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Danger zone
What level of Ras genes activity leads to the development of cancer?
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W
hen a cell multiplies, differentiates or

dies, it relies on a number of com-

plex signalling networks. In turn,

mutations in nodes that increase or decrease

communication through these networks fre-

quently result in diseases. An example is the Ras

gene family, which is often mutated in cancer:

activating mutations at certain Ras codons leads

to cells proliferating and forming tumours

(Prior et al., 2020). However, too much activa-

tion can trigger safety mechanisms and cause

the cell to die. How much Ras activity is enough

to drive cancer is therefore a fundamental

question.

For a long time it was assumed that any

mutation that activated Ras proteins would lead

to disease. New evidence, however, has

revealed that local cellular and disease context

creates important differences between Ras

mutants (Killoran and Smith, 2019;

Haigis et al., 2019). In one study in mice, for

example, out of twelve different mutations intro-

duced in equal quantities in a Ras gene called

KRAS, only five led to the animals developing

lung tumours (Winters et al., 2017). Intriguingly,

which mutation drives disease was different

depending on the type of cancer, and the

genetic background of the mouse strain. These

data imply mutation-specific differences in Ras

biology.

Now, in eLife, Siqi Li and Christopher Counter

from Duke University report having described

the optimal conditions in which various Ras

mutations operate (Li et al., 2018). According

to a previously proposed ‘sweet spot’ model,

there is a level of Ras activity high enough to

promote tumour formation, but not to lead to

cell death (Li and Counter, 2021). To examine

this further, a classic mouse cancer model was

exposed to urethane, a chemical found in fer-

mented foods that consistently generates a

codon Q61* mutation in KRAS and leads to Ras-

driven lung cancer (Westcott et al., 2015;

Dwyer-Nield et al., 2010). Codon Q61* muta-

tions are known to lead to more Ras activity

than codon G12* mutations (Burd et al., 2014;

Figure 1); this suggests that codon Q61* muta-

tions, rather than G12*, have optimal levels of

Ras signalling in this urethane-induced cancer

model.

To test if weaker G12* mutations could also

induce cancer in this model, a mouse strain with

increased KRAS expression (called KRASex3op)

was exposed to urethane, artificially boosting

the amount of active Ras. Even though Q61*

mutations were still generated, G12* mutations

were found to drive the development of tumours

in these animals; this demonstrated that the

switch was due to Ras biological properties, a

result consistent with the sweet spot model.

Whether strong Ras signalling – which would

normally induce cell death – could be moved

into the optimal activity zone was explored by

deleting p53 in wild type mice. This gene

instructs cells to die when oncogenic stress indu-

ces unrepairable DNA damage. As predicted,

p53-/-, KRASex3opmouse strains with increased

KRAS expression and depleted p53 could toler-

ate high levels of Q61* mutations (Figure 1).

Intriguingly, p53-/- mice also showed an endoge-

nous amplification of KRAS, which moved G12*
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mutations up into the optimal Ras signalling

zone. This was not due to additional copies of

Ras genes, but to an increase in the production

of messenger RNAs carrying the G12* change.

Together, these data reveal a narrow window

of cancer-causing Ras activity; this suggests that

the role of specific Ras mutations, and how they

are combined, needs to be considered for

research design and treatment options. How-

ever, further studies ought to formally quantify

how a range of Ras mutations and combinations

differ in their relative activity. This will help to

confirm whether the model holds true across a

broader range of cancer contexts, and to more

precisely determine optimal Ras activity.

The model is based on observed endpoints,

after tumours have grown. Yet, it is reasonable

to assume that the optimal level of Ras signalling

changes as the cancer develops: for instance,

Ras alleles are amplified and lost over the life

history of cancer, and in response to therapy

(Burgess et al., 2017). An exciting observation

was the increase in KRAS messenger RNA to

help modulate Ras activity; however, this still

needs to be validated by measuring Ras protein

levels. Finally, how variable levels of Ras activity

then variously impact wider cancer signalling

networks is a big question that remains

unanswered.
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Figure 1. Optimal Ras signalling is required for tumour development. Li and Counter investigated the impact of

Q61* and G12* mutations in the Ras gene KRAS on wild-type and mutant mice. Q61* and G12* mutations

respectively lead to a large and moderate increase in the activity of the gene. Wild-type mice exposed to urethane

(which causes Q61* mutations) develop lung cancer after a year (top; first line of table). KRASex3op mutant mice

have raised Ras activity, and therefore increased oncogenic stress; in these animals, the G12* mutation is the main

driver of tumours, because it is less active than Q61* (second line of table). Conversely, p53-/- mice have

decreased oncogenic stress and are able to tolerate high levels of Ras activity driven by Q61* mutations, leading

to tumour growth; however, they also showed increased levels of G12* KRAS mutant messenger RNA (third line).

p53-/-, KRASex3op mutants have normal levels of oncogenic stress, and in these animals both Q61* and G12*

mutation can lead to disease (fourth line). Overall, depending on the genetic background of the animal, which

mutations lead to the level of Ras activity that triggers cancer varies (bottom). " indicate genotypes or post-

transcriptional mechanisms that increase Ras abundance.
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