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Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-
specific T cells that are in a dormant or unresponsive state. As such, there is growing
interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-
activated T cells to protect against tumors is thought to be the result of the immune
escape mechanisms of tumor cells and the intricate immunosuppressive tumor
microenvironment. In this review, we discuss how tumor cells and the tumor
microenvironment influence the effects of tumor infiltrating lymphocytes and summarize
how to improve the efficacy of tumor vaccines by improving the design of current tumor
vaccines and combining tumor vaccines with other therapies, such as metabolic therapy,
immune checkpoint blockade immunotherapy and epigenetic therapy.
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INTRODUCTION

Immunotherapy aims to initiate or reinitiate the self-sustaining cycle of tumor immunity, and there
is great expectation that this approach will cure various tumor types. Many tumor-targeting
approaches exist, but few tumor therapies induce as durable activity as immunotherapy. Safe and
robust tumor vaccines have held great promise for tumor immunotherapy.

Tumors are known for their accumulation of genetic alterations and loss of normal cellular
regulatory processes (1). These events can lead to the expression of tumor antigens, resulting in
peptides that bind to major histocompatibility class I (MHC-I) molecules on the surface of tumor
cells (2). These tumor specific peptide-MHC-I complexes can be recognized by CD8+ T cells (3).
The aim of tumor vaccines is to expand the tumor-specific T cell pool from the naïve pool and
reactivate existing tumor-specific T cells in dormant or unresponsive states. Despite tremendous
potential of tumor vaccines for tumor immunotherapy, the clinical outcomes in some patients
remain suboptimal. In the past, this may be attributed to the selection of tumor antigen, as
traditional tumor vaccines mainly target tumor-associated antigens (TAAs), which can be detected
on both tumor cells and normal cells (4, 5). Currently, the development of sequencing technologies
and different bioinformatics algorithms have accelerated the identification of neoantigens and the
construction of neoantigen tumor vaccines (6, 7). Neoantigens are highly immunogenic because
they are only expressed on tumor cells and do not present in normal cells, hence bypassing central
thymic tolerance (4). Clinical trials have shown that neoantigen vaccine strategies successfully
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increase the frequency and activity of tumor-specific cytotoxic T
lymphocytes (CTLs) (8, 9). However, tumor development is a
dynamic progression. Owing to the immune suppression and
escape mechanisms of tumor tissues, neoantigen vaccines alone
may not be able to apply expected anti-tumor protection, even if
host immune systems have been activated, for the reason that the
vaccine alone fails to ensure that the activated T cells home to the
tumor bed and exert anti-tumor effects within the tumor.

In fact, the immune response in tumors is precisely regulated
in a cancer-immunity cycle. First, the tumor antigens should be
released and presented by antigen presenting cells (APCs) to T
cells through the T cell receptor (TCR) in order to prime and
activate the tumor-specific effector T cells. Second, activated
effector T cells must be trafficked to tumor bed and infiltrate into
the tumors to specifically recognize the tumor cells. Last, the
effector T cells kill the tumor cells (10). Tumor vaccines should
go through the above immunity cycle to produce a tumor killing
effect. Unfortunately, many tumor specific T cells have become
victims of immune suppression and immune escape
mechanisms, which means that the vaccine-activated T cells
become exhausted or dysfunctional before they exert tumor-
killing effects. This is one of the most important reasons for
tumorigenesis, recurrence and metastasis in relation to both
tumor cell-intrinsic factors and the tumor microenvironment
(TME). In this review, we mainly focus on the key aspects of how
tumor specific T cells are controlled by the tumor cells and tumor
microenvironment and are manipulated to enhance the anti-
tumor immunity of tumor vaccines to implement new
clinical strategies.
MODULATION OF T CELL FUNCTION
BY TUMORS

Tumor evasion immunity comprises both tumor cell-intrinsic
alterations and TME modification. These components form a
complex immunosuppressive network in tumors, which together
limits the activation of and induces the dysfunction of T cells.
Figure 1 shows how tumors influence the function of effector
T cells.

Inhibition of Recognition, Priming,
and Activation
Tumorigenesis is the process of continuous tumor cell evolution.
A series of changes may occur in tumor cells to evade the
recognition of immune cells. MHC-I molecules presented on
the surface of tumor cells are key proteins for CD8+ T cell
recognition. However, MHC-I molecule abnormalities have been
found to occur at a relatively high frequency in tumor cells,
including the loss or downregulation of MHC-I molecules (11,
12). This leads to the conclusion that alterations of MHC-I
molecules stand for a common immune-escape mechanism of
tumor cells (13). Actually, the expression of MHC-I molecules is
the result of a proper antigen processing machinery (APM) and
any alterations in the APM may lead to the deficiency of antigen
processing and cause immune escape. For example, transporter
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associated with antigen processing (TAP) plays an important
role in the transportation of proteins and the alteration of TAP
can induce a sharp decrease of the MHC-I/b2m-peptide
complexes expressed on tumor cells (14, 15). Indeed, the
deficiency of TAP can be found in a variety of tumors such as
head and neck carcinoma, gastric cancer and cervical carcinoma
(14–17). Apart from the above gene regulatory mechanisms, the
presentation of tumor antigens can be affected by other tumor
cell biological processes. For example, the expression of TAP,
latent membrane protein (LMP), Tapasin and MHC-I molecules
are recovered after histone deacetylase inhibitor (HDACi)
treatment, suggesting that epigenetic repression is also involved
in the mechanism of tumor MHC-I molecules loss (18).

In addition to the intrinsic tumor cell factors, a series of
factors in the TME, such as regulatory T cells (Tregs), disrupt the
antigen presentation process, leading to insufficient T cell
activation. Cross-presentation of tumor antigens by dendritic
cells (DCs) is considered important in the early stage of tumor
immune recognition because DCs acquire, process, and present
tumor antigens to TCR and provide co-stimulatory factors to
prime and boost the CD8+ T cells. However, CTLA-4 expressed
on Tregs can suppress such immune response through the
interaction with co-stimulation factors CD80 and CD86
expressed on DCs. When combined, the expression of CD80
and CD86 on DCs will be downregulated, thus impairing DC
function and inhibiting T cell stimulation (19, 20). Moreover, a
novel study uncovered that the antigen-specific Tregs activated
by DCs can form a strong interaction with DCs. Such strong
binding can remove the peptide-major histocompatibility
complex class II (pMHCII) complexes from the surface of DCs
and thereby decrease the antigen presentation efficiency of DCs
(21). The upregulation of lymphocyte activation gene-3 (LAG-3)
expression on activated Tregs is also a factor that acts as an
immune regulatory protein (22).

Other components in TME may also influence the activation
of effector T cells. Metabolic stress, including hypoxia and
glucose deficiency, can cause downregulation of MHC-I
molecules on tumor cells. Such alteration is accompanied by
the loss of sensitivity of tumor cells to the upregulation of MHC
molecules mediated by interferon (IFN)-g (23). Programmed cell
death 1 ligand (PD-L1) and Programmed cell death 2 ligand
(PD-L2) expressed on tumor cells and other cells are also
indispensable factors that inhibit proliferation and cytokine
production of programmed cell death (PD)-1 expressing T
cells (24).

Inhibition of Trafficking and Infiltration
to Tumor Bed
Chemokines and cytokines regulate the trafficking and infiltration of
immune cells into the TME. Researchers have found that in tumors
lacking in the infiltration of CD8+ T cells, the expression of
chemokines involved in the recruitment of effector T cells was
significantly reduced (25), implying their critical roles in tumor
progression. On the one hand, chemokine expression is regulated by
environmental cues in the TME. In transplanted melanoma mouse
model, Barreira da Silva et al. showed that the dipeptidylpeptidase
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FIGURE 1 | Regulation of T cells by tumors. The key aspects of how tumors influence the function of effector T cells are illustrated. 1) Abnormal alterations of MHC-I
molecules in tumor cells can help evade the recognition of T cells. 2) A series of factors in TME can inhibit the maturation of APCs, thus defecting the priming and
activating of effector T cells. 3) Tumor blood vessels act as physical barriers affecting the infiltration of T cells into the tumor bed. The vascular endothelial growth
factors generated by tumor derived blood vessels can result in multiple changes within the vessels and thereby drive T cells depletion. 4) Abnormal cytokines and
chemokines in TME can influence the infiltration of T cells. In tumors lacking in the infiltration of effector T cells, the expression of chemokines involved in the
recruitment of T cells are significantly reduced. 5) Negative cellular components are key cellular mediators reshaping the immunosuppressive TME. 6) Dysregulated
metabolism pathways in tumor cells can lead to insufficient nutrients in TME. What’s more, the specialized metabolism of tumor cells establishes an unfriendly TME
to effector T cells, which further increases the living stress of effector T cells. 7) Effector T cells infiltrating in TME are frequently in exhaustion state and accumulating
evidence implies such reprogramming to be the consequence of aberrant epigenomes such as methylated. TCR, T cell receptor; MHC-I, major histocompatibility
class I molecules; APCs, antigen presenting cells; MDSCs, myeloid-derived suppressor cells; Tregs, regulatory T cells.
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(DPP4) produced by stromal cells within the tumor inactivated
chemokine CXCL10, leading to the reduction of T cell infiltration
(26). On the other hand, chemokine expression can be regulated by
tumor cell-intrinsic epigenetic and genetic mechanisms. Tumor
epigenetic silencing often includes zeste homologue2 (EZH2)-
mediated histone modifications and DNA methyltransferase 1
(DNMT1)-mediated DNA methylation. Using the ovarian cancer
mouse models, researchers found repression of T helper 1 (Th1)-
type chemokines CXCL9 and CXCL10 produced by tumor cells
caused by the above epigenetic silencing. The finding indicates that
there exists a negative association between tumor-infiltrating CD8+

T cells and epigenetic silencing (27). A similar change was found in
C-C motif chemokine ligand (CCL)5, where DNA methylation
reduced the expression of CCL5 and caused tumor-infiltration
lymphocyte desertification (28). Moreover, using a genetically
engineered mouse melanoma model, researchers found that
oncogenic pathway is another approach displayed by tumor cells
to control chemokine expression. In the melanoma model, the
activation of b-catenin resulted in poor expression of CCL4, which
is important for the migration of CD103+ DCs, and subsequently
limited the activation and infiltration of effector T cells (29).

Another reason accounting for the defective T cell infiltration
to the tumor sites could be the presence of physical barriers. Like
normal tissues, tumors need to obtain nutrients and oxygen and
excrete metabolic wastes to maintain their survival, and the
generation of tumor-associated neo-vasculature can meet these
needs. However, such blood vessels are produced under the
condition of an unbalanced mix of proangiogenic signals (1)
and can act as physical barriers to the transportation of T cells
into the tumor bed. When T cells enter the tumor vessels, a series
of changes in the tumor vasculature repress T cell activity and
induce T cell exhaustion. First, intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are
needed for the extravasation of T cells and upregulation of
ICAM-1 has been associated with good prognosis of cancer
patients (30–33). However, tumor-derived blood vessels can
generate vascular endothelial growth factors (VEGF) to inhibit
the expression of adhesion molecules and thus prevent T cells
from infiltrating into the tumor (34). Second, as within the
tumor, inhibitory regulatory molecules such as PD-L1, PD-L2,
galectin-9, indoleamine 2,3-dioxygenase 1 (IDO-1), and human
B7 homolog 3 (B7-H3) (35–39) can be upregulated on vascular
endothelial cells to directly inhibit T cell activity. VEGF-a can
also induce the expression of thymocyte selection-associated
high mobility group box (TOX) protein in T cells, thereby
driving T cell depletion (40). Third, Fas-L expressed on tumor
endothelial cells can directly cause T cell apoptosis (41). Finally,
tumor blood vessels are known for their unique characteristics,
such as slow and irregular blood flow, microvascular disorders,
lack of basement membranes and abnormally thick membranes
in blood vessels (42), which together result in insufficient oxygen
supply in blood vessels and the accumulation of metabolic waste,
leading to the impairment of T cells. What’s more, these factors
would trigger the release and activation of pro-angiogenic
growth factors (43) and further deepen the damage to T cells,
as demonstrated above.
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Impairment of T Cell Function and the
Induction of Dysfunctional T Cells
Tumor cells rely on metabolic networks to maintain their
proliferation, and various metabolism pathways are dysregulated
in tumor cells due to their irregulated genetic landscape. Like
tumor cells, having enough nutrients is essential for normal
metabolic activity and anti-tumor immune response of T cells.
However, the competition for nutrients between tumor cells and T
cells can affect the immune response, and depletion of nutrients in
the TME can also lead to insufficient immune response and tumor
progression. Glucose is a major energy source, and it plays an
important role in maintaining normal cellular functions and
supporting cellular bioenergy. Even when oxygen is sufficient,
tumor cells utilize glucose via glycolysis, which is called the
Warburg effect (44). The glycolytic enzyme hexokinase 2 (HK2)
overexpressed in tumor cells ensures the high efficiency of
glycolysis in tumor cells and at the same time inhibits the
glucose uptake of T cells (45, 46). Long-term glucose deficiency
results in low T cell response and impairs the production of
cytokines, allowing tumors to acquire immune escape properties.
In addition to glucose, amino acids and lipids are also metabolic
sources competed for by tumor cells and T cells. For example, IDO
is expressed in many tumors and can catabolize tryptophan (47).
Lower concentrations of tryptophan in extracellular environment
can inhibit the proliferation of CD8+ T cells and promote the
differentiation of Tregs by activating general control
nonderepressible 2 (GCN2) kinase (48). Lipid rafts in the cell
membrane of T cells are required to form immune synaptic tissues
(49), while the growing tumor cells also need fatty acids to
synthesize cell membranes or other molecules (50). The
disturbance of lipid homeostasis may therefore result in a
reduction of effector T cells.

In addition to nutrient depletion, the specialized metabolism of
tumor cells also establishes a hypoxic, acidic TME (44) that is
unfriendly to the anti-tumor immune response. In other words,
besides promoting the growth of tumor cells, the unique metabolic
programs can also prevent the development of an effective anti-
tumor response. For example, the reduced blood flow andWarburg
effect can result in a hypoxia state in the TME. Earlier studies have
indicated that hypoxia can lead to the deficiency of mTOR signaling
in T cells which can drive the anergy of effector T cells (51, 52) while
promoting the development of Tregs (53). The aberrant Warburg
effect of tumor cells produces lactic acid to be exported into the
extracellular space, which can result in an acidic TME. The resultant
acidification of TME can induce the apoptosis of T cells and
suppress T cell function by the inhibition of nuclear factor of
activated T cells (NFAT) upregulation and the inhibition of p38 and
JNK/c-Jun activation (54, 55). Lactic acid has also been shown to
interfere with the maturation of DCs (56) and increase the
frequency of forkhead box P3 (FoxP3)+ Tregs (57). Research has
shown an increased expression of PD-L1 on tumor cells by the
accumulation of lactic acid (58).

In addition to tumor cells, MDSCs and Tregs are two key cellular
mediators in the immunosuppressive TME. The function of Tregs
has been described above. Here, we discuss how MDSCs shape the
intra-tumoral immune landscape to impair the function of T cells.
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MDSCs deplete amino acids in the TME that are essential for T cell
function. MDSCs are characterized by the expression of enzyme
arginase 1 (Arg1) (59). L-arginine is the substrate of Arg1, and
excessive Arg1 leads to the depletion of L-arginine in the TME,
which is of significant importance for the maturation of T cell
receptor z-chain (TCRz) and can therefore result in impaired T cell
growth and differentiation (59). Moreover, MDSCs can deplete the
extracellular cysteine pool to limit the activation of T cells (60).
Inducible nitric oxide synthase-2 (iNOS2) produced by MDSCs can
release high level of nitrogen monoxide (NO), which can interrupt
T cell function by interfering with T cell JAK/STAT signaling
proteins and can induce T cell apoptosis (61). MDSCs can also
induce the proliferation of Tregs by secreting soluble factor IL-10 to
further downregulate the activation and expansion of T cells (62).

Tumor vaccines can potentially induce efficient antitumor
immunity by recruiting and activating immune cells. However,
the mechanisms demonstrated above can be utilized by tumors
to turn effector T cells into exhausted ones, which can be
characterized by the deficiency of response to TCR stimulation,
the production of cytokines and the upregulation of inhibitory
factors. This condition can be associated with the loss of tumor
growth control. In the following section, we consider how
different strategies can modulate tumor vaccine function to
better boost antitumor immunity.
Frontiers in Oncology | www.frontiersin.org 5
STRATEGIES TO IMPROVE TUMOR
VACCINE EFFICACY

Currently, strategies have been used in pre-clinical experiments
and clinical trials to improve the anti-tumor efficacy of tumor
vaccines. Here, we discuss how these strategies influence the
responsiveness of tumor vaccines against tumors. Table 1 shows
the related strategies.
IMPROVE THE DESIGN OF CURRENT
TUMOR VACCINES

Vaccines Based on Both MHC-I–Specific
Tumor Antigens and MHC-II Specific
Tumor Antigens
At present, most tumor immunotherapy is aimed at activating
CD8+ T cells. With improved understanding of the immunology,
recent studies have highlighted the role of CD4+ T cells in tumor
clearance. The activation of an effective anti-tumor immune
response not only needs helper T cells to recruit the killer T
cells but also needs them induce killer T cells into the activation
state in which they are capable of killing tumor cells (63, 64). In
TABLE 1 | Strategies enhancing the anti-tumor efficacy of tumor vaccines.

Strategies Target stepsa Effect on tumor vaccines Challenges

1. Improve the design of tumor vaccines.
Vaccines based on both
MHC-I specific tumor
antigens and MHC-II
specific tumor antigens

Inhibition of T cell priming and activation CD4+ T cells help activate CD8+ T cells and
help them mature into CTLs; more efficient
uptake and presentation; cytokines secreted
by CD4+ T cells dictate the quality of CTLs.

Loss of MHC-II molecules
expression on tumor cells; few of
found MHC-II restricted tumor
antigens due to current prediction
algorithms

Re-assembling tumor
vaccines with
nanoparticles

Inhibition of T cell priming and activation; inhibition of
trafficking and infiltration to tumor bed; impairment of
T cell function and the induction of dysfunctional T
cells

Vectors for different molecules that synergize
with tumor vaccines; stabilize the loaded
adjuvants; reshape immunosuppressive TME;
promote the production of CTLs.

The safety of chosen material
compositions; optimize the physical
properties of nanoparticles.

2. Combine tumor vaccines with other therapies.
Tumor vaccines plus
metabolic therapy

Impairment of T cell function and the induction of
dysfunctional T cells

Switch to metabolisms beneficial to T cell
function; magnify the metabolic plasticity
defect of tumor cells.

Side effects caused by the
dysfunctional normal cell
metabolisms; intrinsic toxicity.

Tumor vaccines plus
CAR-T therapy

inhibition of tumor antigen recognition Recognize antigen on any HLA background;
target tumor cells that downregulate MHC-I
molecules.

Increased toxicity.

Tumor vaccines plus
ICBs therapy

Inhibition of T cell priming and activation; impairment
of T cell function and induction of dysfunctional T
cells

Reinvigorate exhausted T cells; evoke tumor
immunogenicity.

Induction of dysfunctional cell
subsets; injection sequence.

Tumor vaccines plus
OVs therapy

Inhibition of tumor antigen recognition; inhibition of T
cell priming and activation; inhibition of trafficking and
infiltration to tumor bed

Help reverse the down-regulation of MHC-I
molecules; induce the maturation and function
of DCs; reshape the immunosuppressive
TME.

Balancing the antitumor immune
response and antiviral immune
response; more appropriate clinical
indicators.

Tumor vaccines plus
epigenetic therapy

Inhibition of tumor antigen recognition; inhibition of T
cell priming and activation; inhibition of trafficking and
infiltration to tumor bed; impairment of T cell function
and the induction of dysfunctional T cells

Help restore APM expression; increase
immune infiltration; directly reinvigorate
exhausted T cells.

Intrinsic toxicity; balancing the pro-
immunogenic and
immunosuppressive functions.
February
aAccording to Modulation of T Cell Function by Tumors section, how tumors influence the function of T cells can be briefly concluded into the following steps: inhibition of tumor antigen
recognition, inhibition of T cell priming and activation, inhibition of trafficking and infiltration to tumor bed, impairment of T cell function and the induction of dysfunctional T cells. This list
mainly focuses on which steps the strategy targets to improve the function of tumor vaccines. MHC, major histocompatibility class; CTLs, cytotoxic T cells; TME, tumor microenvironment;
ICBs, immune checkpoint blockage; APM, antigen processing machinery.
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other words, killer T cells should synergize with the helper T cells
to activate a robust and durable immune protection.

Studying mouse models of human tumors, researchers found
that vaccines act more effectively when both helper and killer T
cells are activated. Using the KP9025 sarcoma mice model,
researchers indicated that the administration of vaccines with a
mixture of KP.mLAMA4 (MHC-I specific tumor antigen) and
KP.mITGB1 (MHC-II specific tumor antigen) provided more
effective protection against tumor challenge than administration
of each the antigen alone. What’s more, spleen from mice
vaccinated with the mixture antigens contained more
functional CD8+ T cells than the mice receiving only MHC-I
specific tumor antigen. These results demonstrated the crucial
role of CD4+ T cell in activating CD8+ T cells and helping them
mature into CTLs (65), which may be the results of more efficient
uptake and presentation by APCs (66, 67). In another study
using the B16F10 tumor-bearing mice models, MHC class II-
restricted neo-epitope-encoding RNA vaccines were injected into
the mice. Compared with the control group, MDSCs and FoxP3+

Tregs were markedly reduced in the experimental group,
indicating that the induction of CD4+ T cells could help
overcome tumor-associated immune suppression, which in
turn resulted in a more efficacious tumor control (68).

In fact, CD4+ T cells can indirectly promote anti-tumor
responses, as the cytokines and co-stimulatory factors secreted
by CD4+ T cells largely dictate the quality of CTLs. For example,
IL-2 secreted by Th1 is essential for maintaining the growth and
proliferation of CD8+ T cells (69). Moreover, Th1 can help
promote the recruitment and infiltration of CD8+ T cells
through the secretion of IFN-g (70). Furthermore, tumor-
specific CD4+ T cells can also secrete IL-4 to recruit
macrophages as well as establish long-term memory immune
responses to tumors (71, 72). In fact, immunotherapy based on
mutation-specific CD4+ T cells has been proven effective in
clinical trials. In patient 3737 experiencing widely metastatic
cholangiocarcinoma, tumor infiltrating lymphocytes (TILs)
containing approximately 25% mutation-specific Th1 cells
were transferred, and the patient received tumor regression
and experienced disease stabilization (NCT01174121) (73).
Patrick A. Ott enrolled ten patients with previously untreated
high-risk melanoma in a phase I study. In the study, they used
long peptides leading to the activation of both CD8+ and CD4+ T
cells. Of six patients treated with the vaccines, four had no
recurrence at the follow up of 25 months after vaccination, while
the two patients experiencing recurrent disease subsequently
received anti-PD-1 therapy and achieved complete tumor
regression (NCT 01970358) (8).

In conclusion, CD4+ T cells can help promote the effector
function of CTLs and reshape the TME to overcome negative
regulation, both of which can amplify the anti-tumor response of
T cells. The reasons why tumor vaccines targeting CD4+ T cells
are difficult to synthesize can be summarized into the following
aspects. First, most tumors lack the expression of MHC-II
molecules (68). Another factor may be the specificity of
neoantigens in tumor cells. At present, most tumor
neoantigens capable of stimulating effector T cells belong to
Frontiers in Oncology | www.frontiersin.org 6
MHC-I restricted molecules, and they can only be recognized by
effector T cells. In contrast, few MHC-II restricted tumor
neoantigens have been found. One of the obstacles is that the
existing MHC-II antigen prediction algorithms find it difficult to
identify MHC-II restricted tumor-specific antigens that function
as neoantigens for CD4+ T cells (74).

Thinking of the importance of CD4+ T cells in antitumor
immunity, it is urgent for us to deepen the understanding of the
underlying principles of immunology and overcome technical
difficulties before applying such vaccines into clinical practice.

Re-Assembling Tumor Vaccines
With Nanoparticles to Enhance
the Immunogenicity
Due to the intricate immunosuppressive TME, the therapeutic
effects of a majority of tumor vaccines are quite limited. The
immunosuppressive TME inhibits not only the antigen uptake
and presentation but also the activation and infiltration of
lymphocytes in vivo. Therefore, new methods are expected to
improve the effectiveness of current immunotherapies, and thus,
nanoparticles have been in extensive use in recent years.
Compared to traditional tumor vaccines, re-assembled tumor
vaccines are armed with the following advantages brought by
nano-materials.

First, nanoparticles can be loaded with different adjuvants and
molecules, making them novel vectors for different types of
tumor vaccines, such as peptide vaccines, RNA vaccines (75,
76). Molecules such as chemical drugs and immune checkpoint
inhibitors can be loaded into the vectors with the vaccines to
achieve synergistic antitumor effects. Liu X. et al. constructed a
tumor nano-vaccine composed of antigenic peptide, CpG-ODN,
and cationic polymer nanoparticle. Using breast carcinoma 4T1
models, they found that the injection of the nano-vaccine
significantly promoted the infiltration of CTLs in the tumor
and could help prevent tumor recurrence and pulmonary
metastasis (77). Xie X. et al. developed a novel therapeutic
vaccine co-encapsulating epitope peptide and PD-1 antibody
with self-healing microcapsule. With the synergism of epitope
peptide, PD-1 antibody, and the unique self-healing feature of
the microcapsule, a single dose of the vaccine led to the
recruitment of activated APCs and significantly improved the
infiltration of tumor-specific CTLs. The results indicated that
such new vaccine platform could serve as a promising
immunotherapy modality for anti-tumor treatment (78).

Second, nanoparticles serve as safeguards to protect the
adjuvants from being degraded in the biological environment
and precisely deliver the therapeutic ingredients to a particular
place to improve the immune response (79). Some particles may
also release the coated ingredients according to the conditions of
the environment, such as pH and oxygen content, to better adapt
to the harsh TME. Keman Cheng developed a therapeutic peptide
assembling nanoparticle that can sequentially respond to the
tumor microenvironment. The basic of the nano-vaccine was a
short D-peptide antagonist of programmed cell death-ligand 1
(DPPA-1), an inhibitor of idoleamine 2,3-dioxygenase (NLG919).
When exposed to the acidic tumor microenvironment, the
February 2021 | Volume 10 | Article 584367
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material became swollen. The material would soon collapse due to
the cleavage of the peptide substrate bymatrix metalloproteinase 2
(MMP-2), which is upregulated in tumor stroma. Such a subtle
design guarantees the controllable release of the ingredient and
provides a favorable circumstance for CTLs to survival and
become activated (80).

Third, nano-materials can serve as an immunotherapeutic
platform that can reshape immunosuppressive TME (81, 82).
The low response rate of current tumor immunotherapy can
partly account for the immunosuppressive factors in TME. To
better overcome this, Chanyoung Song developed an injectable
immunotherapeutic nanogel. The nanogel was injected in the
dissected empty space after removing approximately 90% of the
primary tumor by surgery in 4T1 triple-negative breast cancer
and TC1 cervical cancer mice models. Compared with the groups
without injected the nanogel, the original immunosuppressive
TME of the experimental group was reverted into the
immunogenic one, including increased levels of infiltrating
CTLs and upregulated expression of cytokines. Moreover, the
percentage of immunosuppressive cells such as MDSCs and M2
macrophages decreased after treatment (83).

Lastly, because the size of the nanoparticles is similar to that of the
pathogens, the injection of the nanoparticles can promote the
presentation of antigens, which can in turn induce the production
of more effective, long-lasting tumor specific CTLs (84). Altogether,
the modified tumor vaccines can effectively activate the host immune
response and induce the death of tumor cells. The re-assembled
tumor vaccines distributed in tumors reprogram the
immunosuppressive networks and increase immune cells infiltration.

In spite of the fact that nanoparticles have enhanced the anti-
tumor immune response in preclinical models, there remains
difficulties before fully applying them to clinical use. One of the
most important factors may be the selection of material
compositions. The safety of the materials should achieve the
certifications of the FDA. The materials should be biodegradable
and their degradants must also be non-toxic to humans without
leading to biological immune rejection. In addition to safety, the
physical properties of these materials such as cation density and
surface activity, need to be further optimized to better enhance
the antitumor effect of the immune system.
THE COMBINATION OF TUMOR
VACCINES AND OTHER THERAPIES

The Combination of Tumor Vaccines
and Metabolic Therapy
Both tumor cells and T cells are in desperate need of anabolic and
energetic to maintain their survival and growth. Tumor cells are
known to have unique metabolisms, and differences in cellular
metabolism between tumor cells and immune cells can serve as a
basis to better improve the antitumor effect.

The unique Warburg effect of tumor cells causes hypoglycemia
and hypoxia in the TME (44). TILs must adapt to this environment
to survive and exert anti-tumor function. By analyzing the CD8+ T
cell metabolism 30 days after vaccine treatment in melanoma-
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bearing mice, Zhang et al. found that the intensity of glycolysis
metabolites declined in CD8+ TILs while the peroxisome
proliferator-activated receptor (PPAR)-a signaling and fatty acid
(FA) catabolism metabolites increased, implying that CD8+ TILs
switched to these modes of metabolism to preserve their effector
functions under the pressure of hypoglycemia and hypoxia in TME.
They further confirmed this conclusion by adding fenofibrate, a
PPAR-a agonist, to increase FA catabolism. Indeed, the addition of
fenofibrate largely improved the antitumor function of vaccines
compared to the vaccinated, tumor-bearing group (85). Glutamine
has long been used for metabolism therapy due to its crucial role in
cell metabolism (86, 87). 6-diazo-5-oxo-L-norleucine (DON) is the
most widely studied broad-spectrum glutamine antagonist and has
been used in clinical trials (88, 89). However, DON was then
abandoned as an antitumor agent due to its toxicity, especially
gastrointestinal symptoms (88, 90). Robert D. Leone then developed
a prodrug of DON, JHU083, which could only be activated in the
TME. Blocking of glutamine metabolism led to the inhibition of
wide-ranging metabolism and the disruption of NADP(H)
homeostasis while robustly enhancing the function and
effectiveness of TILs and acquiring a long-lived, highly activated
phenotype. This difference may be due to the lack of plasticity in
tumor metabolism (91).

In conclusion, metabolism is integrated in cellular processes and
determines the fate of both tumor cells or immune cells. Deeper
insights into the mechanisms of the differences between tumor cell
and immune cell metabolism will help yield new targets for therapy.

The Combination of Tumor Vaccines
and Chemeric Antigen Receptor
T Cells Therapy
CAR-T therapy is another successful attempt at immunotherapy.
At present, dramatic clinical responses have been achieved in
non-Hodgkin’s lymphoma (NHL), adult and pediatric patients
with relapsed and refractory (R/R), B-cell acute lymphoblastic
leukemia (B-ALL), and chronic lymphocytic leukemia (CLL)
(92–94). However, relapse has become one of the obstacles that
hinders the development of such therapy. It is well known that
engraftment and persistence of CAR-T in vivo are the keys to
successful tumor eradication. However, the frequency of CAR-T
cells declined in vivo after transfer (95). The combination of
tumor vaccine and CAR-T therapy will be a leap forward for
tumor immunotherapy, as the combination can complement the
shortcomings of each therapy alone and synergistically enhance
anti-tumor ability. For example, unlike effector T cells activated
by tumor vaccines which engage HLA-peptide complexes, CAR-
T cells have the ability to recognize antigen on any HLA
background and are therefore more broadly applicable to
patient populations with diverse HLA background (96). They
can also target tumor cells that downregulate MHC-I molecules,
which is a major mechanism that contributes to tumor escape
from vaccine therapy (97). Likewise, the administration of tumor
vaccine improves the engraftment and persistence of CAR-T
cells to partly overcome CAR-T cell exhaustion in the TME.
Actually, a large number of studies have proved that this
combination strategy is feasible.
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K. Reinhard recently reported claudin (CLDN) 6 as a target for
CAR-T cell therapy. In the study, the researchers designed 2nd

generation CLDN6-CAR engineered human T cells as well as a
liposomal CLDN6-encoding RNA vaccine. Their data established
that the addition of tumor vaccine induced a profound expansion of
circulation CAR-T cells and showed complete rejection of tumors
with higher median survival. The administration of tumor vaccine
enabled tumor control at lower CAR-T cell doses (98).Similar
results have been shown in other studies using WT1-specific
CAR-T cells combined with DC vaccine pulsed with WT1236Y
peptide (99) and CMV/CD19 bispecific T cells combined with
CMV peptide vaccine (100). In each study, the post-transfer of
vaccine enhanced the therapeutic efficacy of CAR-T cells targeting
tumor antigens via CAR-T cell expansion and activation. An
important goal of immunotherapy is to establish immune
memory to protect against tumor recurrence. In addition to the
enhancement in anti-tumor ability, vaccines have been shown to
increase the numbers of memory T cells and decrease the number of
terminally differentiated T cells, implying that vaccines can promote
immunologic memory in CAR-T cells (101). Clare rechallenged the
long-term surviving mice with tumor cells in the contralateral site
100 days after the initial treatment, and they found that the mice
were completely resistant to rechallenge with the same tumor cells,
suggesting that the administration of vaccine did generate a
memory response in the surviving mice (102).

The concept of the combination of tumor vaccine and CAR-T
cell therapy to specifically eradicate malignant cells has been
repeatedly demonstrated in animal models but was sometimes
questioned due to the results of trials in humans. In a phase 1/2
study of WT1236Y peptide vaccine involving 26 patients, a patient
suffered from an immune-related, but manageable, adverse event
(103). Therefore, there remains the possibility that the synergism
of tumor vaccine and CAR-T therapy may be associated with
increased toxicity. The combination of vaccine and CAR-T
therapy has been applied in a relapsed pediatric acute
lymphoblastic leukemia clinical trial (NCT01195480). In the
CD19CAR CTL therapy with irradiated EBV transformed
lymphoblastoid cell lines (LCL) vaccination cohort, four of six
patients had detectable CAR-T cells in the blood until 1–3
months after infusion and showed a significantly improved
persistence compared with the cohort without vaccination.
However, while the usage of vaccine improved the persistence
of CAR-T cells somewhat, it was inadequate to induce the
proliferation of CAR19 CTLs needed for an effective antitumor
response (104). Such results require us to take how to mitigate
such risks into more careful consideration and to refine the
combination therapeutic strategies, including the doses of tumor
vaccine and CAR-T cells in combination therapy, the injection
time and the injection sequence.

The Combination of Tumor Vaccines
and Immune Checkpoint
Blockade Immunotherapy
Growing preclinical and clinical trials have combined tumor
vaccines with ICBs in the attempt to reinvigorate exhausted T
cells, and many support the assumption that the combination of
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ICBs and tumor vaccines have the ability to synergistically
improve the clinical outcome (105–108). The immune
checkpoint pathway plays an important role in maintaining
immune tolerance and deciding the fate and function of T cells
(109). Herein is discussed the optimal timing and sequencing of
the combination of ICBs and tumor vaccines to obtain the
maximum therapeutic benefits.

Because the preparation of tumor vaccines will take a long period
of time, ICBs have always been the priority selection in the clinic,
followed by tumor vaccines. However, studies have shown that the
initial state of T cells is one of the main reasons affecting the effect of
combination treatment. Vivek Verma et al. (110) uncovered the
phenomenon that when PD-1 was blocked first, the anti-tumor
effect of the tumor vaccines was abrogated due to the decrease rate
of CD8+ T cells and defective T cell activation. The blockade of PD-
1 under sub-optimally activated CD8+ T cell conditions would lead
to the presence of dysfunctional PD-1+CD38hiCD8+ T cells,
resulting in the failure of antigenic stimulation response and
defective effector functions (111). Researchers have found that
such populations of T cells are associated with resistance to anti-
PD-1 therapy. If treated appropriately with tumor vaccines before
PD-1 inhibitors, the resistance to the PD-1 inhibitors will be
resolved. This finding implies that proper sequencing of
immunomodulatory agents is necessary for ideal clinical
outcomes. In a therapeutic strategy for the clinical use of PD-1
inhibitors combined with tumor vaccines, it may be better to use
tumor vaccines before PD-1 inhibitors, or at least use them at the
same time. However, we come to a totally opposite conclusion in
another experiment using ARF-Fc anti-CTLA-4 mAb where if anti-
CTLA-4 mAb was given with the peptide vaccines simultaneously,
not only the CTLA-4+ Tregs but also the CTLA-4+CD8+ T cells
were depleted. Giving the anti-CTLA-4 mAb treatment several days
before the vaccine stimulation resulted in the depletion of Tregs and
the expansion of antigen-specific CD8+ T cells in vitro and led to an
enhanced anti-tumor effect in vivo (112). Whether all the ICBs
would undergo the above changes when combined with the tumor
vaccines needs to be further confirmed. However, these reports do
provide unique insights into the normalization of the combined
immunomodulatory agents.

In conclusion, correct timing and sequence of ICBs treatment
and tumor antigen vaccines are important factors influencing the
effect of tumor immunotherapy. Such normalization should be
based on the kinetics of immune checkpoints and effector T
cell activation.

The Combination of Tumor Vaccines
and Oncolytic Viruses
To better improve the antitumor efficacy of tumor vaccines, the
ability to alter the immunosuppressive TME is the most attractive
feature. When compared with other immunotherapies, OVs seem to
be more ideal antitumor immunity inducers. OVs have been shown
to overcome the issues regarding immunosuppressive TME, which
often encountered by T cell therapies.

OVs can promote antitumor T cell responses through
multiple mechanisms. First, OVs can promote T cell priming.
Due to the defective antiviral responses, tumor cells are
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susceptible to virus infection. The enzymes and factors required
for rapid cell division are often highly expressed in tumor cells,
providing viruses with a replicative advantage in the tumor cells
(1). Once the infection is established, continuous replication of
viruses will at last lead to oncolysis. When the tumor cells are
broken, the damage associated molecular patterns and tumor
antigens will be released into the TME, which can contribute to
the maturation and function of DCs, leading to the priming of
tumor-specific T cell response (113, 114). Second, OVs induce a
pro-inflammatory TME that can increase T cell trafficking and
infiltration. Chemokines and cytokines regulate the trafficking
and infiltration of immune cells into the TME. Studies have
shown that the infection of OVs elicits potent type I interferon
responses (115, 116), which can stimulate the production of T
cell recruiting chemokines. Inflammatory factors such as tumor
necrosis factor (TNF) and interleukin-1b (IL-1b) can also be
induced by OVs, which in turn upregulate the expression of
selectin on endothelial cells and provide an important signal for
T cell infiltration (117–119). The presence of physical barriers is
another critical reason accounting for the defective T cell
infiltration. However, Ilkow et al. found that the vesicular
stomatitis virus (VSV) can selectively destroy cancer-associated
fibroblas ts (CAFs) , which are key components of
immunosuppressive tumor stroma (120). Their depletion can
represent yet another means by which OVs increase the
infiltration of T cells. Last, OVs improve the recognition of
tumor cells. To avoid T cell recognition, tumor cells can
downregulate MHC class I expression and other components
involved in the antigen processing and presentation pathway.
OVs have the ability to reverse these effects, likely by inducing
type I interferon production (121, 122).

Bringing together the above concepts, combined treatment with
OVs can be a promising strategy for reverting immunosuppressive
TME and enhancing the antitumor capabilities of tumor vaccines.
In B16-OVA melanoma mouse models, combination treatment of
VSV-GP, a chimeric vesicular stomatitis virus (VSV) pseudotyped
with the glycoprotein (GP) of the lymphocytic choriomeningitis
virus, with an ovalbumin (OVA) peptide-loaded dendritic cell (DC)
vaccine (DCVacc) significantly increased the numbers of tumor-
infiltrating, highly activated T cells while relatively reducing the
number of Tregs. Researchers observed that several
proinflammatory cytokines increased in the VSV-GP-treated
group (123). Using a pre-clinical ovarian cancer mouse model,
the combination of vaccine and antigen-armed oncolytic Maraba
virus elicited robust tumor-specific CD8+ T cell responses and led to
unique immunological changes that correlated with improved
clinical outcome of ovarian cancer patients (124). These findings
pointed to a key role of OVs to help exert systemic immunologic
effects and improve survival. OVs can also serve as adjuvants for
tumor vaccines. Erkko Ylösmäki et al. physically attached tumor-
specific peptides onto the viral envelope of the virus and found that
by coating the viral envelope with therapeutic peptides, the
antitumor immunity in the tumor microenvironment can be
significantly enhanced (125).

In conclusion, the synergism of tumor vaccine and OVs can
combine the advantages of both approaches. The viruses activate
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the immune response and reshape the TME, and the therapeutic
antitumor vaccine direct the immune response towards the
neoantigens. Currently, numerous oncolytic viruses have been
applied in early phase clinical trials (126–128). Unlike standard
drugs, such live viruses have unique challenges. They are live
viruses and can proliferate during clinical administration,
making it difficult to establish safe and effective dosing
guidelines. Moreover, the immune response induced by OVs
can be further divided into antitumor immune response and
antiviral immune response. On the one hand, viruses help induce
immune response against tumor cells. On the other hand, the
response to neutralize virus toxicity may block virus replication
and the ongoing infection of tumor cells (129). Hence, more
careful attention should be taken in the establishment of this
combination therapeutic regimen to balance the immune
responses and maximize the advantages of the combination
therapy. Moreover, compared to agents that directly kill tumor
cells, immune-mediated antitumor responses will be much
slower. Therefore, more appropriate clinical indicators are
needed to cap tu r e the r apeu t i c r e spons e s o f the
combination therapy.

The Combination of Tumor Vaccines
and Epigenetic Therapy
Immune cells infiltrating in the TME are frequently in an
exhaustion state and accumulating evidence indicates that such
reprogramming can partly be the consequence of aberrant
epigenomes. As a result, epigenetic therapy has the potential to
reverse the exhausted immune T cells caused by aberrant
epigenomes. At present, histone deacetylase inhibitors
(HDACi) and hypomethylating agents have been approved by
the FDA and have brought epigenetic therapy to the front of
tumor therapies. Collectively, the synergistic effect of epigenetic
drugs on tumor vaccines can be concluded in the
following points.

First, epigenetic therapy helps restore the HLA class-I antigen
processing machinery expression on tumors. For example,
hypomethylating agents have been shown to have the ability to
upregulate tumor antigens as well as antigen processing and
presentation genes (130, 131). Similarly, in the glioma
implantation mouse model, Ting Sun et al. found upregulated
expression of antigen processing and presenting associated
molecules on the surface of the glioma tumor cells in the
HDACi-treated group, such as TAP1, TAP2, and MHC-I, thereby
enhancing the specific lysing efficacy of the immune cells and in
turn potentiating the immune response (132). Interestingly, Ailsa
et al. (133) uncovered that HDACi mediated tumor cells apoptosis
could stimulate the uptake by APCs and that the combination of
HDACi and immune-activating antibodies to promote the function
of APCs could enhance the proliferation and survival of cytotoxic T
cells . Second, epigenetic therapy can modulate the
immunosuppressive TME. Both hypomethylating agents and
HDACi have been shown to increase the number of natural killer
(NK) cells in the tumor bed while reducing the percentage of tumor-
infiltrating MDSCs and Tregs (134–136). Tumor cells can
epigenetically silence the expression of chemokines to impair the
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infiltration activity of immune cells. However, pharmacological
inhibition of histone deacetylase in tumor cells was shown to
increase the expression of chemokines, thus attracting peripheral
infiltrating T cells to the tumor bed (27). Last, apart from regulating
T cell extrinsic factors, epigenetic therapy can act on TILs directly by
re-invigorating exhausted T cells (137) and decreasing the activation
induced cell death in TILs (138). However, it is worth mentioning
that epigenetic therapy can also suppress the immune response. For
example, the administration of hypomethylating agents prior to
allogeneic transplantation can relieve graft versus-host disease
(GVHD) through inducing the production of Tregs (139), which
implies that it is necessary to balance the pro-immunogenic and
immunosuppressive functions in clinical use.

Generally, clinical agents that can be used in conjunction with
tumor vaccines should have the characteristics below. First, they
act directly upon the T cells to enhance the adaptive anti-tumor
immune response. Second, they relieve the tumor-induced
immunosuppression, which in turn provides a suitable
immune microenvironment for anti-tumor immune cells to
help them work properly. Considering the fact that some
drugs may also produce cytotoxic effect on immune cells, it is
critical to ensure that appropriate dosages are used in the
combination therapy.
DISCUSSION

In the TME, T cells are key cellular components that extensively
crosstalk with tumor cells. Recent successes have fueled interest
in improving the durable anti-tumor ability of tumor vaccines.
Advances in the understanding of immune regulation
mechanisms provide solid foundation for the development of
novel tumor vaccine combination therapy strategies. However,
the occurrence and development of tumors is a dynamic
evolution process characterized by genetic instability (1). Due
to the immune escape mechanism of tumor cells, tumor vaccines
alone may not exert expected tumor killing effects, which is one
of the factors that hinders the application of tumor vaccines. In
the upcoming era, the application of tumor vaccines should be
combined with other therapies such as chemotherapy, radiation
therapy, molecular targeted drugs and other immunotherapies to
produce a more durable anti-tumor immune response and
improve the prognosis of cancer patients.

Although combined treatments have achieved anti-tumor
effects and prolonged survival time in pre-clinical animal
models, questions exist in clinical translation. The most
important point is that the immune background of the animal
models is quite different from that of humans. Although patient-
derived tumor xenograft (PDX) models have been widely applied
in tumor immunology research, the dosage and usage in animal
models still require a long time to verify their feasibility in
human beings, which greatly extends the time for clinical
translation. Second, due to the complexity of tumor
immunotherapy and the heterogeneity of patients in the clinic,
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more precise predictive biomarkers still need to be explored to
better identify the standard to combine for different treatments.
They can also help to determine which treatments are suitable for
patients in early clinical diagnosis to develop personal treatment
options for different patients. The occurrence and development
of tumors is a complex process. Under the pressure of immune
survival, a series of changes will happen in tumor cells to avoid
immune responses. These lead to challenges in clinical work of
how to adjust the combined treatment regimen in time according
to different biological changes in tumor cells to maximize the
effect of combined treatment. Third, like predictive biomarkers,
appropriate indicators should also be developed in the clinic to
assess the effect of combination therapy. Finally, a perfect
combination treatment regimen needs to be developed based
on the cancer immunity cycle to decide which treatment should
be included. In other words, such regimens should include
activating the endogenous immune response, promoting
immune cell infiltration, increasing tumor sensitivity to
therapy, reducing tumor burden and maintaining long-term
immunity. This requires clinicians to have an accurate grasp of
the combination treatment regimen. Continuous studies on
tumor immune mechanism and clinical translation are needed
to overcome the questions of how to combine different
treatments; whether each of the treatment should be added
sequentially or concurrently; and whether each of the
treatments should be added continuously of intermittently. In
general, the biological toxicity of each treatment should be
minimized while the synergistic effects of each treatment
should be maximized.
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