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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers with a dismal
prognosis for the patient. This is due to limited diagnostic options for the early detection of the disease
as well as its rather aggressive nature. Despite major advances in oncologic research in general,
the treatment options in the clinic for PDAC have only undergone minor changes in the last decades.
One major treatment advance would be the successful targeting of the oncogenic driver KRASmut.
In the past, the indirect targeting of KRAS has been exploited, e. g., via upstream inhibition of receptor
tyrosine kinases or via downstream MEK or PI3K inhibition. However, the experience gained from
clinical trials and from the clinic itself in the treatment of KRASmut cancer entities has dampened the
initial euphoria. Lately, with the development of KRASG12C-specific inhibitors, not only the direct but
also the indirect targeting of KRASmut has gained momentum again. Though preclinical studies and
preliminary early clinical studies of monotherapies have shown promising results, they have been
overshadowed by the swift development of resistances resulting in inconsistent responses in patient
cohorts. Currently, several different combination therapies for KRASmut cancer are being explored.
If they hold the promise they have made in preclinical studies, they might also be suitable treatment
options for patients suffering from PDAC.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating of all cancer
types with a 5-year survival rate of less than 10% [1,2]. Due to progress in the treatment of other
cancer entities, such as breast cancer or lung adenocarcinoma, PDAC is predicted to become one
of the leading causes of cancer-related deaths by 2030 worldwide [3,4]. Over the past decades,
only minor changes in its management and treatment were implemented in the clinic to improve
patients’ prognosis, at the cost of increased toxicity [5]. Surgical resection remains the only
potentially curative treatment option, but merely 20% of patients present with the up-front resectable
disease. Currently, eligible patients receive surgery and then adjuvant treatment with gemcitabine,
gemcitabine/capecitabine, gemcitabine/Nab-Paclitaxel, (modified) FOLFIRINOX, or combination
therapy (including other treatment modalities, such as radiotherapy), depending on their performance
status [6–8]. The therapeutic success of clinically available first-line systemic therapies for locally
advanced and metastatic disease, which are largely similar to the regimens used in the adjuvant setting,
is highly limited by intrinsic and acquired chemoresistance. While promising attempts have been made
to elucidate the underlying mechanisms, they still remain only poorly understood [9–17]. In search
of additional treatment options, molecularly tailored approaches are being evaluated. Findings in
(pre-) clinical studies and meta-analyses of available data suggest hope for targeted therapies as
a promising way for treating PDAC [18,19]. Unfortunately, the initial high hopes set on the first
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targeted therapy, erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor
(TKI), were disappointed, because of quickly developing resistance and marginal as well as mixed
treatment response [20,21]. Recent preclinical findings have shed light on the involved mechanisms
and suggest successful application of the TKI in vertical combination with downstream effectors, e.g.,
STAT3i, PI3Ki or MEKi [22–24]. Nevertheless, taking all of the above into consideration, the clinical
development of novel treatments for patients suffering from PDAC is desperately needed. Although
PDAC is characterized by a highly divers inter- and intra-tumoral mutational landscape, over 90% of
all patients display an activating mutation in the KRAS gene [25–27]. Hence, mutant KRAS could be a
valuable target in the treatment of PDAC.

2. KRAS

KRAS encodes a small GTPase, which cycles between active and inactive state upon binding of
GTP, mediated by guanine nucleotide exchange factors (GEFs), and hydrolysis to GDP, facilitated by
GTPase-activating proteins (GAPs), respectively. A mutation in KRAS mostly involves a downregulation
of its intrinsic GTPase activity as well as a subdued interaction potential of KRAS with GAPs. This results
in a constitutive activation of the KRAS protein and continued stimulation of downstream signaling
pathways, which, in turn, govern several hallmarks of cancer, e.g., proliferation, anti-apoptosis,
cell migration and metastasis [28,29]. The proto-oncogene KRAS is the most frequently mutated among
the four main driver oncogenes in PDAC (next to TP53, CDKN2A and SMAD4). Even more so, it is
considered the initiating genetic event in the stepwise progression from metaplasia towards malignant
disease [30,31]. Though somatic mutations of KRAS occur in more than 90% cases of PDAC patients,
its signaling cascades may also be hyperactivated by amplification of the wildtype isoform [32] or
other molecular alterations in the receptor tyrosine kinase-RAS-RAF-MAPK pathway [33].

Until recently, KRAS was considered a valuable but yet undruggable target. Due to continuous
research efforts over the past decades, more insight into the function and potential roles of this
onco-protein was gained, leading to promising direct and indirect targeting approaches [34–36]. In the
past, the inhibition of the protein’s farnesylation, which is essential for the immobilization at the
cell membrane and subsequently for the activity of KRAS, was investigated [37]. This approach has
been mostly abandoned, as no significant benefit was identified in clinical studies [38,39]. Another
avenue that was explored was the suppression of KRAS expression by the means of RNA interference
(RNAi) [40–46]. Although this approach yielded promising results not only in preclinical rodent
models but also in a clinical phase I/II a study [47], the major drawbacks in terms of stability, delivery
and specificity of the siRNA led to a hold in the development. Current clinical research focusses mainly
on direct targeting of KRAS by binding inhibitors or indirect targeting by inhibition of upstream
regulators or downstream signaling pathways as well as immune modulatory approaches.

3. Direct Targeting

The identification of the switch-II pocket in GDP–KRASG12C complexes and covalent binders
thereof by Shokat et al. [48] marked a milestone in turning KRAS into a druggable target. Despite
the fact that KRAS is mostly present in its active form in vivo, the covalent binding of inactive KRAS
proved to be biologically efficacious (Figure 1A) [49,50]. Together with Araxes Pharma and Janssen
Pharmaceutical, scientists were able to develop a promising candidate (ARS-3248/JNJ-74699157) for
mutated KRASG12C and submit it to clinical testing [51]. However, Amgen, working in parallel on a
similar approach, beat them to it: the company’s AMG-510, which is currently tested in a phase I/II and
a pivotal phase III study in solid tumors, is the clinically most advanced KRASG12C inhibitor. Notably,
it has already shown promising results in patients with colorectal cancer or lung adenocarcinoma,
inducing stable disease or even partial response [52,53]. In depth studies in murine models revealed
that AMG-510 not only induced regressive disease due to inhibiting the KRAS signaling cascades,
but additionally led to long-term anti-tumor T-cell responses [53]. Another promising candidate that
also exploits the covalent binding of the switch-II pocket in GDP-KRASG12C is MTRX849. Having
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been developed by Mirati Therapeutics Inc., the compound was able to induce a partial response after
multiple lines of treatment in patients suffering from metastatic colon adenocarcinoma or stage IV lung
adenocarcinoma [54]. Unfortunately, the most prevalent point mutations of the oncogene found in
PDAC result in KRASG12V, KRASG12D, KRASG12R and KRASQ61H. KRASG12C is less frequent and only
occurring in 1–3% of the cases. The frequency of the individual point mutations, as well as their impact
on the structural conformation of KRAS differ. Since this effects the nucleotide binding state, it is directly
connected to the biological activity: the ratio of activated vs. inactivated KRAS. This ratio is controlled
by nucleotide exchange and (intrinsic) hydrolysis. Generally speaking, mutations in codon 12, 13 and
61 have a largely diminished intrinsic GTPase activity (up to 40- to 80-fold lower than KRASwt) [55].
Surprisingly, KRASG12C shows an intrinsic hydrolysis rate that is comparable to that of the wildtype
version. The GAP affinity and therefore the GAP-stimulated hydrolysis rate is similarly low for all
mutant types and reduced by more than 90% compared to wildtype KRAS. Additionally, the interaction
potential with GEFs and other downstream effectors varies [55]. Consequently, all these mechanistic
changes result in stabilization of the activated GTP-bound form of the protein and mutation-specific
cycling times [56,57].
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Figure 1. Clinical status quo of the potential treatment options for KRASmut pancreatic ductal
adenocarcinoma (PDAC) (adapted from Moore et al.) [58]. Apart from the direct targeting of KRASmut

with covalent allele-specific inhibitors as well as farnesylation inhibitors (A), indirect inhibition has
gained more and more momentum (B). Here, approved drugs are depicted in green, ongoing clinical
trials in yellow, and in red compounds that have failed to show benefit in clinical studies. Promising
preclinical candidates are marked in grey. Empty circles represent the status of compounds that have
not been approved or tested in PDAC. Filled circles indicate that these compounds have explicitly been
approved for PDAC or tested at least in (advanced) solid tumors including PDAC.
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Researchers of Boehringer Ingelheim performed high throughput fragment-based screening
followed by structure-based drug design, successfully identifying compounds binding to the switch-I/II
pockets. Taking advantage of the fact that these pockets are not only present in the inactive but also in
the active form of mutated KRAS as well as the wildtype protein, they were able to design compounds
with IC50 values in a low micromolar range [59]. Noteworthy, the switch-I/II pockets are involved
in the binding of GEFs (e.g., SOS1), GAPs and signaling effectors [60,61]. These findings fueled the
development of the first pan-KRASi, BI-1701963, which is currently under investigation in a phase I/II
study in solid tumors, including metastatic PDAC. In contrast to the currently developed allele-specific
inhibitors, e.g., AMG-510, this pan-KRASi does not bind KRAS itself but rather SOS1 and thereby
inhibits the interaction of SOS1 with KRAS, resulting in a stabilization of the inactive KRAS-GDP
complex. This technically indirect inhibition of KRAS bears the potential of a broader applicability,
but at the costs of specificity and efficacy.

Despite very promising preliminary data, it becomes more and more evident that the sole inhibition
of mutant KRAS is succeeded by swift development of resistance resulting in inconsistent response
in patient cohorts [62,63]. This development could have been anticipated by a number of preclinical
analyses in PDAC models, which uncovered resistance mechanisms evading the oncogene addiction
upon KRAS inhibition [64–67]. Currently, combinations with other inhibitors (e.g., MEKi, ERKi,
etc.) [53,68,69] are under investigation in clinical trials and should be further analyzed even more so in
molecular detail to overcome the resistance mechanisms as well as to strengthen the KRASi potential
(Table 1).

Table 1. Compounds directly targeting mutated KRAS currently in clinical trials, which include
patients suffering from PDAC; first steps towards a paradigm shift in the treatment of KRAS-dependent
tumor entities.

Drug Sponsor Target Binding
Site Phase Indication n=

AMG-510 NCT03600883 Amgen KRASG12C switch-II I/II solid tumors 533 a

AMG-510 NCT04303780 Amgen KRASG12C switch-II III advanced
mNSCLC 650 b

AMG-510
(with anti-PD1, MEKi,

SHP2i, pan-ErbBi)
NCT04185883

Amgen KRASG12C switch-II I advanced solid
tumors 430 a

MRTX849
(alone and with
pembrolizumab,

cetuximab or afatinib)
NCT03785249

Mirati
Therapeutics

Inc.
KRASG12C switch-II I/II advanced solid

tumors 200 a

MRTX849
(with TNO155)
NCT04330664

Mirati
Therapeutics

Inc.
KRASG12C switch-II I/II advanced solid

tumors 148 a

ARS-3248/
JNJ-74699157
NCT04006301

Janssen KRASG12C switch-II I/II
advanced solid

tumors (NSCLC;
colon cancer)

10/140 c

LY3499446
(alone and with

abemaciclib, cetuximab or
erlotinib) NCT04165031

Eli Lilly and
Company KRASG12C switch-II I/II

advanced solid
tumors (NSCLC;

colon cancer)
230 a

BI-1701963
(alone and with

trametinib) NCT04111458

Boehringer
Ingelheim

KRASmut

(KRASwt)

switch-I/II
specifically
SOS1:KRAS

I/II solid tumors 140 a

a estimated enrollment numbers, recruitment has started; b estimated enrollment numbers, recruitment has not yet
started; c not actively recruiting.
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4. Indirect Targeting

RAS proteins form an integral part of complex and highly intertwined signaling pathways.
Though substantial information has been gathered on this network, a lot still remains unknown.
Indirect targeting of KRAS by disrupting upstream regulators or downstream effectors has proven
difficult—the availability of several different connected pathways allows bypassing of the ones that are
affected by treatment and thus negate the drugs’ effects [70,71].

4.1. Targeted Therapies Engaging Upstream of KRAS

Transmembrane growth factor receptors, such as EGFR, are at the forefront of regulators upstream
of KRAS. For quite some time, their importance for the development of PDAC was largely dismissed
because of the assumption that KRASmut is independent of stimulation. However, in-depth studies
in murine models revealed that an activation of EGFR in combination with a mutation in the KRAS
gene accelerated pancreatic carcinogenesis [72,73]. Clinical studies in other tumor entities, such as
metastatic colorectal and non-small cell lung cancer, have shown that the use of anti-EGFR antibodies
or tyrosine kinase inhibitors improves progression free and overall survival, but only for patients
lacking a KRAS mutation. The subset of patients bearing a KRAS mutation does not profit from
the treatment. Nevertheless, the EGFR-targeted treatment with erlotinib (Figure 1A) in combination
with gemcitabine has successfully been transferred from research to the clinic and continues to be a
treatment option for PDAC patients, without having demonstrated a stratified effect based on KRAS
mutational status [74]. However, its efficacy remains controversial, since only a small subset of patients
benefits from it and a definite prognostic biomarker is still at large. Other EGFR-targeted treatment
options, such as the monoclonal antibodies cetuximab and panitumumab, as well as the TKIs afatinib,
gefitinib or neratinib, have been approved for (metastatic) non-small cell lung cancer, HER2-positive
breast cancer and (metastatic) colorectal cancer bearing no KRAS mutation. During the treatment with
these EGFRi, no clinical benefit was observed for the KRASmut subpopulation similar to erlotinib [58].

For the activation of RAS, different steps are required (nucleotide exchange, processing, localization
at the membrane and effector binding). Interfering with any of these steps will alter the extent of RAS
activation. One GEF that has shifted into focus again is SOS1. SOS1 binds to KRAS and mediates the
nucleotide exchange (GDP to GTP) [75]. Initial efforts focused amongst others on the inhibition via a
direct binding of SOS1, e.g., with molecules mimicking an orthosteric SOS helix. These compounds
effectively bound SOS1 but displayed only low efficacy in cellular assays [76,77]. At the moment,
research focuses on preventing the interaction of KRAS with SOS1. Here, the interaction of SOS1 with
the switch I/II pocket on the surface of KRAS is blocked with small molecules (see above, Figure 1A).
Another potential target is the non-receptor protein tyrosine phosphatase SHP2. Although its biological
function remains unclear, it has been shown that SHP2 is required for the complete activation of the
mitogen-activated protein kinase (MAPK) cascade [78]. Current theories assume that SHP2 acts as a
scaffold protein binding GRB2 and SOS1, inducing an increase in nucleotide exchange. In the past,
SHP2 has been considered to be expendable for KRASmut cancer types [79]. However, quite recently,
a number of groups [80–85] have shown that SHP2 plays an integral role in the tumor progression,
and even more so in the development of resistance mechanisms upon treatment with MEKi/ERKi.
At the moment, a couple of SHP2i, amongst others TNO155 (Novartis: NCT04330664, NCT03114319)
and RMC-4630 (Revolution Medicines: NCT03989115, NCT04418661), are being evaluated clinically in
combination therapies in advanced solid tumors (Figure 1A and Table 2).
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Table 2. Several compounds targeting the signaling cascade upstream of KRAS have reached clinical
trials; however, only a few also include patients suffering from pancreatic ductal adenocarcinoma.
Here, we focus on the inhibition of SHP2.

Drug Sponsor Target Phase Indication n=

RMC-4630
NCT03634982

Revolution
Medicines, Inc. SHP2 I

advanced solid tumors (with specific
genotypic aberrations leading to RAS

pathway hyperactivation)
240 a

RMC-4630
(with cobimetinib)

NCT03989115

Revolution
Medicines,
Inc./Sanofi

SHP2 Ib/II
advanced solid tumors (with specific
genotypic aberrations leading to RAS

pathway hyperactivation)
144 a

RMC-4630
(with pembrolizumab)

NCT04418661

Sanofi/Revolution
Medicines, Inc. SHP2 I

advanced solid tumors (with specific
genotypic aberrations leading to RAS

pathway hyperactivation)
24 a

TNO155
(with MRTX849)

NCT04330664

Mirati
Therapeutics
Inc./Novartis

SHP2 I/II advanced solid tumors (KRASG12C) 148 a

JAB-3068
NCT03565003

Jacobio
Pharmaceuticals

Co., Ltd.
SHP2 I/IIa advanced solid tumors 120 a

a estimated enrollment numbers, recruitment has started.

4.2. Disruption of Signaling Cascades Downstream of KRAS

The constitutive activation of the oncogenic KRAS protein induces continued stimulation of
downstream signaling pathways leading, e.g., to uncontrolled proliferation, metabolic reprogramming,
survival and increased migratory potential. Up to today, more than ten different effector families are
known, the RAF-MEK-ERK MAPK cascade and the PI3K-AKT-mTOR cell survival pathway being the
two best studied and most understood. Several inhibitors targeting the components of each of the two
have been developed and are undergoing or have undergone clinical evaluation (Figure 1B).

Active KRAS preferentially interacts with RAF, thus, inducing its translocation to the plasma
membrane and its phosphorylation. Here, RAF activates the dual specificity kinases MEK1/2.
This leads to the activation via phosphorylation of ERK1/2 serine-threonine MAPKs. In turn, these can
phosphorylate a broad spectrum of cytoplasmic and nuclear substrates. Currently, only three
BRAFmut-selective inhibitors (specifically BRAFV600E and BRAFV600K), namely, vemurafenib, dabrafenib
and encorafenib, are clinically available for the treatment of BRAFmut melanoma and/or BRAFmut

non-small cell lung cancer. All three inhibitors proved to be rather effective in BRAFmut melanoma with
response rates greater than 50% and major improvement in quality of life. Unexpectedly, in KRASmut

cancers, including PDAC, either of these inhibitors induces a CRAF dimerization and unwanted
activation of the RAF-MEK-ERK MAPK signaling cascade [86]. In contrast, novel pan-RAF inhibitors,
such as LXH254, do not seem to trigger this phenomenon. Hence, they might be a valuable option for
KRASmut cancer. Moreover, preclinical data suggest that inhibition of RAF may sensitize pancreatic
tumors to the treatment with other targeted inhibitors [87–89]. Unfortunately, clinical data regarding
the efficacy of pan-RAF inhibitors as mono or combination therapy in patients suffering from PDAC
remain unavailable. When retracing the individual steps of the MAPK cascade, other appealing targets
for the treatment of KRASmut cancer are the downstream effectors MEK1/2 and ERK1/2. Several
MEK1/2 inhibitors, for example pimasertinib and trametinib, have reached clinical studies [90–92].
When the first was evaluated in combination with gemcitabine vs. gemcitabine alone as a first line
therapy in metastatic pancreatic adenocarcinoma (NCT01016483), the combination treatment showed
only slightly improved progression free survival (PFS), while inducing severe ocular side effects
resulting overall in no clinical benefit [92]. When the latter was evaluated in a similar clinical set-up
(trametinib with gemcitabine vs. gemcitabine; NCT01231581), it did not show a clinical benefit either.
Hence, the clinical investigation of gemcitabine in combination with MEKi was abandoned [91]. These
disappointing results can probably be attributed to the unleashing of pathway feedback loops in RAS
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mutant tumors upon MEKi leading to the modest activity observed in the clinic [93–95]. In the case
of an acquired MEKi- or RAFi resistance, selective ERK inhibition appeared as a valuable treatment
option [96–99]. However, in spite of promising preclinical data, the ERK inhibitors that have been
tested in the clinic have fallen short of the expectations [58]. Nevertheless, in recent past years, several
research groups have successfully focused their efforts on identifying viable treatment options based
on MEKi or ERKi regimens in a (pre-) clinical setting (Tables 2 and 3), e.g., the vertical combination
of SHP2i with MEKi [83] or the disruption of increased autophagic flux in response to inhibition of
MEK [100] or ERK [101]. Moreover, the results with MEKi and ERKi in vertical combination therapies
in the treatment of other cancer entities with hyperactivation of the MAPK pathway have given rise to
hope: vemurafenib in combination with cobimetinib, for example, has become an important tool in the
treatment of BRAFmut melanoma despite its side effects [102,103].

Table 3. Several compounds targeting the signaling cascade downstream of KRAS have reached clinical
trials and were subsequently approved for clinical use. Here, we focus on ongoing major clinical trials
that include advanced solid tumors or specifically pancreatic cancer.

Drug Sponsor Target Phase Indication n=

Belvarafenib
(with Cobimetinib)

NCT03284502

Hanmi Pharmaceutical
Company Limited RAF I advanced solid tumors 272 a

LXH254
(alone and with

Spartalizumab) NCT02607813
Novartis Pharmaceuticals RAF I advanced solid tumors

(with MAPK alterations) 152 a

RO5126766
(with VS-6063) NCT03875820

Institute of Cancer
Research, UK/Verastem,

Inc./Chugai
Pharmaceutical

dual
RAF/MEK I advanced RAS mutant

solid tumors 80 a

RO5126766
(alone and with Everolismus)

NCT02407509

Royal Marsden NHS
Foundation

Trust/Verastem,
Inc./Chugai

Pharmaceutical

dual
RAF/MEK I solid tumors 94 a

Trametinib
(with Navitoclax)

NCT02079740

National Cancer Institute
(NCI) MEK I/II

Advanced solid tumors
(incl. stage III/IV

pancreatic cancer)
130 a

Trametinib
(with Hydroxychloroquine)

NCT03825289

University of
Utah/Novartis

Pharmaceuticals
MEK I Advanced pancreatic

cancer 33 a

Binimetinib
(with Avelumab and/or

Talazoparib) NCT03637491
Pfizer MEK Ib/II

advanced solid tumors
(with RAS-mutation)

pancreatic cancer
122 a

MK-8353
(with Pembrolizumab)

NCT02972034

Merck Sharp & Dohme
Corp ERK1/2 I advanced solid tumors 96 a

JSI-1187
(alone and with Dabrafenib)

NCT04418167
JS InnoPharm, LLC ERK1/2 I

advanced solid tumors
(with MAPK pathway

mutations)
124 a

LY3214996
(alone or with Abemaciclib or

Nab-Paclitaxel and
Gemcitabine or Encorafenib

and Cetuximab) NCT02857270

Eli Lilly and Company ERK1/2 I
advanced solid tumors

(incl. metastatic pancreatic
ductal adenocarcinoma)

272 a

LY3214996
(alone and with

Hydroxychloroquine)
NCT04386057

Dana-Farber Cancer
Institute/Eli Lilly and

Company
ERK1/2 I Pancreatic Cancer 52 a

Gedatolisib
(with Palbociclib)

NCT03065062

Dana-Farber Cancer
Institute/Pfizer PI3K/mTOR I advanced solid tumors

(incl. pancreatic cancer) 96 a

a estimated enrollment numbers, recruitment has started.



Biomedicines 2020, 8, 281 8 of 15

Just like the RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade, the PI3K-AKT-mTOR
pathway is involved in the regulation of essential cellular functions such as transcription, translation,
proliferation, motility, metabolic adaptation and survival. Its aberrant activation contributes to the
pathogenesis of several cancer entities, including PDAC [104,105]. PI3Ks fall into three classes (I–III),
generally composed of heterodimers consisting of a regulatory and a catalytic subunit. Class I PI3Ks
phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) upon activation by RAS. In turn, PIP2 recruits
AKT to the membrane and induces an activation of mTOR. More than 40 inhibitors of this survival
pathway have reached different stages of clinical development, but only a few, e.g., temsirolimus (mTORi),
everolimus (mTORi), idelalisib (PI3Ki), and copanlisib (PI3Ki), have been approved for clinical use.
Additionally, none of these have been approved for the treatment of PDAC. The hurdles that led to the
failure of the majority of PI3K-AKT-mTOR-targeting compounds in the clinic included limited single
agent efficacy, dose-limiting toxicity and the lack of predictive biomarkers for patient stratification.

A combined inhibition of both MAPK and PI3K pathways showed favorable efficacy in preclinical
models [106,107] as well as in an initial clinical trial [108], but at the expense of an increase in
dose-limiting toxicity. Nevertheless, the obtained results hold great promise for a subset of patients,
always considering the fact that the stratification based on genetic markers as well as adjustments
of the regimen could lead to better tolerability while maintaining or even augmenting the efficacy
of treatment.

5. Immune Modulatory Perspective

The microenvironment of PDAC is characterized by dysfunctional immune effector cells enhancing
an immunosuppressive milieu. Multiple different cell types, amongst other cancer-associated fibroblast
and macrophages as well as myeloid-derived suppressor cells, aid the immunosuppression. This is
accomplished by both the excretion of certain cytokines and the expression of tolerance-inducing
surface molecules in interplay with the tumor cells themselves: an initially anti-tumoral immune
response is converted to a cancer-supportive microenvironment. Hence, a re-programming of the
dysfunctional immune response in the treatment of PDAC holds great promise [109]. Currently, seven
antibodies targeting three major immune check point proteins (anti-CTLA4, anit-PD1 and anti-PDL1)
have been approved by the FDA for the treatment of several different tumor entities, including KRASmut

melanoma and non-small cell lung cancer [110]. Predictive factors for the efficacy of these treatments
appear to be high expression levels of the respective target structures and increased numbers of tumor
infiltrating lymphocytes (TILs) in combination with a high mutational burden of the tumor [111–113].
Unsurprisingly, the blockade of immune checkpoints on its own has disappointed in clinical trials
in the treatment of PDAC, likely due to the predominant immunosuppressive milieu. However,
KRASG12C-selective inhibitors have shown the ability to harness the immune system to heighten
therapeutic efficacy of check point inhibitors [53]. These results suggest additional mechanisms of
immune evasion that are closely connected to mutant KRAS. Hence, the combination of KRASi with
checkpoint inhibitors or other immunotherapeutic strategies is an attractive option. Currently, some of
these combination therapies are undergoing clinical investigation (Table 1).

6. Conclusions

To further improve treatment outcome for patients suffering from PDAC, therapy will need to be
precise and personalized. Based on a deepened understanding of the individual tumor and reliable and
instant molecular stratification, patients would be allocated to receiving, e.g., cytotoxic chemotherapy,
immunotherapy, molecular targeting of oncogenic signaling pathways, DNA damage response or
epigenetic modifiers and eventually combinations thereof.

In this setting, one option would be a KRAS-targeting treatment. Unfortunately, no clinically
approved KRAS-targeting treatment is available for pancreatic ductal adenocarcinoma as of yet.
Though clinical data of targeted monotherapies have shown promising results in KRASmut cancer,
they have been overshadowed by the swift development of resistance resulting in an inconsistent
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response. With the development of a new generation of RAS pathway-targeted therapies, especially the
discovery of potent allele-specific KRASi, as well as the identification of resistance mechanisms, hope
has been fueled to successfully treat KRASmut cancer, including PDAC, in a targeted fashion. It has
become more and more evident that monotherapeutic targeting of KRAS is indeed futile. Nevertheless,
preclinical data as well as clinical data from other tumor entities bearing KRAS mutations give rise to
hope for promising combination therapies involving targeted inhibition of the RAS signaling pathway,
paving the way for suitable treatment options for patients suffering from PDAC.
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