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Background: Although proteomics has been employed in the study of several models of
liver injury, proteomic methods have only recently been applied not only to biomarker
discovery and validation but also to improve understanding of the molecular mechanisms
involved in transplantation.

Methods: The study was conducted following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) methodology and the guidelines for
performing systematic literature reviews in bioinformatics (BiSLR). The PubMed,
ScienceDirect, and Scopus databases were searched for publications through April
2020. Proteomics studies designed to understand liver transplant outcomes, including
ischemia-reperfusion injury (IRI), rejection, or operational tolerance in human or rat
samples that applied methodologies for differential expression analysis were considered.

Results: The analysis included 22 studies after application of the inclusion and exclusion
criteria. Among the 497 proteins annotated, 68 were shared between species and 10
were shared between sample sources. Among the types of studies analyzed, IRI and
rejection shared a higher number of proteins. The most enriched pathway for liver biopsy
samples, IRI, and rejection was metabolism, compared to cytokine-cytokine receptor
interactions for tolerance.

Conclusions: Proteomics is a promising technique to detect large numbers of proteins.
However, our study shows that several technical issues such as the identification of
proteoforms or the dynamic range of protein concentration in clinical samples hinder the
successful identification of biomarkers in liver transplantation. In addition, there is a need
to minimize the experimental variability between studies, increase the sample size and
remove high-abundance plasma proteins.
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INTRODUCTION

Liver transplantation (LT) for the treatment of end-stage liver
diseases remains debatable regarding graft viability, such as acute
rejection, ischemia-reperfusion injury (IRI), or primary graft
dysfunction. To predict and prevent dysfunction and graft
rejection, researchers have tried to identify biomarkers that can
predict which grafts are more likely to suffer these complications
(1). Many studies have focused on DNA polymorphisms, biopsy
RNA expression or donor circulant-free DNA and microRNA
for the prediction and diagnosis of several events related to
transplantation (2–4). Although proteomics has been applied in
the study of liver injury (5), proteomic methods have only
recently started to been used for biomarker discovery but also
to improving the understanding of the molecular mechanisms in
transplantation (6). Proteomics is defined as the unbiased global
analysis of the quantitative expression and identification of
proteins in a cell, tissue, or organ. Instead of the classical
approach in which a candidate gene or protein guides all
analyses, protein profiling provides a powerful method to
analyze the role of proteins in disease processes in an unbiased
manner. Proteomics assays capture a large set of proteins,
providing an approach to identify possible biomarkers and
mediators and the advantage of elucidating the overall patterns
of lesion-induced changes at the protein level (7). Moreover,
functional proteomics provides a superior capacity over other
techniques to identify modified proteins involved in multiple
networks of living cells or body fluids (8). In addition,
proteomics complements gene profiling because it represents
the regulation of translation, post-translational modifications,
protein kinetics, protein-protein interactions, and protein losses.
Integrative approaches are expected to unify high-throughput
genomics, proteomics and bioinformatics to develop what is
known as “transplantomics” in the field of transplantation (9).
The aim of proteomics is to unravel all underlying biological
mechanisms to obtain information on the physiopathology of the
alloimmune response, rejection, or IRI and, thus, to define new
therapeutic targets (10). Studies have shown that the proteins
involved in lipid and energy metabolism, redox signaling, and
oxidative stress are affected during both the hot and cold
ischemic phases of transplantation (11). Proteomic research
can also be used to identify immunologic markers for
operational tolerance in liver or kidney graft recipients.
Regarding rejection, the availability of clinical biomarkers of
immune activation may allow individualized patient
management to avoid acute rejection events (11).
Abbreviations: ACTB, Actin beta; APO, Apolipoprotein; CA1, Carbonic
anhydrase 1; CKD, Chronic kidney disease; C3, Complement C3; DIGE,
Difference gel electrophoresis; ER, Endoplasmic reticulum; GC, GC vitamin D
binding protein; GSTA1, Glutathione S-transferase alpha 1; IS ,
Immunosuppression; IL-17, Interleukin-17; IRI, Ischemia reperfusion injury;
iTRAQ, Isobaric tags for relative and absolute quantitation; LT, Liver
transplantation; MAP1, Microtubule associated protein 1; PRISMA, Preferred
Reporting Items for Systematic Reviews and Meta-Analyses; SLR, Systematic
literature review; MS/MS, Tandem mass spectrometry; 2D gel, Two-dimensional
gel electrophoresis.
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Here, we review the use of proteomics in LT including graft
rejection, IRI, immune tolerance, and other transplant derived
diseases. To do so, we analyzed different reported techniques and
sample sources and compared human and animal studies to
describe the principal relevant proteins overlapping among
independent studies. Moreover, we highlight the limitations in
the proteomic approaches of the different studies as one of the
major challenge for the future of this research.
EXPERIMENTAL PROCEDURES

This systematic literature review (SLR) was carried out following
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) checklist (12) and the guidelines for
performing SLR in bioinformatics (BiSLR) (13).

Search Strategy
We performed a systematic review of scientific publications that
analyzed the proteomic profiles of liver transplant samples. All
relevant articles were searched without date limits from the
PubMed, Scopus, and ScienceDirect databases. The search
terms included a combination of standardized index terms and
plain language to cover the terms “liver transplantation”; “liver
graft”; “liver transplant”; “liver allograft”; “proteomics”; and
“proteome”. These keywords were defined by consensus among
authors and customized for each database (Table S1). The search
was completed in April 2020.

Selection Criteria
The searches were limited to studies published in the English
language using the standard limitations provided by the
respective databases. To be eligible for screening, the studies
had to meet the following criteria: (a) identification of LT
proteomics biomarkers as the main objective, (b) including
human or animal models, and (c) application of methodologies
for differential expression analysis from proteome profiling.
Studies lacking adequate information on the experimental
design were not included. Abstracts, book chapters, and review
papers were also not considered.

Study Selection
To reduce the risk of bias (13), four researchers from different
fields (bioinformatics, biology, proteomics, and medicine)
independently reviewed the retrieved articles to assess their
suitability for inclusion in this review. After removing
duplicates using Mendeley reference management software,
study selection was performed in four steps: (a) title screening,
(b) abstract screening, (c) diagonal reading (focused on
introduction, figures, tables, and conclusion); and (d) full-text
reading (13). Only when more than half of the authors accepted
inclusion based on steps (a) to (c), those studies were selected for
the next step (d), where each reviewer independently evaluated
the articles according to a scoring system and the following set of
five questions (1): “does the article try to identify biomarkers
related to liver transplant?” (2); “has the article generated
proteome data?;” (3) “is the methodology based on differential
July 2021 | Volume 12 | Article 672829
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expression analysis of proteome data?” (4); “does the article
identify the experimental design, groups, and types or number of
samples?”; and (5)”does the article properly report the list of
potential biomarkers and the respective fold-change, p-value, or
differential patterns observed (up-regulation or down-
regulation) in the main text or supplementary material?”. For
each question, scores were given following predefined criteria: 0
if the article does not meet any requirement of the question; 1 if it
only partially meets the requirements; and 2 if it meets all the
requirements. Articles with an average score equal to or higher
than 6 among all evaluations were included.

Analysis and Data Collection
Data were independently extracted by all investigators using a
standardized form and disagreements were resolved by
consensus. A narrative summary of the results was produced
according to specific data subjects: (a) the article’s author and
year of publication; (b) study characteristics, including the
design, study model, study type, sample type, proteomic
technology, data analysis methods, presence or absence of
validation; and (c) differential expression patterns of potential
biomarkers (up- or down-regulated). For each study, the
reported proteins were extracted from tables, figures, text, or
supplemental material. For evaluation purposes, the protein
identifiers were converted to the official gene symbol
nomenclature (14).

Pathway Enrichment Design
Pathway and gene ontology (GO) enrichment analyses were
performed for the differentially expressed proteins in the
different study types (IRI, rejection, tolerance) or sample
sources (plasma/serum or biopsies), using the corresponding
functions of the limma package in the R statistics language (15).

These functions perform over-representation analyses by
computing one-sided hypergeometric tests equivalent to
Fisher’s exact tests. The p-values returned by these functions
are not adjusted for multiple testing because the terms and
pathways are often overlapping and standard methods of
p-value adjustment may be very conservative. Therefore,
caution should be exercised when interpreting the results. Only
very small p-values should be considered.

Risk of Bias Measurement
Due to the large heterogeneity in the study types, we adapted and
answered 13 items of the Downs and Black checklist for a critical
evaluation of the quality of the cited papers (Table S2) (3).
RESULTS

Literature Search and
Studies Descriptions
A total of 95 references were collected from the PubMed,
ScienceDirect, and Scopus databases. Duplicates were removed,
resulting in 85 studies. After the screening phase, 56 studies were
excluded. Among the remaining 29 studies, seven were excluded
for average scores below 6. Finally, the SLR included 22 studies
Frontiers in Immunology | www.frontiersin.org 3
(Figure 1). Fifty percent of the studies were from Asia, 27% were
from the US, and 18% were from Europe. Only one paper was
from South America (16). The selected studies were published
between 2004 and 2019, with 40% published in the last 5
years (Table 1).

Proteomics Strategies
Two-dimensional gel electrophoresis (2D gel)- based proteomics
is the most widely used strategy described in selected
publications (50%); however, shotgun proteomics has displaced
this strategy, as this proteomic method has been applied most
frequently in the last 5 years (62.5%). Only four of the
publications used antibody arrays, two of which were in
combination with 2D gel-based proteomics analyses (20, 33)
(Table 2). The application of prefractionation techniques to
reduce the high dynamic range in protein abundance is
increasing, as we observed that their use has doubled in the
last 5 years (62.5% vs.21.4%). Protein identification was carried
out mainly by tandem mass spectrometry (MS/MS) (75%), but
only half of the selected publications performed validation,
principally by western blot (80%). The protein quantification
most used in 2D gel-based proteomics was silver staining (50%),
while stable isotope labeling of peptides with isobaric tags for
relative and absolute quantitation (iTRAQ) method (62%) was
the most often used method for shotgun proteomics (Table 2). In
addition, two publications carried out fluorescent multiplexing
technology (25, 30). The median number of selected proteins
differentially expressed per study was 37, ranging from 7 (33) to
197 (35) (Table 2).

Sample Sources and Study Types
Half of the publications were conducted as clinical trials with
human samples, whereas the other half used rats as an animal
model (Table 1). The sample size was highly variable for human
studies, with a mean of 23 patients per trial, with a range from 3
to 96 patients (Table 1). The mean number of rats per analysis
group was 7, with a minimum of 3 and a maximum of 15
(Table 1). Likewise, most of the proteomics were performed with
liver biopsies (50%), followed by serum or plasma (41%)
(Table 1). Only one study each used peripheral blood
mononuclear cells (32) or preservation solution (35) as sample
source. Most of the selected publications focused on liver IRI
(41%), followed by acute liver graft rejection (27.3%) and
immunological LT tolerance (18.2%). Only one paper each
analyzed three other scenarios such as primary graft non-
function (28), chronic kidney disease (CKD) associated with
LT (25) or liver regeneration after living-donor LT (22)
(Table 1). The IRI studies were quite variable. Among human
samples, two publications analyzed samples only after
reperfusion. Zhang et al. (37) compared healthy volunteers to
liver transplant patients 1 to 7 days after reperfusion, while
Parvanien et al. (24) took samples from the portal vein, the
hepatic vein, and the radial artery, and compared changes among
the different types of blood. On the other hand, Coskun et al. (35)
analyzed cold ischemia using organ preservation solution as a
sample source. Three other studies recollected both ischemia and
reperfusion samples and compared them to control (pre-
July 2021 | Volume 12 | Article 672829
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FIGURE 1 | Flow diagram through the different phases of studies selection for systematic review.
TABLE 1 | Principal characteristics of the publications selected for this SLR.

Author Country Year Model Type of sample Type of study Sample size*

Pan et al. (17) Taiwan 2004 Rat Serum Tolerance n.d.
Vascotto et al. (18) Italy 2006 Human Biopsy IRI 9
Zhang et al. (19) China 2007 Rat Biopsy Rejection 9
Svetlov et al. (20) USA 2008 Rat Biopsy IRI 3
Cheng et al. (21) China 2010 Rat Biopsy Rejection n.d.
Wu et al. (22) China 2010 Rat Biopsy Liver regeneration 15
Pan et al. (23) Taiwan 2011 Rat Serum Tolerance n.d.
Parviainen et al. (24) Finland 2011 Human Plasma IRI 3
Levitsky et al. (25) USA 2011 Human Plasma CKD 64
Massoud et al. (26) USA 2011 Human Serum Rejection 8
Tiriveedhi et al. (27) USA 2012 Rat Biopsy IRI 3
Kornasiewicz et al. (28) Poland 2012 Human Biopsy Primary graft non-function 96
Wu et al. (29) China 2012 Human Biopsy IRI 3
Levitsky et al. (30) USA 2013 Human Plasma Tolerance 20
Wei et al. (31) China 2015 Rat Biopsy Rejection 10
Toby et al. (32) USA 2017 Human PBMCs Rejection 26
Wang et al. (33) Taiwan 2018 Rat Serum Tolerance 5
Knecht et al. (16) Argentine 2018 Rat Biopsy IRI 4
Jiang et al. (34) China 2019 Human Serum Rejection 6
Coskun et al. (35) Turkey 2019 Human Preservation solution IRI 23
Huang et al. (36) China 2019 Human Biopsy IRI 13
Zhang et al. (37) China 2019 Human Serum IRI 9
Frontiers in Immunology | www.f
rontiersin.org
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TABLE 2 | Proteomics technology used along the different selected publications in this SLR.

tionation Identification Number of
selected
proteins

Validation

Mass
spectrometer

Method

MALDI-TOF MS PMF 13 –

MALDI-TOF MS PMF 36 –

romatography and SDS- LC-ESI-MS/MS MS/MS 17 WB

MALDI-TOF MS PMF 16 WB
MALDI-TOF/TOF MS MS/MS 18 WB
MALDI-TOF/TOF MS MS/MS 9 WB
MALDI-TOF MS &
LC-ESI-MS/MS

PMF and
MS/MS

19 WB

emoval LC Column- LC-ESI-MS/MS MS/MS 72 –

– – 22 –

Column (6) + strong
fractionation

LC-ESI-MS/MS MS/MS 41 ELISA

LC-ESI-MS MS/MS 106 –

LC-ESI-MS PMF 21 –

MALDI-TOF/TOF MS MS/MS 34 WB
– – 12 –

liquid chromatography MALDI-TOF/TOF MS MS/MS 57 WB

entrapment
). Fraction 0-30 kDa

LC-ESI-MS/MS MS/MS 51 Not
required

MALDI-TOF MS PMF 7 WB

MALDI TOF/TOF MS MS/MS 23 –

hment LC-ESI-MS/MS MS/MS 10 ELISA
olumn LC-ESI-MS/MS MS/MS 197 –

LC-ESI-MS/MS MS/MS 10 –

on LC-ESI-MS/MS MS/MS 22 –

l electrophoresis; iTRAQ, Isobaric tags for relative and absolute quantitation; TMT tag, Tandem mass
; PMF, Peptide mass fingerprinting; MS/MS, Tandemmass spectrometry; WB, Western blot; ELISA,
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Author Year Type of
sample

Proteomics technology Quantification method
(range of isoelectric

point)

Prefrac

Pan et al. 2004 Serum 2D gel based-proteomics Coomassie Brilliant Blue
(3-10)

NO

Vascotto et al. 2006 Biopsy 2D gel based-proteomics Silver (3-10) NO
Svetlov et al. 2006 Biopsy Antibody array/SDS-PAGE

& LC-MS/MS
Antibodies fluorescence Cationanion exchange c

PAGE
Zhang et al. 2007 Biopsy 2Dgel based-proteomics DIGE (3-10 NL) NO
Cheng et al. 2010 Biopsy 2Dgel based-proteomics Silver (3-10 NL) NO
Wu et al. 2010 Biopsy 2Dgel based-proteomics Silver (3-10) NO
Pan et al. 2011 Serum 2Dgel based-proteomics DIGE (4-7) NO

Parviainen et al. 2011 Plasma Shotgun Proteomics iTRAQ Agilent Multiple Affinity R
Human 6

Levitsky et al. 2011 Plasma Luminex Bead Technology Antibodies fluorescence NO
Massoud et al. 2011 Serum Shotgun Proteomics iTRAQ Multiple Affinity Remova

cation exchange column
Tiriveedhi et al 2012 Biopsy 2Dgel based-proteomics DIGE (3-10 NL) NO
Kornasiewicz et al. 2012 Biopsy 2Dgel based-proteomics Silver (3-10) NO
Wu et al. 2013 Biopsy 2Dgel based-proteomics DIGE (3-10) NO
Levitsky et al. 2013 Plasma Luminex Bead Technology Antibodies fluorescence NO
Wei et al. 2015 Biopsy Shotgun Proteomics iTRAQ Strong cation exchange

(SCX)
Toby et al. 2017 PBMCs TOP-Down proteomics Label free Gel-eluted liquid fraction

electrophoresis (GELFrE
Wang et al. 2018 Serum 2Dgel based-proteomics/

Antibody array
Silver (4-7) NO

Knect et al. 2018 Biopsy 2Dgel based-proteomics Coomassie Brilliant Blue
(3-10)

NO

Jiang et al. 2019 Serum Shotgun Proteomics iTRAQ ProteoMiner protein enri
Coskun et al. 2019 Preservation

solution
Shotgun Proteomics Label free Immunodepletion Hu14

Huang et al. 2019 Biopsy Shotgun Proteomics TMT tags NO
Zhang et al. 2019 Serum Shotgun Proteomics iTRAQ Phase reverse fractionat

SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 2D gel, Two-dimension gel electrophoresis; DIGE, Differential in ge
tag system; MALDI, Matrix-assisted laser desorption/ionization; TOF, Time-of-flight; LC-, Liquid chromatography; ESI, Electrospray ionizatio
Enzyme-linked immunoSorbent assay.
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ischemia) samples and even between them (18, 29, 36). When
rats were used as a model, Knecht et al. (16) carried out ex vivo
cold storage and normothermic reperfusion, whereas the other 2
publications performed a model of in vivo selective warm
ischemia using vascular clamping followed by reperfusion,
such in normal (20) as in steatotic rats (27).

Only one study on rejection analyzed chronic rejection (31),
whereas the rest were focused on acute cellular rejection, of
which, two were carried out in rats (19, 21) and three with
human samples (26, 32, 34), although Massoud et al. (26)
enrolled hepatitis C virus -positive patients in their trial.

In contrast, spontaneous tolerance in a rat model of LT was the
mainmodel used in the tolerance selected publications (17, 23, 33).

Commonly Identified Proteins Among
Independent Studies
A total of 497 proteins detected by proteomics were identified by
the selected studies (354 and 211 from humans and rats,
respectively) (Table S3). Of these, 68 proteins (13.68%)
overlapped between species (Figure 2A; Table S4A). Among
114 proteins identified in serum or plasma (101 in human and 25
in rats), 12 (10.53%) overlapped between species (Figure 2B;
Table S4B). Among 250 proteins detected in liver biopsy studies
(80 in human and 190 in rat), 20 (8%) overlapped between
species (Figure 2C; Table S4C). Almost half of the proteins
annotated from serum or plasma (45.6%) were among the 150
most abundant proteins in plasma (38) (Table S4D).

Likewise, only 10 proteins (2.17%) overlapped between serum
and tissue samples, including both animal and human samples
(Figure 2D; Table S4E). However, 63 (13.64%) and 28 (6.1%)
proteins overlapped between preservation solution and liver
biopsies or serum, respectively (Figure 2D; Tables S4F, G).
Moreover, four proteins (0.87%), including C-reactive protein
(CRP), Glutathione S-transferase alpha 1 (GSTA1), Hemoglobin
subunit beta (HBB) and Hemopexin, were found in all sample
sources (Table S4H).

Among the selected studies based on serum or plasma, three
proteins were found in 44.44% of the publications (Complement
C3 (C3), GC vitamin D binding protein (GC) and Haptoglobin),
whereas other five proteins [Apolipoprotein A1 (APOA1),
Apolipoprotein E (APOE), Apolipoprotein H (APOH),
Ceruloplasmin and Microtubule associated protein 1 (MAP1)]
were found in one-third of the studies (Figure 2E; Table S4I).
However, when liver biopsies were the sample source for
proteomics, only albumin was found in almost half of the
publications, followed by eight proteins differentially expressed
in at least three publications (27.3%) (Figure 2F; Table S4J).

On the other hand, two proteins [albumin and carbonic
anhydrase 1 (CA1)] were described as differentially expressed
in four of the nine selected works related to IRI and eight
proteins in three publications, whereas other 76 proteins were
annotated in two studies (Figure 3A; Table S4K). Likewise, eight
proteins were shared in one-third of the graft rejection studies
[Actin beta (ACTB), Aldehyde dehydrogenase 2 family member
(ALDH2), Catalase, Cofilin 1 (CFL1), Clustering, FKBP Prolyl
Isomerase 10 (FKBP10), Regucalcin and Sulfite oxidase (SUOX)]
(Figure 3B; Table S4L). Moreover, haptoglobin was shared in
Frontiers in Immunology | www.frontiersin.org 6
100% of the tolerance publications, while MAP1 was present in
75% of the studies and other four proteins (APOE, C3,
Ceruloplasmin and GC) appeared in 50% of the studies
(Figure 3C; Table S4M). Moreover, 40 proteins (8.39%) were
shared between IRI and rejection studies (Table S4N), 13
(2.73%) between IRI and tolerance (Table S4O), and 8 (1.63%)
between rejection and tolerance (Table S4P) studies. A total of
1.05% of the proteins described (albumin, APOA1, C3, GSTA1
and hemopexin) were shared among the three different study
types (Figure 3D; Table S4Q).

Differential patterns of protein expression were reported for
78.67% of the listed proteins, in which 241 proteins were up-
regulated among all study types or sample sources and 190 were
down-regulated. Furthermore, 40 of these proteins (10.23%) were
described as both up- and down-regulated, in several publications
(Figure 4A;Table S4R).When analyzed by study type, IRI showed
the most duplicated patterns [14 proteins including Estrogen
sulfotransferase (STE), Ribosomal protein SA (RPSA), Protein
disulfide isomerase family A member 3 (PDIA3), Heat shock
protein 90 alpha family class A member 1 (HSP90B1), GC,
Cytochrome B5 type A (CYB5A), CA1, APOA1, Aldehyde
dehydrogenase 1 family member L (ALDH1L1), Albumin, Aldo-
keto reductase family member C1 (AKR1C1), Alanine-glyoxylate
aminotransferase 2 (AGXT2), Alcohol dehydrogenase 4 (ADH4)
and ATP citrate lyase (ACLY)], followed by tolerance studies with
four proteins (MAP1, Haptoglobin, GC and Ceruloplasmin) and
graft rejection with two proteins (CA1 and ACTB) (Figure 4B).

Only Huang et al. (36) carried out a correlation analysis of
proteomic results with transcriptomic data.

Enriched Pathways
In this study, 47 and43pathwayswere associated, respectively, with
the protein list for serumor liver samples.Metabolic pathwayswere
themost representative in both cases, including carbonmetabolism
(hsa01200), glycolysis/gluconeogenesis (hsa00010), and aminoacid
biosynthesis (hsa01230) (Tables S5A, B). Although 70% of the
pathways were shared (Table S5C), complement/coagulation
cascades (hsa04610), and interleukin (IL)-17 signaling pathway
(path04657) were specific for serum, whereas protein processing in
the endoplasmic reticulum (hsa04141) was related exclusively to
liver tissue samples. Analysis of specific studies showed that
metabolic pathways (hsa01100) and complement/coagulation
cascades were the principal pathways involved in IRI (Table
S5D). Likewise, metabolic pathways were the most important in
rejection (Table S5E), whereas cytokine-cytokine receptor
interaction (hsa04060), complement/coagulation cascades, or IL-
17 (path04657) and tumor necrosis factor (TFN) signaling
pathways (path04668) were the most prominent in tolerance
(Table S5F).

Quality Evaluation
Table S2 shows the methodological quality scores of the included
studies according to the Downs and Black methods. The average
score was 56.99%, and eight of the 22 studies achieved scores
equal to or greater than 60%. In general, the studies clearly stated
their objectives, hypotheses, and main findings. However, most
of the studies did not properly describe the main confounders.
July 2021 | Volume 12 | Article 672829
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Moreover, the number of participants was reduced in general, so
the score in the representative source population and outcome
measures was also low.
DISCUSSION

Proteome studies are powerful tools in translational clinical
research. However, this relatively new and expensive technique
requires a complex infrastructure (39) which might explain why
there have only been a few studies and limited work focused in LT
Frontiers in Immunology | www.frontiersin.org 7
andwhymost have been conducted in theUS andChina during the
last 15 years. Ideally, the techniques applied should be able to
identify and quantify all proteins present in any clinical sample. To
achieve this goal, it is essential to upgrade protein and peptide
separation techniques, mass spectrometry instrumentation, and
bioinformatics software together with the accession to complete
sequence genomedatabases (40, 41).Unfortunately, deep proteome
analysis is hampered by the high dynamic range in protein
abundances (42) of an estimated seven orders of magnitude,
while current mass spectrometry instruments can only analyze
four orders of magnitude. Therefore, mass spectrometry-based
A B

C D

E F

FIGURE 2 | Candidate protein biomarkers from different sample source. (A–D) Venn diagram among all selected studies in a cross-species (A–C) or cross-sample
source (D) analysis. (E, F) Bar graph representing the most shared proteins among all selected studies in serum/plasma (E) or liver biopsies (F).
July 2021 | Volume 12 | Article 672829

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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proteomics requires the combination of different separation
techniques to resolve complex mixtures of proteins to reach the
goal of identifying and quantifying all proteins. 2D gels have been
widely used since thefirst proteomics studies (43, 44), although they
have been replaced by bottom-up or shotgun proteomics due to the
Frontiers in Immunology | www.frontiersin.org 8
increased number of proteins detected, reduced sample handling,
and higher sampling throughput. The shotgun strategies are based
on protease digestion of protein mixtures, peptide separation by
liquid chromatography, and the identification by MS/MS of some
tryptic peptides of each protein, covering a low percentage of their
A

B C

D

FIGURE 3 | Candidate protein biomarkers from different types of study. (A–C) Bar graph representing the most shared proteins among all selected studies in IRI
(A), rejection (B) or tolerance (C). (D) Venn diagram among all selected publications in cross-type of study analysis.
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sequence, but allowing their identification (45). Furthermore, the
stable isotope labeling of peptides (iTRAQ or TMT-tags) enables
the quantification of the changes in abundance for thousands of
proteins in a single experiment by multiplexing up to eleven
different peptide samples (46, 47). Despite this yield, shotgun
proteomics experiments can only detect half of the proteins
present in a proteome (42) and the information obtained is
limited to the few tryptic peptides that allow the identification of
the protein. In contrast to 2D-gel-based techniques, we cannot
Frontiers in Immunology | www.frontiersin.org 9
distinguish between the different isoforms of a certain protein or if
any of them have changed their concentration after LT. In clinical
research, the high dynamic range in plasma protein levels is well
known (48) for which several strategies have been developed to
address this obstacle. Chromatographic methods for depleting the
most abundant proteins present in serum/plasma (49) or the
application of combinatorial hexapeptide ligand libraries
(ProteoMiner™ beads) (50) enable the identification of hundreds
ofproteinsusing a shotgunproteomics approach (24, 34).However,
A

B

FIGURE 4 | Differential pattern of protein expression. (A) Comparison of differential expression patterns observed for proteins among all selected studies expressed
as a Venn diagram. (B) Heat plot of the list of proteins that had evidence supporting both types of expression changes.
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the identification of thousands of proteins requires an extensive
fractionation of serum/plasma using affinity and/or ionic
chromatography before applying mass spectrometry-based
proteomics to each fraction (26, 37). In 2D gel proteomics,
protein quantification is performed using staining methods before
proteindigestionandmass spectrometry analysis.Modern sensitive
techniques such as difference gel electrophoresis (DIGE) (51) or
silver (52) staining protocols allow the detection of hundreds of
protein spots. Furthermore, the design ofDIGE experiments allows
a reduced number of biological replicates compared to other
staining methods such as silver or Coomassie Blue staining (53).
However, 2D gel spot identification of hundreds of proteins
hampers the proper quantification of each protein present in the
spot using only the gel staining step (54). The presence of several
proteins in the same spot also complicates their identification using
Peptide Mass Fingerprinting (18, 19), a common mass
spectrometry analysis method linked to 2D gel proteomics (55);
thus,MS/MS is required to improve protein identification (56). The
proteins identified by both 2D gel and shotgun proteomics
approaches require validation using other methodologies since
they are inferred from peptides sequenced by MS/MS and not
from complete protein. In contrast to bottom-up proteomics
strategies that involve protease digestion before mass
spectrometry analysis, top-down proteomics strategies identify
and quantify intact proteins directly through their fragmentation
in themass spectrometer (57). This methodology enables the study
of individual proteoforms (58), which is not possible through
“bottom-up” proteomics strategies, opening a new approach in
clinical proteomics. Therefore, top-down proteomics can describe
protein species generated due to RNA splicing, post-translational
modification, orproteolysis.However, several obstacles still hamper
complete proteome analysis, such as the proteoform pre-
fractionation step and the limitation of high-resolution mass
spectrometers. The application of gel-eluted liquid fraction
entrapment electrophoresis (59), as a proteoform pre-
fractionation method, in addition to high-resolution mass
spectrometry, has allowed the identification of proteoforms that
describe novel protein biomarkers associated with the liver
transplant rejection (32). Another approach to solving the
difficulties associated with the high dynamic range present in
biological samples is to apply targeted proteomic tools as
antibody arrays. This technology allows the quantification of
hundreds of proteins previously selected due to their clinical
interest. This approach has been applied in the field of LT to
identify liver biomarkers using hepatic biopsies (20) or plasma
(25, 30). The development of equipment combining fluorescence
andmultiplexing technologies has allowed a notable increase in the
numbers of proteins detected in small volumes of sample [189
proteins (25, 30) compared to 40 for antibody arrays (20)].

Rat LT is a well-established experimental model (60) with
hundreds of publications in the last 15 years. Moreover,
preclinical studies with rodents have been accepted as a
previous step in clinical trials (61). However, only 14% of the
proteins found to be differentially expressed in rat studies were
replicated in human samples. Although these species share 95%
of their genes (62), there are differences in their liver
Frontiers in Immunology | www.frontiersin.org 10
transcriptomes (63). Similarly, hepatocytes synthesize most of
serum proteins in the endoplasmic reticulum (ER), so that serum
levels of hepatocyte-made proteins comprise significant
biomarkers that reflect both systemic processes and liver status
(64). However, only 2% of proteins were shared between serum
and liver tissue in our SLR. This might be biased by the fact that
the tolerance studies always started from serum, whereas IRI and
graft rejection studies started mainly with biopsies. Nevertheless,
the processes that took place in both samples implied similar
enrichment of pathways but included different proteins.
Moreover, protein processing in the ER pathway appeared
enriched only in liver tissue samples. However, the presence of
shared proteins between liver tissue and preservation solution
samples increased up to 14%, as many cellular components are
released following damage occurring during cold ischemia (65).
It is, therefore, not surprising that both samples showed
metabolic pathways enrichment, as liver is known as the
metabolic factory (66) (Table S5G).

Ischemia-reperfusion is a pathological condition resulting
from an initial restriction of blood supply to an organ followed
by the restoration of perfusion and reoxygenation (67). Although
surgical techniques and immunosuppressants increase
transplant success rates, allograft rejection remains a major
problem, with a maximum incidence within the first weeks
(68). IRI after deceased donor transplantation increases the
rate of acute and chronic rejection and is estimated to account
for 10% of early organ failure (69). Thus, it is not surprising that
IRI and rejection studies shared more proteins. However, 13 of
these proteins appeared indistinctly up- or down-regulated in
both study. Likewise, 17 proteins could not be compared since
they were identified in an IRI study conducted with preservation
fluid (35), where the differential expression pattern was not
available. In other words, only 25% of the proteins shared
between IRI and rejection studies showed the same patterns.
Nevertheless, reperfusion injury, results not only from metabolic
disturbances but also from an inflammatory immune response
(70). However, although there is an enrichment of different
metabolic pathways in both IRI and rejection, only the related
immune response complement/coagulation cascades and
hypoxia inducible factor 1-alpha (HIF-1a) signaling pathways
appear to be somewhat prominent in IRI and rejection samples,
respectively. Apoptosis plays an important role in IRI during LT.
HIF-1a may trigger liver apoptosis following IRI through the
induction of hypoxically regulated genes (71).

Operational tolerance is defined as the state in which the
allograft is allowed to survive at a level that provides adequate
clinical function in the absence of IS (72). The achievement of
immune tolerance to an allogeneic graft is a field of intense
research, fueled by a critical need to avoid IS-related side effects
(73). Different groups have identified biomarkers to distinguish
tolerant patients from those who are going to experience
rejection, including genes (74, 75), T cell receptors (76–78),
activated regulatory T-cells (Treg) and related miRNAs (79).
However, proteomic analysis has not been commonly used to
study tolerance. The Chen group in Kaohsiung Chang Gung
Memorial Hospital (Taiwan) has studied the proteomic signature
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of spontaneous tolerance in a rat model of LT (17, 23, 33). The rat
models of tolerance can be induced spontaneously in LT between
different strains (80). In thisway, studies in toleranceproteomicswere
more similar, withhaptoglobin reported to be differentially expressed
in every publication. Same authors showed haptoglobin to be
differentially expressed in serum from a liver transplant recipient
after IS withdrawal (81). Moreover, in their proteomic study using
Luminex Bead technology, Levitsky et al. (30) reported haptoglobin
as significantly differentially expressed. However, haptoglobin is
reported to be both down- (23) and up-regulated (17, 33) in
different studies by the same authors. Moreover, haptoglobin was
also reported in one rejection study (21), when tolerance is a totally
antagonistic phenomenon. This protein has also been identified as
among the 12 most abundant plasma proteins in serum (38).

Proteomics is a promising technique that can be used to
detect a large number of proteins. Even so, progress remains slow
and further research is needed to develop a treatment (82). The
experimental variability between different study types and the
low numbers of participants do not help to identify specific
biomarkers for IRI, rejection, or tolerance. Increasing the
number of samples by means of cheaper validation methods is
a likely possibility. Similarly, there is an urgent need to eliminate
the most abundant proteins when working with serum or plasma
samples. Selective depletion of a dozen high-abundance proteins
extends analyses down about 1–2 orders of magnitude and
depletion of about 150 major proteins extends the range to
approximately 10,00-fold lower concentrations (38).

Although proteomics in LT, or any other field, is extremely
promising on its own, the future of this technique lies in the
improvement of the identification of proteoforms and their
integration with other techniques such as genomics and
metabolomics, which will help to provide a global view of the
interactomeof all the agents involved in a particular biological process.
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