a= 2 (5)
eS'l, otherwise,

-

t

cos(a-l-m)- exp(

t+1
i,j

el cos(a-l-m)- exp<

L

3.2. Improved Iterative Local Search. When i< (N/2), the
followers have a unique update mechanism that quickly
closes to the discoverer’s optimal solution, which results in
fast convergence of the algorithm. The followers jump di-
rectly to the neighborhood of the discoverer’s optimal so-
lution. Although they have some development ability near
the current optimal solution, they do not make enough use
of the current solution and have poor stability. They cannot
guarantee the quality and accuracy of the solution and have
poor local development ability. Once trapped and unable to
jump out of the local extreme state, the overall performance
of the algorithm will be limited. Inspired by [28-30], this
paper presents an improved iterative local search.

t
X — X N M
t N .
M), z>5 andt <—,
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t
I=1-2-—.
M

(6)

H is a variable helix factor, a is a parameter used to
control the helix, with a value of 1 in the earlier period and a
decreasing number of iterations in the later period; k is a
parameter representing the helix cycle, (M/10) in general;
and [ is a parameter that decreases linearly from 1 to -1 in
terms of the number of iterations.

In this paper, we select a high-dimensional test function,
step function, and a low-dimensional test function, Shekel
function, to test the original model and the improved model
for individuals beyond the boundary, as shown in Figure 2.
Set the population individual as 30 and the number of it-
erations as 500, run each for 10 times, and take the average
value. The test results are shown in Table 1.

According to Table 1, when the followers conduct ex-
tensive search, the number beyond the boundary accounts
for the vast majority of the total number beyond the
boundary of the sparrow population, resulting in the loss of a
large number of individuals. Therefore, it is necessary to
restrict the extensive search scope of the followers; based on
the variable helix factor, the number of times the followers
exceeding the boundary is greatly reduced to 0, which fully
retains the favorable position information of the current
individual.

Improvements to the extensive search of the followers
make it possible for the followers to make full use of the
whole search space, get rid of the attraction of the local
optimal solution more easily, strengthen the search for the
whole space, maintain the diversity of the population, en-
hance the ability of algorithm exploration in the early stage,
and enhance the ability of algorithm development in the
later stage. Based on this, the formula is updated as follows:

2

(7)

t t
Xworst ~ xi,j . N M
e m—— P 1>— andt >—
i 2 2

Local search algorithm [31] is a simple greedy search
algorithm that is improved from the hill-climbing method.
Local search starts from an initial solution, then searches the
neighborhood of the solution, and updates the solution if
there is a better solution or returns to the current solution.
Iterative local search is an exploratory method that adds
perturbation to the local optimal solution obtained by local
search and then re-searches the local solution.

The improved iterative local search first performs a local
search near the initial solution, then disturbs the initial solution
by updating the location of the followers closer to the dis-
coverer, and then searches the updated location again. It makes
tull use of the location information of the current individual
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F1GURE 1: Coeflicient model. (a) Original random coeflicient. (b) Variable helix factor.

Parameter space

Parameter space

FIGURE 2: Parameter space. (a) Step function. (b) Shekel function.

TaBLE 1: Statistics on the number of individuals beyond the boundary.

Function Step Shekel
Dimension 30dim 4 dim
Boundary [-1.28 1.28] [0 10]
Number of times the original algorithm follower exceeded the boundary 1505 3739
Number of times the follower exceeded boundaries after improvement 0 0

Total number of times the original algorithm exceeded the boundary 1696 4381
Total number of times the improved algorithm exceeded the boundary 161 1095

and the location information of the current optimal solution to
make the search more flexible. The first modification uses the
mechanism by which the follower approaches the discoverer to
disturb, so that the individual jumps near the current global
optimal position to jump out of the local optimal position; the
second modification uses the local search to obtain stable
optimization results and improve the accuracy of the local
search; and the third modification uses the local search result to
obtain the optimal local search result to ensure the quality of
the solution, as shown in Figure 3.

At the same time, two cases are illustrated in this paper.
Figure 3(a) indicates that after individual disturbance, a
better solution can be found near the current global optimal

solution; and Figure 3(b) indicates that an individual can
find a better solution using his own favorable position, both
of which help to jump out of the local optimal solution. This
paper has not been replaced by the current global optimal
solution to maintain population diversity and prevent
premature convergence.

3.2.1. 'The First Modification (SSA Method). The improved
iterative local search strategy is more suitable for this al-
gorithm than the original iterative local search. It works by
first disturbing the initial solution to get an intermediate
solution (when i < n/2, the followers of the SSA are disturbed
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FIGURE 3: Main idea of improved iterative local search.

by a unique update mechanism that closes quickly to the
finder’s optimal solution). The initial and intermediate so-
lutions are then searched again for a better solution. The first
modification is used to solve the problem that the SSA is easy
to fall into local optimal solution. The algorithm flow is as
follows:

Step 1. The initial solution X* is perturbed by the current
optimal solution X, . to obtain the intermediate solution
X**. The perturbation formula is as follows:

X" = Xpegt | X" = Xpee| - A" - L. (8)
The formula for the original followers is as follows:

t+1 _ t+l
ij —Xp

N
+'x£j - x?l i<—, (9)

AL
2

Xpes is x51, which is the best position the discoverer cur-
rently occupies; X* is xf ., which is the current position;

X**is xf}l, which is the updated location.

3.2.2. The Second Modification (ILS Algorithm). The second
modification solves the problem of unstable and inaccurate
optimization results of the SSA. The ILS algorithm here
represents the local search stage in the ILS algorithm. It
works by searching the initial and intermediate solutions
locally to get a better solution and effectively utilizes the
current position of the initial solution to prevent the indi-
vidual from missing the better solution in the process of
jumping directly to the current optimal solution. At the same
time, local search near the current optimal solution helps to
improve the accuracy of the solution and jump out of the
local optimum in a small range. The algorithm flow is as
follows:

xf)j -rand (),

t+1
ij

xt+1+|xt _xt+1
P ij P

Step 2. Initial solution X* starts local search, and the for-
mula is as follows:

X' = X* - rand(), (10)

rand () is a random number between 0 and 1.

Step 3. Intermediate solution X** starts local search, and the
formula is as follows:

X% = X** - rand (). (11)

3.2.3. The Third Modification. The third modification is to
optimize the local search results to ensure the quality of the
solution. The working principle is to use greedy strategy to
compare the local search results of the initial and inter-
mediate solutions and select the better value as the final
solution X. The algorithm flow is as follows:

Step 4. Calculate fitness f(X') of X!.
Step 5. Calculate fitness f(X?) of X?

Step 6. Compare f(X') and f(X?) to select the best in-
dividuals for location updates; that is,
If f(X")< f(X?)
X=X!
else X = X?
end
Based on the SSA and the three modifications above, the

formula of the follower (i< N/2) in the SSA is updated as
follows:

i< and f(x') < £(%),

(12)

CAT. L) -rand (), i<§ andf(Xl) >f(X2).
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3.3. Dimension by Dimension Lens Imaging Learning.
Swarm intelligence algorithms have the disadvantage of
easily falling into local optimum. In this regard, relevant
scholars have proposed the method of adding reverse
learning to swarm intelligence algorithm [32-34]. The so-
lution after reverse learning can be closer to the optimal
solution. Generally, reverse learning can only search for the
optimal solution in a certain space, but it still has mono-
tonicity and the possibility of falling into local optimum.
Lens learning [35, 36] has better optimization ability than
general direction learning and can continuously converge to
the optimal solution in a certain space. However, once there
is no optimal solution in the selected space, it will still lead to
local optimization in the end. At the same time, scouters
have antipredator behavior to help the population to jump
out of the local optimum, but their ability to jump out of the
local optimum is unstable, resulting in sometimes unable to
jump out of the local optimum. In view of this phenomenon,
this paper proposes a dimension by dimension lens imaging
learning strategy to change the focusing ability of the lens,
which is used to strengthen the scouters’ ability to jump out
of the local optimum, lens learning for each dimension, and
reduce the mutual interference between the dimensions. In
the early stage, the lens with poor focusing ability is selected
for reverse learning. At this time, the imaging is divergent
and far away from the lens, which can help jump out of the
local optimum, as shown in Figure 4(a); in the later stage, the
lens with strong focusing ability is selected for reverse
learning. The imaging is concentrated and close to the lens,
which can accelerate the convergence, as shown in
Figure 4(b). Comparison of three kinds of reverse learning is
shown in Table 2.
The principle of lens imaging is as follows:
As shown in Figure 4, taking one-dimensional space as
an example, it is assumed that there is an individual with a
height of / at the position. Under the action of the lens, it
forms an image with a height of #* at the position x*. a,b is
the boundary, and the lens position is the midpoint of [a, b].
According to the principle of lens imaging and triangle
similarity principle:
((a+b)2)-x h

¥ (arb) B (13)

By transforming the above formula, we can get

., a+b a+b x

_ 14
2 Tk (14)

X

k is used to indicate the focusing ability of the lens, that is,
the imaging size. When k =1, it can be simplified as follows:

x"=a+b-x. (15)

This is the general reverse learning strategy. It can be
seen that the general reverse learning strategy is a special
case of lens imaging. The general reverse learning strategy k
is fixed, and the obtained individuals are also fixed. Lens
learning can change the position of individuals by adjusting
k, so as to further enhance the diversity of groups. Generally,
it takes a constant that is not equal to 1. This paper proposes

a strategy of linearly increasing K according to the number of
iterations, that is

k=a+t, (16)
M
where a is a small constant to prevent the previous iterative
imaging from being too large, which is taken as 0.1 in this
paper. The early k is small, and the imaging is large; in the
later stage, k is near 1, and the imaging is slightly smaller,
which can help convergence.

At the same time, lens imaging is extended to each
dimension, and lens imaging reverse learning is performed
for each dimension. The formula is extended as follows:

xf:“j+bj+aj+bj_ﬁ, (17)
] 2 2k k

where j is the current dimension, a; is the lower bound of the

j-th dimension, and b; is the upper bound of the j-th di-

mension. At the same time, this paper adopts dynamic
boundary:

a; =min(x;),

= min() .

b; = max (x j),

where min(xj) is the minimum value of the j-th di-

mension in all individuals, and max(xj) is the maximum

value of the j-th dimension in all individuals. Because a;
and b; do not represent the boundary of the whole search
space, when the imaging exceeds the boundary [aj, bj], it
may not exceed the boundary of the whole search space.
Therefore, when k is small in the current period, the
imaging will exceed the boundary of the current j-th
dimension, which helps to expand the search range, re-
duces the possibility of premature stagnation in the early
stage, and helps to jump out of the local optimum. Finally,
the greedy strategy is adopted. If the fitness value of the
reverse solution is small and better than the original
solution, the solution is updated and applied to the al-
gorithm as follows:

t t t 13 t+1
aj+b]- aj+bj_x,-’j .
ST SR ACRAV A

xf:;.l = (19)

t+1

i otherwise.

3.3.1. Verify the Ability to Jump Out of Local Optimization.
In this paper, the Shekel function mentioned above is se-
lected as an example to draw the individual distribution
diagram between the improved algorithm and the original
algorithm to verify the ability of the above strategy to jump
out of local optimization. The function image is shown in
Figure 2. The selected population is 100, and the maximum
number of iterations is 20. The individual distribution of the
two algorithms are shown in Figures 5 and 6.

As can be seen from Figure 5, most individuals in the
original algorithm have local aggregation and fall into local
optimization. As can be seen from Figure 6, the improved
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FIGURE 4: Main principles of lens imaging.

TaBLE 2: Comparison of three kinds of reverse learning.

Boundary

Focusing ability (k)

Reverse solution position Effect

Reverse learning Unchanged 1

Dynamic change according to
the maximum and minimum
of individual position of
population
The maximum and minimum
values of each dimension
change dynamically
according to the individual
position of the population

Lens imaging
learning

Dimension by
dimension lens
imaging learning

A large constant, which is
more than 1

According to the dynamic
change of iteration times,
the first and middle stages
are less than 1, and the later boundary, and in the later the convergence in the later

stage is more than 1

On boundary midpoint .
Accelerating convergence
symmetry
About bound idpoint .
ot poundary micporn Accelerating convergence
reduction imaging
Jump out of the local
optimum in the first and
middle stage and accelerate

In the early and middle
stages, the image is enlarged
at the midpoint of the

stage, the image is smaller stage

()

S bk L~ o

(®)

FiGgure 5: Individual distribution of SSA. (a) SSA individual initialization map. (b) Individual distribution of SSA in 20 generations.

algorithm has a larger search space, and most individuals
converge near the optimal solution, effectively jumping out
of the local optimal solution.

3.3.2. Proof of Convergence of Dimension by Dimension Lens
Imaging Learning. The proof of convergence of general
refraction reverse learning swarm intelligence algorithm is
given in reference [37]. Here, its conclusion is introduced to
prove the convergence of the ISSA for dimensional lens back
learning. It should be pointed out that the proof of con-
vergence does not necessarily ensure that the algorithm

converges to the global optimal solution. Since the SSA is
also a swarm intelligence search algorithm, there are the
following theorems:

Theorem 1. If the SSA algorithm based on general back
learning converges, the ISSA algorithm also converges.

Proof. Let x;(t) and x (t) be the current solution and re-
verse solution of generation ¢, x; i (t) and x;; () be the values
of x;(t) and x} (t) in the j-th dimension, respectively, and
the global optimal solution is xPet From Theorem 1,
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FIGURE 6: Individual distribution of ISSA. (a) ISSA individual initialization map. (b) Individual distribution of ISSA in 20 generations.

lim x (1) = 2" (20)
Extended to the j-th dimension:
Jim x,; () = x5 (21)

Due to a;(t) = min (x; (#)), b; () = max (x; (1)), we get
. . best
dima; (#) = lim b;(6) = x; (22)
In the t-th generation, the current solution generated by
the reverse learning strategy based on the lens imaging
principle is

(23)

e @O +b (1) a;()+bi(1) x;;(8)
X (0= g k-

When t — oo, from the above formula, we get

() +b.(t () +b.(t ot
lim x7;(f) = lim a;(t) J()+aj() i (1) x ()

2 2k k
xl:?est (t) + xl?est (t) xb'est (t) + xt?est (t)
= lim -Z / +-2 J
t—00 2 2k
best
_ xj _ xbest
k77
(24)
Return to the whole dimension:
lim x7 (£) = x™, (25)
t—00

It can be seen that when x;(t) converges to x>, the
inverse solution x; (t) generated by lens learning also
conver best Therefore, if th based 1

ges to x°°*'. Therefore, if the SSA based on genera
reverse learning converges, the ISSA also converges. O

3.4. Improved Boundary Control. In the standard SSA, when
an individual in the optimization process exceeds the
boundary, the boundary control will be carried out for the
individual. The principle is as follows:

L | ub x>,
xi»j = t+1 (26)
Lb, Xij <Lb.

Ub and Lb are the upper and lower bounds of space,
respectively. In this method, the strategy of turning the
individuals beyond the boundary into the boundary will lead
to the aggregation of individuals at the boundary and reduce
the diversity of the population. It can be seen from Table 1
that although the improved strategy reduces the number of
individuals beyond the boundary, some individuals still
exceed the boundary and gather at the boundary. Literature
[38] adopts the strategy of the current optimal solution for
individuals beyond the boundary, which will be difficult to
get rid of the local optimization. Therefore, this paper
proposes a simple boundary treatment method, namely,

x5 =1b+(Ub-Lb) -rand(), x;}'>Ubandx}' <Lb.
(27)

In this method, the individuals beyond the boundary are
randomly assigned to the search space, which makes more
effective use of the population individuals and increases the
diversity of the population more than that of the original
algorithm.

3.5. Improved Sparrow Search Algorithm Flow. In this paper,
an improved sparrow search algorithm based on iterative
local search is proposed. Firstly, the variable helix factor is
used to improve the extensive search of followers, which
reduces the individuals beyond the boundary and speeds up
the convergence speed in the later stage. Secondly, the
improved iterative local search is used to improve the local
search of the followers. The initial solution is subject to local
search and iterative local search after disturbance, which
makes full use of the current position information to prevent
premature convergence and improve the quality and ac-
curacy of understanding. Then, the lens with changed fo-
cusing ability is used to carry out dimension by dimension
lens imaging learning for the scouter, and it increases the
search space and helps the population jump out of the local
optimum. Finally, the boundary control strategy is improved
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to reduce the aggregation of individuals at the boundary and
increase the diversity of the population. The introduction of
various strategies makes the algorithm more flexible in the
optimization ability, makes the population more diverse,
strengthens its ability to get rid of local optimization, bal-
ances the global search ability and local search ability of the
algorithm, and is conducive to finding reliable solutions. The
specific algorithm flow is shown in Figure 7. The specific
pseudo code is as follows:

3.6. Time Complexity Analysis. Time complexity is an im-
portant index to measure the performance of the algorithm,
which is used to measure the running time of the algorithm.
Assuming that the population size of the algorithm is P, the
maximum number of iterations is M and the dimension is D,
and the time complexity of the sparrow search algorithm is O
(P-M-D). From a macro point of view, the improved sparrow
search algorithm does not change the structure and cycle
times of the algorithm, so its time complexity is also O
(P-M-D), which is consistent with the original algorithm.
From the microscopic point of view, the greedy strategy is
adopted for iterative local search and dimension by di-
mension lens learning, which increases the algorithm
complexity of some followers and all scouters to a certain
extent, but the introduction of the improved strategy does
not improve the order of magnitude of the algorithm, so the
time complexity is still O (P-M-D).

4. Benchmark Function Test

In order to better verify the performance of ISSA, this paper
selects 23 common basic test functions for verification and
tests and compares them with 10 algorithms including PSO,
SCA, GWO, WOA, MWOA, SSA, BSSA, CSSA, and LSSA.
The specific parameter settings are shown in Table 3, and the
test function information is shown in Table 4. F1-F7 is the
high-dimensional single-peak benchmark function, F8-F13
is the high-dimensional multipeak benchmark function, and
F14-F23 is the low-dimensional multipeak benchmark
function. F1-F13 is tested in 100 dimensions to verify the
performance of the algorithm in higher dimensions. For the
sake of fairness, the population size and maximum number
of iterations of each algorithm are 30 and 500, respectively,
and each algorithm is run independently for 30 times to
calculate its best value (best), worst value (worst), average
value (AVE), and standard deviation (STD), and the optimal
value of each index is processed in bold. Finally, each al-
gorithm will be ranked according to the average value of the
algorithm in the function. When the average values of the
two algorithms are equal, the standard deviation will be
compared. For performance evaluation, simulations are
performed on Windows 10 Matlab 2016a, AMD Ryzen 7
4800U with Radeon Graphics @1.80 GHz with 16 GB RAM.

ISSA ranks first in most functions, and its average
ranking is better than that of other algorithms. It can be seen
from Tables 5 and 6 that, compared with other algorithms,
ISSA has found the theoretical optimal value except F7, F10,
F12, F13, and F15 and has found the optimal value in all
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Initialize the initial position and the number of populations
and iterations.

A 4

Calculate the cost function of each population to find
the best and worst positions

Update the position of the discoverers according
to formula (1)

A 4

Update the position of the followers according
to formula (5)-(7) and (12)

A 4

Update the position of the scouters according to
formula (3), (16) and (20)

A 4

Update the all individuals location according to formula (28)

Has the maximum number of
iterations been reached?

Output the best position and mininmum fitness
value

A 4

End

FIGUre 7: Algorithm flow chart.

algorithms in the above five functions. It can be seen that the
ISSA has good ability to find the optimal solution. Among
them, only the ISSA in F5 finds the theoretical optimal value,
and only SSA and ISSA in F6 find the optimal value. The
optimization accuracy of ISSA in F12 and F13 is a large
number of orders of magnitude higher than that of other
algorithms. When the dimension increases to 100, the op-
timization performance of ISSA is still very stable, while
PSO, SCA, WOA, GOA, and SSA have a great impact on the
optimization ability. It is worth mentioning that in F6 and
F12, ISSA is only better than SSA and SSA improved the
algorithm in terms of optimal value, but other indicators are
better than other swarm intelligence algorithms. In F1-F13
function, ISSA finds a better solution than or the same
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Input:

M: maximum number of iterations
PD: proportion of discoverer

SD: proportion of scouters

R,: alert value

N: population sparrows

Output: Xpesi, f g

Initialize population

t=1;

While (t< M)

R,=rand (1)
Fori=1:PD

End for
For i=(PD+1):N

End for
For [=1:SD

End for
Get the location of the new optimal individual;

t=t+1
End while
Return: Xpesrr f g

Find the position of the best and worst sparrow individuals according to fitness values.

Update the location of the discoverers according to formula (1);

Update the location of the followers according to formulas (5)-(7) and (12);

Get the individual position of a sparrow that is aware of danger according to formulas (3), (16), and (19);

Update the all individuals” location according to formula (27);

ArLGoriTHM 1: The framework of the ISSA.

TABLE 3: Parameter.

Algorithm PSO SCA GWO WOA

MWOA SSA

BSSA CSSA LSSA ISSA

cl=2
2=2
Parameter Wnix =02 a=2

Wmax=0.9

a=(2—0) b=1

ST=0.8

ST=0.8 ST=0.8 ST=0.8 ST=0.8

b=1 PD=0.2
n=12000

PD=0.2
SD=0.2

PD=0.2
SD=0.2

PD=0.2
SD=0.2

PD=0.2

SD=02 SD=0.2

a=0.1

solution as SSA, indicating that ISSA does not reduce the
optimization ability of the algorithm. In the fixed dimension
F14-F23,ISSA algorithm has good stability and the ability to
jump out of the local optimum. It can find the solution close
to the theoretical optimum almost every time.

In order to better describe the optimization ability,
difference, and convergence speed of the algorithm with
other algorithms, the Wilcoxon rank sum test results with
other algorithms is given in Table 7 according to ISSA, and
the convergence diagram of each algorithm is given in
Figure 8. At the same time, in order to test the contribution
of the four strategies to the algorithm, this paper selects a
basic function to test the four components of the improved
algorithm, as shown in the first figure in Figure 8. The above
is based on the test results of 23 benchmark functions.

In this paper, the four strategies and the original SSA and
ISSA are tested in the F1 function of the basic test function,
as shown in the first figure in Figure 8. ISSA1, ISSA2, ISSA3,
and ISSA4 represent the algorithms improved separately by
the four improved strategies proposed before. Among them,
ISSA2, ISSA3, and ISSA have found the theoretical optimal
value. Compared with the original SSA, ISSA2 has

significantly improved the convergence speed, reflecting its
excellent search ability; ISSA3 suddenly converges to the
theoretical optimal value in the middle of the iteration,
indicating its excellent ability to jump out of the local op-
timal. Compared with the original SSA algorithm, the op-
timization results and convergence speed of ISSAl1 and
ISSA4 are improved by dozens of orders of magnitude,
which can improve to a certain extent. It can be seen that
improved iterative local search and dimension by dimension
lens imaging learning play a more critical role in improving
the ability of the algorithm. The combination of the above
four strategies enables us to obtain an ISSA with faster
convergence speed, more accurate results, and more
stability.

In the Wilcoxon rank sum test, when the value is less
than 0.05, it can be considered that there is a significant
difference between the two. In Table 7, NaN indicates that
their performance is equivalent and cannot be compared.
It can be seen that most values are less than 0.05, indi-
cating that the optimization performance of ISSA is
significantly different from other algorithms, among
which the difference between ISSA and CSSA is the
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smallest, followed by LSSA, BSSA, and SSA. As shown in
Figure 8, the ISSA shows excellent optimization speed and
convergence accuracy, and the convergence speed is
fastest in most functions. The ISSA converges faster in the
single-peak benchmark function and has better ability to
resist the attraction local optimum in the multipeak
benchmark function.

5. CEC 2017 Function Test

In order to better illustrate the generality and effectiveness
of the algorithm and avoid that the ISSA is only applicable
to the case where the optimal value is 0, the algorithm is
tested on the CEC 2017 test function. The evaluation times
are 10000 * dim, the number of population individuals is
30, the dimension is 30, SD is set to 0.6, and other pa-
rameters remain unchanged. In this paper, the above al-
gorithms are run independently for 30 times, and five
indexes of each algorithm are calculated according to the
results, namely, the best value (Best), the worst value
(Worst), the median (Med), the average value (Ave), and
the standard deviation (Std). Finally, each algorithm will be
ranked according to the average value of the algorithm in
the function. The optimal value of each index is treated in
bold. Due to the defects of F2 function, it will not be tested
in this paper. The specific test results are shown in Table 8.
At the same time, six functions F4, F7, F14, F17, F24, and
F27 are selected to draw the box diagram of the results, as
shown in Figure 9.

It can be seen from the data in Table 8 that, in the 29
functions, ISSA ranks first in most functions and its average
ranking is better than other algorithms. ISSA has good
optimization effect and can be close to the theoretical op-
timal value of each function. In F1, F3, F6, F7, F8, F13,F14,
F18, and F29, each index of ISSA is the best in the algorithm.
Among the 20 functions, ISSA finds the optimal value of all
algorithms, which shows that ISSA has strong optimization
ability. When the optimal solution is not 0, ISSA shows
better optimization performance than SSA, and PSO and
CSSA also show good performance.

As can be seen from the box diagram in Figure 9, the
ISSA has strong search ability and is closest to the the-
oretical optimal value among all algorithms. And ISSA’s
box graph has shorter length and stronger stability than
other algorithms. Among them, the realization of SSA is
poor because the individual in the SSA is directly jumping
when approaching the current optimal solution, rather
than moving to the current optimal solution like PSO.
This problem leads to the rapid convergence of SSA, but it
is easy to miss the high-quality solution and fall into local
optimization. The ISSA uses the improved strategy to
make up for this disadvantage, makes full use of the
current solution, ensures the convergence speed, and
increases its ability to jump out of the local optimum. But
overall, the ISSA has better optimization performance
than other algorithms, has good universality and effec-
tiveness, and can adapt to some complex optimization
problems.

21

6. PID Parameter Tuning

A PID controller is the most widely used controller in the
industry (accounting for about 90% of the controller). The
PID controller is composed of three basic gain parameters to
control the controlled object. It is mainly applicable to the
system whose basic linear and dynamic characteristics do
not change with time. Its structure is shown in Figure 10.
When the proportional parameter K, increases, the rise
time and steady-state error decrease. When the integral
parameter K; increases, the rise time is smaller, but the
stability time and overshoot increase. The negative effect of
the K; increase can be overcome by adjusting the differential
parameter K ;. The relationship between output and input of
the PID controller is as follows:

u(t) = K,e(t) +K,-Je(t) +Kddz(tt). (28)

Manual PID parameter tuning is a time-consuming
process. Generally, it is tried through the experience and
skills of engineers and the intelligent algorithm can complete
the parameter tuning in a short time. In order to verify the
practicability of ISSA, this paper uses ISSA to optimize PID
parameters, simulates under unit step response and sinu-
soidal input response respectively, and tests with SSA to
prove its optimization performance.

In this paper, the objective function [39] is set as follows:

F= [ (wile() +wa 0)de, (29)

e(t) is the error between the input value and the output
value. Considering the dynamic characteristics of the iter-
ative process, the integral of its absolute value is adopted;
u(t) is the control value, which is added to avoid excessive
control range; w, and w, are weights, and the value range is
[0, 1]. In addition, measures shall be taken to prevent
overshoot, that is, when overshoot occurs, an additional
overshoot item shall be introduced into the objective
function. At this time, the settings are as follows:

F= Jzo(wlle(t)l +wyut’ (1) + wyle(t)])dt, e(t) <0,
(30)

where w; is the weight and w;>»w,. Generally,
w; = 0.999, w, = 0.001,w; = 100. Therefore, the goal of
ISSA is to find a set of PID parameters to minimize the error
of objective function. In this paper, the number of indi-
viduals and the number of iterations of the population are set
to be 30 and 50, respectively. Other parameters are con-
sistent with those of Table 2. The test is carried out under the
condition of unit leap forward and sinusoidal input re-
spectively and run independently for 10 times. The test
results are shown in Figure 11, and the optimization results
are shown in Table 9.

Since the results of 10 independent runs are consistent,
only one is shown here. It can be seen from Figure 11 and
Table 9 that in the unit step response, ISSA can complete the
parameter setting in a very short time, and the convergence
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FIGURE 9: Box diagram of each algorithm.

speed and accuracy are better than SSA. In the sinusoidal
input response, ISSA can almost coincide with rin, and the
tracking effect is significant. The tracking effect of SSA is
slightly inferior. At the same time, the convergence speed
and accuracy of ISSA are slightly better than SSA. The above
results verify that ISSA has good algorithm performance, can
quickly and accurately complete the PID parameter tuning,
and help the system have shorter response time, higher
system control accuracy, and better robustness. So far, the
practicability has been proved.

7. Robot Path Planning

In PID parameter tuning, the dimension of the practical ap-
plication is low. Therefore, this paper selects the discrete problem
of more complex path planning to further verify the practica-
bility of ISSA and makes a comparative experiment with SSA. In
path planning, each sparrow is a feasible path. The environment
modeling adopts the grid method, and the obstacles at the
equivalent position are calculated according to the grid value.
Grid number 0 is defined as feasible area and 1 as obstacle area.
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FiGure 11: Convergence curve and PID control output.

Then, the robot can plan the path on the grid specified as 0, and D-1 2 2
dimension D is the column number of the grid map. The cost fx) = Z \/(xj+1 + xj) +()’j+1 - )’j) . (31)
function of the path length of the i-th sparrow is shown in =1
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TaBLE 9: PID parameter setting results.

. Unit step Sinusoidal input
Algorithm . .
Fitness K, K; K, Fitness K, K; K,
SSA 29.1777 10 0.221046 0.126894 53.0827 10 10 1.90441
ISSA 22.7045 41.4593 0.596364 0.402723 50.5554 286.6486 21.19153 0.898048
Ma;
P 110
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80
g
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E
=
Z 60
Q
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20 1 1 1 1 1 1
0 2 4 6 8 100 12 14 16 18 20
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Figure 12: Convergence curve and optimal path.

In equation (31), j is the j-th dimension of a sparrow. Set
each algorithm at 15x15, and the best path is shown in
Figure 12. In order to eliminate the contingency, each al-
gorithm is tested for 10 times, the optimal value, worst value,
average value, and standard deviation of the fitness value of
each algorithm are calculated, and these four indexes are

used to measure the stability and feasibility of each algo-
rithm. The optimization statistics of each algorithm are
shown in Table 10.

It can be seen from the Table 10 and Figure 12, the
minimum cost of ISSA planning is 19.7990, while the
minimum cost of SSA is 22.6274. It can be seen that ISSA has
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TaBLE 10: Robot path planning results.
Fitness
Algorithm
Best Worst Ave Std
SSA 22.6274 39.5980 29.9813 6.5115
ISSA 19.7990 28.2843 22.6274 3.4641

strong path planning ability. According to other indicators,
it can be seen that the path planned by ISSA has good
stability. Therefore, ISSA has a good effect in more complex
robot path planning and can plan a more stable and safer
path.

8. Conclusions

This paper proposes an improved sparrow search algorithm
based on iterative local search strategy, which introduces
four strategies: variable helix factor, improved iterative local
search, the lens imaging with changing focusing ability, and
improved boundary control. ISSA overcomes the short-
comings of poor utilization of current individuals and lack of
effective search and effectively improves the problems of
falling into local optimal solution and low optimization
accuracy. The test function results show that ISSA has good
optimization performance and universality. The results of
PID parameter tuning and robot path planning show that
ISSA algorithm has good practicability.

The improved ISSA has good optimization performance,
but it also has some shortcomings. For example, it can only
find the optimal value in some functions, and other per-
formance indicators are poor and unstable; a certain amount
of work is added, resulting in a longer consumption time of
the algorithm; and it did not improve the search scope of
discoverers. In view of the shortcomings, we still need to do
some work in the future: first, how to improve the stability of
the algorithm; second, how to improve the search ability of
followers; third, how to balance the time and optimization
ability of the algorithm; and fourth, how to improve the
search ability of discoverers on the basis of discoverers.
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