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Although the key promoter elements necessary to drive tran-
scription in Escherichia coli have long been understood, we still
cannot predict the behavior of arbitrary novel promoters, hamper-
ing our ability to characterize the myriad sequenced regulatory
architectures as well as to design new synthetic circuits. This
work builds upon a beautiful recent experiment by Urtecho et al.
[G. Urtecho, et al., Biochemistry, 68, 1539–1551 (2019)] who mea-
sured the gene expression of over 10,000 promoters spanning
all possible combinations of a small set of regulatory elements.
Using these data, we demonstrate that a central claim in energy
matrix models of gene expression—that each promoter element
contributes independently and additively to gene expression—
contradicts experimental measurements. We propose that a key
missing ingredient from such models is the avidity between
the –35 and –10 RNA polymerase binding sites and develop what
we call a multivalent model that incorporates this effect and can
successfully characterize the full suite of gene expression data.
We explore several applications of this framework, namely, how
multivalent binding at the –35 and –10 sites can buffer RNA
polymerase (RNAP) kinetics against mutations and how promot-
ers that bind overly tightly to RNA polymerase can inhibit gene
expression. The success of our approach suggests that avidity rep-
resents a key physical principle governing the interaction of RNA
polymerase to its promoter.

transcription regulation | avidity | statistical mechanics

Promoters modulate the complex interplay of RNA poly-
merase (RNAP) and transcription factor binding that ulti-

mately regulates gene expression. While our knowledge of
the molecular players that mediate these processes constantly
improves, more than half of all promoters in Escherichia coli still
have no annotated transcription factors in RegulonDB (1) and
our ability to design novel promoters that elicit a target level of
gene expression remains limited.

As a step toward taming the vastness and complexity of
sequence space, the recent development of massively parallel
reporter assays has enabled entire libraries of promoter mutants
to be simultaneously measured (2–4). Given this surge in exper-
imental prowess, the time is ripe to reexamine how well our
models of gene expression can extrapolate the response of a
general promoter.

A common approach to quantifying gene expression, called
the energy matrix model, assumes that every promoter element
contributes additively and independently to the total RNAP (or
transcription factor) binding energy (3). This model treats all
base pairs on an equal footing and does not incorporate mecha-
nistic details of RNAP–promoter interactions such as its strong
binding primarily at the −35 and −10 binding motifs (Fig. 1A).
A newer method recently took the opposite viewpoint, design-
ing an RNAP energy matrix that includes only the −35 element,
the −10 element, and the length of the spacer separating them
(5), neglecting the sequence composition of the spacer or the
surrounding promoter region.

Although these methods have been successfully used to iden-
tify important regulatory elements in unannotated promoters (6)

and predict evolutionary trajectories (5), it is clear that there
is more to the story. Even in the simple case of the highly
studied lac promoter, such energy matrices show systematic devi-
ations from measured levels of gene expressions, indicating that
some fundamental component of transcriptional regulation is
still missing (7).

We propose that one failure of current models lies in their
tacit assumption that every promoter element contributes inde-
pendently to the RNAP binding energy. By naturally relaxing
this assumption to include the important effects of avidity,
we can push beyond the traditional energy matrix analysis in sev-
eral key ways, including the following: (i) We can identify which
promoter elements contribute independently or cooperatively
without recourse to fitting, thereby building an unbiased mecha-
nistic model for systems that bind at multiple sites. (ii) Applying
this approach to RNAP–promoter binding reveals that the −35
and −10 motifs bind cooperatively, a feature that we attribute
to avidity. Moreover, we show that models that instead assume
the −35 and −10 elements contribute additively and indepen-
dently sharply contradict the available data. (iii) We show that
the remaining promoter elements (the spacer, upstream [UP],
and background shown in Fig. 1A) do contribute independently
and additively to the RNAP binding energy and formulate the
corresponding model for transcriptional regulation that we call
a multivalent model. (iv) We use this model to explore how
the interactions between the −35 and −10 elements can buffer
RNAP kinetics against mutations. (v) We analyze the surprising
phenomenon that overly tight RNAP–promoter binding leads
to decreased gene expression. (vi) We validate our model by
analyzing the expression of over 10,000 promoters in E. coli
recently published by Urtecho et al. (8) and demonstrate that
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Fig. 1. The bivalent nature of RNAP–promoter binding. (A) Expression was measured for promoters comprising any combination of −35, −10, spacer,
UP, and background (BG) elements. (B) Without an UP element, RNAP contacts the promoter at the −35 and −10 sites, giving rise to expression r0

when unbound or partially bound and rmax when fully bound. (C) Having two binding sites alters the dynamics of RNAP binding. kon represents the
on-rate from unbound to partially bound RNAP, k̃on the analogous rate from partially to fully bound RNAP, and koff,j denotes the unbinding rate from
site j.

our framework markedly improves upon the traditional energy
matrix analysis.

While this work focuses on RNAP–promoter binding, its
implications extend to general regulatory architectures involv-
ing multiple tight-binding elements, including transcriptional
activators that make contact with RNAP (CRP in the lac pro-
moter) (9), transcription factors that oligomerize (as recently
identified for the xylE promoter) (6), and transcription fac-
tors that bind to multiple sites on the promoter (DNA
looping mediated by the Lac repressor) (10). More gener-
ally, this approach of categorizing which binding elements
behave independently (without resorting to fitting) can be
applied to multivalent interactions in other biological con-
texts, including novel materials, scaffolds, and synthetic switches
(11, 12).

Results
The –35 and –10 Binding Sites Give Rise to Gene Expression That
Defies Characterization as Independent and Additive Components.
Decades of research have shed light upon the exquisite biomolec-
ular details involved in bacterial transcriptional regulation via
the family of RNAP σ factors (13). In this work, we restrict
our attention to the σ70 holoenzyme (8), the most active form
under standard E. coli growth conditions, whose interaction
with a promoter includes direct contact with the −35 and
−10 motifs (two hexamers centered roughly 10 and 35 bases
upstream of the transcription start site), a spacer region sepa-
rating these two motifs, an UP element just upstream of the −35
motif that anchors the C-terminal domain (αCTD) of RNAP,
and the background promoter sequence surrounding these
elements.

Urtecho et al. (8) constructed a library of promoters composed
of every combination of eight −35 motifs, eight −10 motifs,
eight spacers, eight backgrounds (BGs), and three UP elements
(Fig. 1A). Each sequence was integrated at the same locus within
the E. coli genome and transcription was quantified via DNA
barcoding and RNA sequencing. One of the three UP elements
considered was the absence of an UP binding motif, and this case
serves as the starting point for our analysis.

The energy matrix approach used by Urtecho et al. (8) posits
that every base pair of the promoter will contribute additively
and independently to the RNAP binding energy, which by

appropriately grouping base pairs is equivalent to stating that
the free energy of RNAP binding will be the sum of its contribu-
tions from the background, spacer, −35, and −10 elements (SI
Appendix, section A). Hence, the gene expression (GE) is given
by the Boltzmann factor

GE∝ e−β(EBG+ESpacer+E−35+E−10). [1]

Note that all Ej s represent free energies (with an energetic
and entropic component); to see the explicit dependence on
RNAP copy number, refer to SI Appendix, section A. Fitting
the 32 free energies (one for each background, spacer, −35,
and −10 element) and the constant of proportionality in Eq.
1 on 25% of the data enables us to predict the expression on
the remainder of the 8× 8× 8× 8 = 4,096 promoters (Materials
and Methods).

Fig. 2A demonstrates that Eq. 1 leads to a poor characteri-
zation of these promoters (R2 = 0.57; parameter values listed
in SI Appendix, section B), suggesting that critical features of
gene expression are missing from this model. One possible res-
olution is to assume that the level of gene expression saturates
for very strong promoters at rmax and for very weak promoters
at r0 (caused by background noise or spurious transcription; SI
Appendix, section B), namely,

GE =
r0 + rmaxe

−β(EBG+ESpacer+E−35+E−10)

1 + e−β(EBG+ESpacer+E−35+E−10)
. [2]

Since Eq. 2 still assumes that each promoter element contributes
additively and independently to the total RNAP binding energy,
it also makes sharp predictions that markedly disagree with the
data (SI Appendix, section C). Inspired by these inconsisten-
cies, we postulated that certain promoter elements, likely the
−35 and −10 sites, may contribute synergistically to RNAP
binding.

To that end, we consider a model for gene expression shown
in Fig. 1B where RNAP can separately bind to the −35 and
−10 sites. RNAP is assumed to elicit a large level of gene
expression rmax when fully bound but the smaller level r0 when
unbound or partially bound. Importantly, the Boltzmann weight
of the fully bound state contains the free energy Eint representing
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the avidity of RNAP binding to the −35 and −10 sites. Phys-
ically, avidity arises because unbound RNAP binding to either
the −35 or the −10 sites gains energy but loses entropy, while
this singly bound RNAP attaching at the other (−10 or −35)
site again gains energy but loses much less entropy, as it
was tethered in place rather than floating in solution. Hence
we expect e−βEint� 1, and including this avidity term implies
that RNAP no longer binds independently to the −35 and
−10 sites.

Our coarse-grained model of gene expression neglects the
kinetic details of transcription whereby RNAP transitions
from the closed to the open complex before initiating tran-
scription. Instead, we assume that there is a separation of
timescales between the fast process of RNAP binding/unbinding
to the promoter and the other processes that constitute
transcription. In the quasi-equilibrium framework shown in
Fig. 1B, gene expression is given by the weighted average over
all states,

GE = r0

1 + e−β(EBG+ESpacer)
(
e−βE−35 + e−βE−10 + rmax

r0
e−β(E−35+E−10+Eint)

)
1 + e−β(EBG+ESpacer)

(
e−βE−35 + e−βE−10 + e−β(E−35+E−10+Eint)

) . [3]

We call this expression a multivalent model since it reduces to the
energy matrix Eq. 1 (with constant of proportionality rmaxE

−βEint )
in the limit where gene expression is negligible when the RNAP
is not bound (r0≈ 0) and the promoter is sufficiently weak or the
RNAP concentration is sufficiently small that polymerase is most
often in the unbound state (so that the denominator ≈ 1). The
background and spacer are assumed to contribute to RNAP bind-
ing in both the partially and fully bound states, an assumption that
we rigorously justify in SI Appendix, section D.

Fig. 2B demonstrates that the multivalent model Eq. 3 is better
able to capture the system’s behavior (R2 = 0.91) while requiring
only two more parameters (r0 and Eint) than the energy matrix
model Eq. 1. The sharp boundaries on the left and right rep-
resent the minimum and maximum levels of gene expression,
r0 = 0.18 and rmax = 8.6, respectively (SI Appendix, section E).
The multivalent model predicts that the top 5% of promoters
will exhibit expression levels of 7.6 (compared with 8.5 mea-
sured experimentally) while the weakest 5% of promoters should
express at 0.2 (compared with the experimentally measured 0.1).
In addition, this model quickly gains predictive power, as its coef-
ficient of determination diminishes only slightly (R2 = 0.86) if
the model is trained on only 10% of the data and used to predict
the remaining 90%.

Epistasis-Free Models of Gene Expression Lead to Sharp Predictions
That Disagree with the Data. To further validate that the lower
coefficient of determination of the energy matrix approach (Eq.
1) was not an artifact of the fitting, we can use the epistasis-
free nature of this model to predict the gene expression of
double mutants from that of single mutants. More precisely,
denote the gene expression GE(0,0) of a promoter with the
consensus −35 and −10 sequences (and any background or
spacer sequence). Let GE(1,0), GE(0,1), and GE(1,1) repre-
sent promoters (with this same background and spacer) whose
−35/−10 sequences are mutated/consensus, consensus/mutated,

and mutated/mutated, respectively, where “mutated” stands for
any nonconsensus sequence. As derived in SI Appendix, section
D, the gene expression of these three later sequences can predict
the gene expression of the promoter with the consensus −35 and
−10 without recourse to fitting, namely,

GE(0,0) = GE(1,1) GE(0,1)

GE(1,1)

GE(1,0)

GE(1,1)
. [4]

Fig. 2A, Inset compares the epistasis-free predictions (x axis,
right-hand side of Eq. 4) with the measured gene expression (y
axis, left-hand side of Eq. 4). These results demonstrate that the
simple energy matrix formulation fails to capture the interaction
between the −35 and −10 binding sites. While this calcula-
tion cannot readily generalize to the multivalent model since it
exhibits epistasis, it is analytically tractable for weak promoters
where the multivalent model displays a marked improvement
over the energy matrix model (SI Appendix, section C).

RNAP Binding to the UP Element Occurs Independently of the Other
Promoter Elements. Having seen that the multivalent model (Eq.
3) can outperform the traditional energy matrix analysis on
promoters with no UP element, we next extend the former
model to promoters containing an UP element. Given the impor-
tance of the RNAP interactions with the −35 and −10 sites
seen above, Fig. 3A shows three possible mechanisms for how
the UP element could mediate RNAP binding. For example,
the C terminus could bind strongly and independently so that
RNAP has three distinct binding sites. Another possibility is that
the RNAP αCTD binds if and only if the −35 binding site is
bound. A third alternative is that the UP element contributes
independently to RNAP binding (analogous to the spacer and
background).

To distinguish between these possibilities, we analyze the
correlations in gene expression between every pair of pro-
moter elements (UP and −35, spacer and background, etc.)
to determine the strength of their interaction. Each model
in Fig. 3A will have a different signature: Fig. 3A, Top
schematic predicts strong interactions between the −35 and
−10, between the UP and −35, and between the UP and −10;
Fig. 3A, Middle schematic would give rise to strong depen-
dence between the −35 and −10 as well as between the UP
and −10, while the UP and −35 elements would be per-
fectly correlated; and in the Fig. 3A, Bottom schematic the
UP elements contributes independently of the other promoter
elements.

This analysis, which we relegate to SI Appendix, section D,
demonstrates that the UP element is approximately independent
of all other promoter elements (R2 & 0.6) as are the back-
ground and spacer, indicating that Fig. 3A, Bottom schematic
characterizes the binding of the UP element. This leads us
to the general form of transcriptional regulation by RNAP,
shown in Eq. 5:

GE = r0

1 + e−β(EBG+ESpacer+EUP)
(
e−βE−35 + e−βE−10 + rmax

r0
e−β(E−35+E−10+Eint)

)
1 + e−β(EBG+ESpacer+EUP)

(
e−βE−35 + e−βE−10 + e−β(E−35+E−10+Eint)

) . [5]
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Fig. 2. Expression of promoters with no UP element. Model predictions
using (A) an energy matrix (Eq. 1) where the −35 and −10 elements inde-
pendently contribute to RNAP binding and (B) a multivalent model (Eq. 3)
where the two sites contribute cooperatively. (A, Inset) The epistasis-free
nature of the energy matrix model makes sharp predictions about the gene
expression of the consensus −35 and −10 sequences that markedly disagree
with the data. Parameter values are given in SI Appendix, section B.

Fig. 3B demonstrates how the expression of all promoters con-
taining one of the two UP elements combined with each of the
eight background, spacer, −35, and −10 sequences (2× 84 =
8,192 promoters) closely matches the model predictions (R2 =
0.88). We note that the large number of outliers on the left edge
of the data may be attributable to noise, since more than half of
all promoters have predicted gene expression<0.2 (SI Appendix,
section E). Remarkably, since we used the same free energies and
gene expression rates from Fig. 2B, characterizing these 8,192 pro-
moters required only two additional parameters (the free energies
of the two UP elements). This result emphasizes how understand-
ing each modular component of gene expression can enable us to
harness the combinatorial complexity of sequence space.

Sufficiently Strong RNAP–Promoter Binding Energy Can Decrease
Gene Expression. Although the 12,288 promoters considered
above are well characterized by Eq. 5 on average, the data

demonstrate that the full mechanistic picture is more nuanced.
For example, Urtecho et al. (8) found that gene expression (aver-
aged over all backgrounds and spacers) generally increases for
−35/−10 elements closer to the consensus sequences. In terms
of the gene expression models studied above (Eqs. 1–3), pro-
moters with fewer −35/−10 mutations have more negative free
energies E−35 and E−10 leading to larger expression. Yet the
strongest promoters with the consensus −35/−10 violated this
trend, exhibiting less expression than promoters one mutation
away. Thus, Urtecho et al. (8) postulated that past a certain
point, promoters that bind RNAP too tightly inhibit transcription
initiation and decrease gene expression.

The promoters with a consensus −35/−10 are shown as red
points in Fig. 3B, and indeed these promoters are all pre-
dicted to bind tightly to RNAP and hence express at the
maximum level rmax = 8.6, placing them on the right edge of
the data. Yet depending on their UP, background, and spacer,
many of these promoters exhibit significantly less gene expres-
sion than expected. Motivated by this trend, we posit that the
state of transcription initiation can be characterized by a free
energy ∆Etrans relative to unbound RNAP that competes with
the free energy ∆ERNAP between fully bound and unbound
RNAP (SI Appendix, section E), analogous to a nonequilib-
rium boundary-crossing problem with an effective barrier height
∆Etrans (14).

A

B

Fig. 3. The interaction between RNAP and the UP element. (A) Possible
mechanisms by which the RNAP C terminus can bind to the UP element
(orange segments represent strong binding comparable to the −35 and −10
motifs; gray segments represent weak binding comparable to the spacer and
background). The data support the Bottom schematic (SI Appendix, section
D). (B) The corresponding characterization of 8,192 promoters identical to
those shown in Fig. 2 but with one of two UP binding motifs. Red points
represent promoters with a consensus −35 and −10. Data were fitted using
the same parameters as in Fig. 2B and fitting the binding energies of the
two UP elements (parameter values in SI Appendix, section B).
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Fig. 4. Gene expression is reduced when RNAP binds a promoter too
tightly. Shown is measured expression vs. inferred promoter strength
−∆ERNAP (stronger promoters on the right). Expression decreases once the
RNAP binding becomes comparable to the free energy of the transcription
initiation state −∆Etrans = 6.2 kBT . The dashed line shows the prediction of
the multivalent model.

Assuming the rate of transcription initiation is proportional to
the relative Boltzmann weights of these two states, the level of
gene expression rmax in Eq. 5 will be modified to

rmax + r0e
−β(∆ERNAP−∆Etrans)

1 + e−β(∆ERNAP−∆Etrans)
. [6]

As expected, this expression reduces to rmax for promoters that
weakly bind RNAP (e−β(∆ERNAP−∆Etrans)� 1) but decreases for
strong promoters until it reaches the background level r0 when
RNAP is glued to the promoter and unable to initiate tran-
scription. Upon reanalyzing the gene expression data with the
inferred value ∆Etrans =−6.2 kBT (SI Appendix, section E), we
find that gene expression diminishes for the strongest RNAP–
promoter free energies ∆ERNAP as shown in Fig. 4 (stronger
promoters to the right). This suggests that for sufficiently strong
promoters, the rate-limiting step in transcription initiation
changes from RNAP dissociation to promoter escape.

The Bivalent Binding of RNAP Buffers Its Interaction with DNA Against
Promoter Mutations. In this final section, we investigate how the
avidity between the −35 and −10 sites changes the dynamics of
RNAP binding. More specifically, we consider the effective dis-
sociation constant governing RNAP binding when both the −35
and −10 sites are intact and compare it to the case where only
one site is capable of binding. To simplify this discussion, we
focus exclusively on RNAP binding to the −35 and −10 motifs
as shown in the rates diagram Fig. 1C, absorbing the effects of
the background, spacer, and UP elements into these rates.

At equilibrium, there is no flux between the four RNAP states.
We define the effective dissociation constant

K eff
D =

K−35K−10

c0 +K−35 +K−10
[7]

which represents the concentration of RNAP at which there is a
50% likelihood that the promoter is bound (SI Appendix, section
F). Kj =

koff,j
kon

stands for the dissociation constant of free RNAP

binding to the site j and c0 = k̃on
kon

= [RNAP]e−βEint represents the

increased local concentration of singly bound RNAP transition-
ing to the fully bound state (i.e., Eint and c0 are the embodiments
of avidity in the language of statistical mechanics and thermody-
namics, respectively). Note that K eff

D is a sigmoidal function of
K−10 with height K−35 and midpoint at K−10 = c0 +K−35.

Fig. 5 demonstrates how the effective RNAP dissociation con-
stant K eff

D changes when mutations to the −10 binding motif
alter its dissociation constant K−10. When the −35 sequence is
weak (dashed lines, koff,−35→∞), K eff

D ≈K−10, signifying that
RNAP binding relies solely on the strength of the −10 site. In the
opposite limit where RNAP tightly binds to the −35 sequence
(solid lines), the cooperativity c0 and the dissociation constant
K−35 shift the curve horizontally and bound the effective disso-
ciation constant to K eff

D ≤K−35. This upper bound may buffer
promoters against mutations, since achieving a larger effective
dissociation constant would require not only wiping out the −35
site but in addition mutating the −10 site. Finally, in the case
where the cooperativity c0 is large, K eff

D ≈
K−10K−35

c0
, indicating

that as soon as one site of the RNAP binds, the other is very likely
to also bind, thereby giving rise to the multiplicative dependence
on the two KD s.

To get a sense for how these numbers translate into physiolog-
ical RNAP dwell times on the promoter, we note that the lifetime
of bound RNAP is given by τ = 1

K eff
D kon

(SI Appendix, section F).

Using K eff
D ≈ 550 nM for the lac promoter (15) and assuming a

diffusion-limited on-rate 107 1
M·s leads to a dwell time of 5 s, com-

parable to the measured dwell time of RNAP–promoter in the
closed complex (16). It would be fascinating if recently developed
methods that visualize real-time single-RNAP binding events
probed the dwell time of the promoter constructed by Urtecho
et al. (8) to see how well the predictions of the multivalent model
match experiments (16).

Discussion
While high-throughput methods have enabled us to measure the
gene expression of tens of thousands of promoters, they never-
theless only scratch the surface of the full sequence space. A
typical promoter composed of 200 bp has 4200 variants (more
than the number of atoms in the universe). Nevertheless, by
understanding the principles governing transcriptional regula-
tion, we can begin to cut away at this daunting complexity to
design better promoters.

In this work, we analyzed a recent experiment by Urtecho et al.
(8) measuring gene expression of over 10,000 promoters in E. coli
using the σ70 RNAP holoenzyme. These sequences comprised all
combinations of a small set of promoter elements, namely, eight
−10s, eight −35s, eight spacers, eight backgrounds, and three

Fig. 5. The dissociation between RNAP and the promoter. Shown is
RNAP binding to a promoter with a strong (solid lines, K−35 = 1 µM)
or weak (dashed lines, K−35→∞) −35 sequence. c0 represents the local
concentration of singly bound RNAP.
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UPs depicted in Fig. 1A, providing an opportunity to deepen our
understanding of how these elements interact and to compare
different quantitative models of gene expression.

We first analyzed these data using classic energy matrix models
which posit that each promoter element contributes indepen-
dently to the RNAP–promoter binding energy. As emphasized by
Urtecho et al. (8) and others, such energy matrices poorly char-
acterize gene expression (Fig. 2A, R2 = 0.57) and offer testable
predictions that do not match the data (SI Appendix, section C),
mandating the need for other approaches (7, 8).

To meet this challenge, we first determined which pro-
moter elements contribute independently to RNAP binding (SI
Appendix, section D). This process, which was done without
recourse to fitting, demonstrated that the −35 and −10 elements
bind in a concerted manner that we postulated is caused by avid-
ity. In this context, avidity implies that when RNAP is singly
bound to either the −35 or the −10 sites, it is much more likely
(compared with unbound RNAP) to bind to the other site, sim-
ilar to the boost in binding seen in bivalent antibodies (17) or
multivalent systems (12, 18, 19). Surprisingly, we found that out-
side the −35/−10 pair, the other components of the promoter
contributed independently to RNAP binding.

Using these findings, we developed a multivalent model of
gene expression (Eq. 5) that incorporates the avidity between
the −35/−10 sites as well as the independence of the UP/spacer/
background interactions. This model was able to characterize
the 4,096 promoters with no UP element (Fig. 2B, R2 = 0.91)
and the 8,192 promoters containing an UP element (Fig. 3B,
R2 = 0.88). These results surpass those of the traditional energy
matrix model (Fig. 2A, R2 = 0.57), requiring only two addi-
tional parameters that could be experimentally determined (e.g.,
the interaction energy Eint arising from the −35/−10 avid-
ity and the level of gene expression r0 of a promoter with a
scrambled −10 motif, a scrambled −35 motif, or both motifs
scrambled).

These promising findings suggest that determining which com-
ponents bind independently is crucial to properly characterize
multivalent systems. It would be fascinating to extend this study
to RNAP with other σ factors (13) as well as to RNAP mutants
with no α CTD or that do not bind at the −35 site (20, 21).
Our model predicts that polymerase in this last category with

one strong binding site should conform to an energy matrix
approach.

Quantitative frameworks such as the multivalent model
explored here can deepen our understanding of the underlying
mechanisms governing a system’s behavior. For example, while
searching for systematic discrepancies between our model pre-
diction and the gene expression measurements, we found that
promoters predicted to have the strongest RNAP affinity did not
exhibit the largest levels of gene expression (thus violating a core
assumption of nearly all models of gene expression that we know
of). This led us to posit a characteristic energy for transcription
initiation that reduces the expression of overly strong promoters
(Fig. 4). In addition, we explored how having separate binding
sites at the −35 and −10 elements buffers RNAP kinetics against
mutations; for example, no single mutation can completely elim-
inate gene expression of a strong promoter with the consensus
−35 and −10 sequence, since at least one mutation in both the
−35 and −10 motifs would be needed (Fig. 5).

Finally, we end by zooming out from the particular context
of transcription regulation and note that multivalent interactions
are prevalent in all fields of biology (22), and our work suggests
that differentiating between independent and dependent inter-
actions may be key to not only characterizing overall binding
affinities but also understanding the dynamics of a system (23).
Such formulations may be essential when dissecting the much
more complicated interactions in eukaryotic transcription where
large complexes bind at multiple DNA loci (24, 25) and more
broadly in multivalent scaffolds and materials (11, 12).

Materials and Methods
Gene expression was measured as the ratio of RNA to DNA barcodes (8).
We fitted both the energy matrix and multivalent models on 75% of
the data and characterized the predictive power on the remaining 25%,
repeating the procedure 10 times. The coefficient of determination R2 was
calculated for ydata = log10(gene expression) to prevent the largest gene
expression values from dominating the result (SI Appendix, section B). The
Mathematica notebook (doi: 10.22002/D1.1242) contains the data analyzed
in this work and can recreate all plots.
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