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Abstract

Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and
play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly
between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle
generates the poleward forces to drive two rounds of meiotic chromosome segregation to achieve genome haploidization.
We took advantage of the fact that DNA beads are able to induce bipolar spindle formation without kinetochores and
studied the behavior of DNA beads in the induced spindle in mouse eggs during meiosis II. Interestingly, DNA beads
underwent poleward movements that were similar in timing and speed to the meiotic chromosomes, although all the beads
moved together to the same spindle pole. Disruption of dynein function abolished the poleward movements of DNA beads
but not of the meiotic chromosomes, suggesting the existence of different dynein-dependent and dynein-independent
force generation mechanisms for the chromosome poleward movement, and the latter may be dependent on the presence
of kinetochores. Consistent with the observed DNA bead poleward movement, sperm haploid chromatin (which also
induced bipolar spindle formation after injection to a metaphase egg without forming detectable kinetochore structures)
also underwent similar poleward movement at anaphase as DNA beads. The results suggest that in the chromatin-induced
meiotic spindles, kinetochore attachments to spindle microtubules are not absolutely required for chromatin poleward
movements at anaphase.
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Introduction

Accurate chromosome segregation during eukaryotic cell division

is achieved by a microtubule-based bipolar spindle which generates

forces to move the replicated chromosomes toward opposite poles.

It has been a long standing question how spindle microtubules (as

well as the associated motor molecules) generate the poleward forces

to segregate chromosomes during cell division. Although the

detailed molecular mechanisms are still not completely understood,

it is generally accepted that the kinetochore, a proteinaceous

structure assembled at the chromosomal centromere region, plays

important roles in chromosome segregation [1,2,3,4,5,6,7]. The

kinetochore mediates the physical interactions between a replicated

chromosome and microtubules to establish a biorientation config-

uration during metaphase and ensure accurate segregation during

anaphase [4,5,8,9,10]. The kinetochore-connected microtubules, or

K-fibers, are thought to apply the poleward forces to the

chromosomes and pull chromosomes toward the opposing poles

during anaphase [11,12,13].

In addition to the forces exerted on the kinetochores, it is known

that the chromosome arms are associated with motor molecules,

which can also generate forces to maintain chromosome mobility

[14,15]. Most of them however, are plus end-directed motors

responsible for generating the ‘‘polar ejection’’ forces to help

position chromosomes at the spindle equator during chromosome

congression [14,16,17]. The minus end-directed motor, dynein,

localizes mainly to the kinetochores and the spindle poles [18,19].

It was previously observed in plant cells and insect spermatocytes

that chromosome fragments (made by cutting chromosomes)

containing no kinetochores still show poleward movement during

both metaphase and anaphase [20,21], suggesting that there are

kinetochore-independent poleward forces exerted on the chromo-

some arms.

Meiotic spindles in mammalian oocytes show some fundamental

differences from their mitotic counterparts and little is known

about the force generation mechanism in the meiotic spindle to

move chromosomes from spindle equator to poles. Oocytes

contain no centrosomes [22,23] and the meiotic spindle is

assembled around the chromatin via a RanGTP-dependent

pathway [24,25,26]. It is interesting to note that the K-fibers are

not involved in the formation of the first meiotic spindle or meiotic

chromosome congression to the metaphase plate [27]. More

impressively, a morphologically indistinguishable bipolar spindle

can be induced by DNA coated beads in Xenopus egg extracts [28]

and mouse eggs [29], suggesting a distinct centrosome-indepen-

dent pathway for meiotic spindle formation. Microtubules can

even self-organize into bipolar spindles in the absence of

chromatin [29,30] through motor-driven processes [28,31]. Apart

from being useful for studying the mechanism of spindle

formation, DNA bead-spindles may provide a clean kinetochore-

null system for observation and dissection of the poleward forces

exerted on the chromosomes. Another advantage of studying
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anaphase chromosome movement in mouse oocytes is that the

anaphase of meiosis II can be experimentally induced and

manipulated without imposing cell cycle arrest. In this study, we

injected DNA beads into mouse eggs to induce spindle formation

without kinetochores and studied the behavior of DNA beads after

inducing anaphase of meiosis II. To our surprise, DNA beads

underwent progressive poleward movements as was observed for

the meiotic chromosomes. The kinetochore-independent poleward

movement of DNA beads required dynein and dynamic

microtubules, while the poleward movement of meiotic chromo-

somes which contain kinetochores was independent of dynein.

Our findings reveal a kinetochore-independent mechanism to

drive chromosome poleward movement during meiosis.

Results

DNA beads undergo poleward movements during
anaphase of meiosis II

To investigate the behavior of chromatin in the absence of

kinetochores in an anaphase spindle, we injected beads coated with

plasmid DNA into mouse eggs which are physiologically arrested at

metaphase of the second meiotic division (MII), to induce bipolar

spindle formation [28,29]. The injected eggs, each containing a

maternal spindle and a DNA bead-induced spindle (Figure 1A,

arrow), were either activated parthenogenetically by using SrCl2
[32,33] or by in vitro fertilization [34] to induce anaphase onset.

After egg activation, the DNA bead-spindles underwent metaphase-

anaphase transition, forming a distinct spindle midzone, a structure

typical of an anaphase spindle (Figure 1D, arrow), which was

capable of inducing cytokinesis for polar body extrusion (Figure 1B).

Interestingly, all the DNA beads moved together to one spindle

pole, either toward the polar body or remained inside the egg

(Figure 1B–1C, arrows). The observed poleward movement of DNA

beads was not due to spindle-cortex interaction or cortical attraction

during polar body extrusion because: 1) the poleward movement

preceded the polar body extrusion (Figure 1C, movie S1); and 2)

DNA bead-spindles that formed far away from the cortex showed

no difference from those close to the cortex in moving DNA beads

poleward (Figure 1E, arrow).

To compare the rates of poleward movement of the DNA beads

with that of the maternal chromosomes, time-lapse 3D confocal

movies were made to follow the anaphase events (Figure 2,

Supplementary Figure S1). First, we observed that the poleward

movements of DNA beads and maternal chromosomes occurred

almost synchronously after egg activation, suggesting that the

forces that drove DNA bead movement were under the same cell

cycle control as those moving the maternal chromosomes. Second,

transition from metaphase to anaphase was coupled with re-

orientation of the spindle such that the spindle was positioned

,90u to the polar cortex where the polar body is extruded. Using

Imaris 4D tracking software, the rate of poleward movement was

calculated to be 0.2460.06 mm/min (n = 3) and 0.2860.06 mm/

min (n = 3). Thus, DNA beads underwent poleward movement at

a speed similar to that of the meiotic chromosomes.

It should be pointed out that DNA beads that were incorporated

into the metaphase spindle showed no obvious poleward move-

ments and stayed in the equator of the spindle during metaphase

(observation of over 50 DNA bead-spindles). The poleward

movement of DNA beads was only observed after anaphase onset.

Sperm chromatin moves towards spindle poles in the
absence of K-fibers

To test if the observed DNA bead poleward movement is a

general phenomenon of kinetochore-free chromosomes during

meiosis, we injected mouse sperm chromatin into eggs to induce

spindle formation and followed their behavior during meiosis II. It

was previously observed that Xenopus sperm chromatin is able to

induce spindle formation in egg extracts without forming

kinetochores or kinetochore microtubules [35]. This was con-

firmed by negative immunostaining of centromere protein A

(CENP-A), a kinetochore marker, in both DNA bead- and sperm-

assembled spindles (Figure 3A, 3D, arrowheads). Consistent with

that observed in DNA bead-spindles, the condensed sperm

chromatin moved poleward without disjunction during anaphase

of meiosis II (Figure 1F, arrow). The monopolar movements of

DNA beads and sperm chromatin might be due to physical

stickiness of the beads or the highly condensed sperm chromatin.

To test this possibility, DNA beads were co-injected with sperm

chromatin into an egg to induce formation of a single spindle

containing both DNA beads (Figure 1G, arrowhead) and sperm

chromatin (Figure 1G, arrow). After inducing anaphase onset, the

co-injected DNA beads and sperm chromatin either segregated

from each other and moved toward opposite poles (Figure 1H,

arrow and arrowhead, n = 7/20), or moved together to the same

pole (Figure 1I, arrow and arrowhead, n = 13/20). This suggests

that in the absence of kinetochore, the chromosome-induced

spindle has the ability to move chromosomes toward opposite

poles but loses the assurance of equal segregation.

Disruption of dynein function abolishes the poleward
movement of DNA beads but not of the meiotic
chromosomes

To gain insights into the forces responsible for driving the

kinetochore-independent poleward movements of DNA beads

during anaphase, we tested the potential role of two microtubule

motors using chemical or protein inhibitors. Whereas we were

unable to obtain conclusive results with inhibition of Eg5 kinesin by

monastrol due to severe defects in maintaining a bipolar spindle

morphology in anaphase (data not shown), we found that dynein, a

minus end-directed microtubule motor, was required for the

anaphase poleward movement of DNA beads, as injection of

dynein functional-blocking antibody, clone 70.1, completely

blocked the poleward movement of DNA beads (Figure 4A, arrow,

n = 17, movie S2). To verify if the inhibition by anibody injection is

due to specific disruption of dynein function, we performed separate

experiment to inject dynamitin p50, a dynein inhibitory peptide

[36] and observed the same inhibition of DNA bead poleward

movement (Figure 4B, n = 23). The block was not due to possible

activation of spindle assembly checkpoint which may arrest cell

cycle progression because the maternal meiotic spindle in the same

eggs underwent normal metaphase-anaphase transition and

chromosome segregation (Figure 4A–4C, arrowheads). It is

interesting to note that disruption of dynein function had no effect

on the bipolar segregation of the meiotic chromosomes (Figure 4A

and 4B, arrowheads) which contain kinetochores. The differential

effects of inhibition of dynein on the behavior of kinetochore-free

DNA beads and kinetochore-containing meiotic chromosomes after

anaphase onset are summarized in Figure 4C.

To determine the possible site of action of dynein, DNA bead-

injected eggs were stained with an antibody against the 74kD

dynein intermediate chain. Immunostaining showed dynein

localization on both DNA beads (Figure 4D and 4E, arrow), and

kinetochores and spindle poles of the maternal spindle (Figure 4F

and 4G, arrow and arrowheads), which is in agreement with

previous reports [18,19]. DNA bead-spindle poles, however, were

not as clearly stained by dynein antibody as those of the maternal

meiotic spindle (Figure 4D and 4F) and fewer foci of p-MARCKS-

stained spindle poles were observed in DNA bead-spindles

Chromosome Poleward Movement

PLoS ONE | www.plosone.org 2 April 2009 | Volume 4 | Issue 4 | e5249



(Figure 4H, arrows) compared with that of the maternal MII

spindle (Figure 4J, arrows). Accordingly, dynactin p150Glued, a

functional partner of dynein consistently localized to DNA beads

(Figure 4L, 4M) and meiotic chromosomes (Figure 4N, 4O).

Taken together, the results suggest that dynein contributes to the

chromatin poleward movement during anaphase.

Figure 1. Behavior of DNA beads and sperm chromatin in their assembled K-fiber-less spindles during anaphase of meiosis II. (A) A
DNA bead-assembled bipolar spindle (arrow) in MII eggs (MII, maternal chromosome-induced spindle). (B) DNA bead-spindle underwent metaphase-
anaphase transition and induced polar body extrusion after egg activation. Note that the DNA beads were moved to one spindle pole and discarded
in the extruded polar body (arrow). (C) DNA bead and meiotic chromosome poleward movements preceded the polar body extrusion. The arrow
indicates the DNA beads and arrowheads show the segregated meiotic chromosomes. Note that the polar body was not yet extruded in this egg. The
arrowheads show the segregated meiotic chromosomes. (D) Survivin (in red) localization at the spindle midzone (arrow) of the DNA bead-spindle (the
same egg shown in panel B). (E) DNA bead poleward movement on a spindle formed far away from the cortex. The arrow indicates the DNA beads
and the arrowheads indicate the two sets of segregated meiotic chromosomes. (F) Poleward movement of injected sperm chromatin to one spindle
pole (arrow). The arrowheads show the segregated meiotic chromosomes. (G) Co-injected DNA beads (arrowhead) and sperm chromatin (arrow)
sharing the same metaphase spindle. (H) After anaphase onset, DNA beads (arrowhead) and sperm chromatin (arrow) segregated from each other
and moved to opposite poles in 7/20 oocytes. The unmarked spindle is maternal. (I) Both DNA beads (arrowhead) and sperm chromatin (arrow)
moved to the same spindle pole in 13/20 oocytes. The unmarked spindle is maternal.
doi:10.1371/journal.pone.0005249.g001
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Disruption of microtubule dynamics blocks both DNA
bead and meiotic chromosome movements toward the
poles

To test if microtubule depolymerization contributes to the

observed DNA bead poleward movements, low concentrations of

taxol (100 nM-10 mM) were used to block microtubule flux as

previously reported [20,37]. Poleward movements of both DNA

beads and meiotic chromosomes were inhibited by taxol, resulting

in DNA beads and most of the meiotic chromosomes staying at the

equators of the spindles (Figure 5A–5C, arrows). A small

percentage of eggs (18/53) showed partial inhibition of the

maternal chromosome poleward movements with some lagging

chromosomes at the equator regions (Figure 5B and 5D, arrows).

The effects of taxol on DNA-bead and meiotic chromosome

movements were unlikely due to cell cycle arrest as a result of

possible checkpoint activation since typical telophase spindle

morphology and anaphase spindle midzone-induced furrows were

all observed in these eggs (Figure 5B and 5C, arrows), suggesting

that cell cycle progression was unaffected by taxol treatment.

Discussion

It was previously shown that a bipolar spindle can assemble

around DNA beads in egg extracts, independently of kinetochores

or centrosomes [28]. It has been unclear, however, if these DNA

bead-spindles are functional in segregating chromosome and

inducing cytokinesis in the live cells. Here, we report that despite

lack of kinetochores and centrosomes, the DNA-bead-induced

spindles are still able to generate poleward forces to move DNA

beads to spindle poles during anaphase. In addition, the DNA

bead-spindles are fully functional in inducing cytokinesis and result

in ectopic polar body extrusion during meiosis II in mouse eggs.

The observed poleward movements of DNA beads in the

kinetochore-less spindle are not due to random movements of

the beads because: 1) the poleward movements were not observed

in the metaphase spindles and non-DNA-coated beads showed no

poleward movements (data not shown); 2) the kinetochore-

independent chromatin poleward movements were also observed

in the sperm chromatin-assembled spindles which are known to

contain no kinetochore fibers in the absence of DNA replication

[35]. Thus, a chromatin-induced bipolar spindle formed in the

meiotic oocytes has an intrinsic property to move chromosomes

from the equator to poles at anaphase even in the absence of

kinetochores.

The presence of kinetochores and their proper attachment to

microtubules to establish a biorientation configuration may

provide a more advanced structure to ensure accurate chromo-

some segregation while installing a checkpoint to monitor the

process. In the absence of kinetochores, both DNA beads and

sperm chromatin show random monopolar poleward movements,

resembling the case of chromosome nondisjunction during the

error-prone meiosis [38,39]. The kinetochore-independent mech-

anism for chromosome poleward movements may contribute to

the high rate of aneuploidy in mammalian meiosis [39]. However,

Figure 2. Time-lapse 3D confocal observation of chromosome poleward movements during anaphase of meiosis II. (A) Movement of
DNA beads (top) and meiotic chromosomes (lower) at different time points shown in minute in a timelapse 3D movie. M chromosomes represent
maternal chromosomes. DNA beads and meiotic chromosomes are shown in green and spindle in red. Note that the apparent round morphology of
DNA-bead spindle shown at 48 min was due to a slight spindle rotation in the Z dimension. (B) Entire oocyte showing synchronous anaphase events
(including anaphase onset, chromosome poleward movement, spindle rotation, and polar body extrusion) in both the DNA bead-spindle (arrows)
and the meiotic spindle (arrowheads).
doi:10.1371/journal.pone.0005249.g002
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it remains to be determined to what extent the results obtained

from the artificially-assembled spindles can be applied to the

kinetochore-containing meiotic spindles during meiosis. An

interesting question that also needs to be addressed in the future

is how the kinetochore-dependent and the kinetochore-indepen-

dent poleward forces are coordinated during meiosis.

It was previously observed in plant cells and insect spermato-

cytes that microsurgically generated chromosome fragments,

Figure 3. Lack of CENP-A in DNA bead- and sperm chromatin-assembled spindles in MII eggs. (A) CENP-A in a DNA bead-injected egg.
The arrow indicates the location of MII chromosomes and the arrowhead indicates the position of DNA beads. (B) DIC image of (A) showing the
position of the injected DNA beads (arrowhead). (C) The same egg of (A) showing spindle (red) and CENP-A (green) and DNA (blue). Note that the two
spindle poles induced by the DNA beads are not in the same focal plane. (D–F) A sperm chromatin-injected egg showing CENP-A (green), DNA (blue)
and spindle (red). The arrow indicates the location of MII chromosomes and the arrowhead indicates the location of the injected sperm chromatin.
MII represents the meiotic chromosomes and Sp indicates sperm chromatin.
doi:10.1371/journal.pone.0005249.g003

Chromosome Poleward Movement
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Figure 4. Role of cytoplasmic dynein in chromosome poleward movement. (A) Inhibition of poleward movement of DNA beads and maternal
chromosomes by dynein antibody injection. (B) Injection of dynamitin p50. Note that DNA beads remained at the middle of the spindles (arrows)
whereas the maternal chromosomes segregated and moved to spindle poles (arrowheads). (C) Quantification of the percentage of chromosome
poleward movements on the meiotic and DNA bead spindles respectively in the dynein antibody-injected eggs. (D) Dynein localization on DNA beads
(arrow). (E) Merged image of DNA beads (blue) and spindle (green). (F) Dynein localization on MII chromosomes (arrow) and spindle poles (arrowheads).
(G) Merged image of DIC and DAPI staining showing MII chromosomes (blue) and spindle. (H–K) p-MARCKS staining of microtubule organization centers
(MTOCs, red) in DNA bead spindle (H and I) and MII spindle (J and K). Note that there is only one MTOC staining in each of the DNA bead-spindle poles (H,
arrows). (L–O) p150Glued localization on both DNA beads (H and I, arrows) and meiotic chromosomes (J and K, arrows).
doi:10.1371/journal.pone.0005249.g004
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which contain no kinetochores, are able to move to spindle poles

[20,21]. However, in these experiments, due to the presence of

both intact chromosomes and kinetochore-free chromosome

fragments in the same spindle, it was unclear if the chromosome

fragments could be ‘‘hijacked’’ by the kinetochore-microtubule

generated poleward forces. Another difference is that the

previously reported kinetochore-independent poleward move-

ments were observed both at metaphase and anaphase, while

the poleward movement of DNA beads described here is tightly

coupled with anaphase onset, suggesting that the observed

poleward force generation described here is under precise cell

cycle control.

In mitotic cells, the onset of anaphase is triggered by cohesin

degradation by separase [40,41]. Artificial severing of the linkage

between sister chromosomes during metaphase in mitotic cells

could result in premature poleward movements of chromosomes

[42,43,44], suggesting that the mitotic chromosomes are subject to

persistent poleward forces during both metaphase and anaphase.

However, in the meiotic oocytes used in this study, there is no

DNA replication in the metaphase-arrested eggs and it is unlikely

that chromatin cohesion is responsible for restraining poleward

movements of DNA beads or sperm chromatin during metaphase.

It is more likely that the observed poleward movements of DNA

beads or sperm chromatin after anaphase onset are due to direct

activation of motors or microtubule depolymerization-based forces

as a result of the cell cycle transition.

There are two potential mechanisms by which the minus end-

directed motor dynein could drive chromosome poleward move-

ment: by moving the bulk of chromosomes as a cargo toward spindle

poles, or by powering the microtubule poleward flux by affecting

microtubule minus end dynamics at the spindle poles [28,45]. The

mictotubule poleward flux has been observed in meiotic spindles in

Xenopus eggs [44,46,47]. We have observed dynein and p150Glued

localized on the injected DNA beads and sperm chromatin,

suggesting that dynein possibly directly transports the bulk of

chromosomes toward the microtubule minus ends at spindle poles.

However, a simple transport mechanism is unlikely, as microtubule

depolymerization is also critical for poleward chromosome move-

ment. It is interesting to note that although the movements of the

DNA beads and the maternal chromosomes show different

dependencies on dynein, the resultant rates of chromosome poleward

movement are almost identical. One possible explanation for this

phenomenon is that the same microtubule depolymerization event is

rate-limiting for both types of movement.

Figure 5. The effects of taxol on chromosome poleward movements during anaphase. (A) DNA beads (arrow) maintained at the equatorial
position of the spindle after egg activation in the presence of 100 nM taxol. (B) The same egg shown in (A) showed anaphase onset and impaired
poleward movement of maternal chromosomes. Note the cytokinetic furrow induced by the spindle midzone (arrow) and the lagging chromosomes.
(C) Complete inhibition of chromosome poleward movement in a taxol-treated egg. Note that a cleavage furrow (arrow) is formed over the spindle
midzone, suggesting that the egg did enter anaphase. (D) Quantification of chromosome poleward movements on both meiotic and DNA bead
spindles in the presence of 100 nM taxol.
doi:10.1371/journal.pone.0005249.g005

Chromosome Poleward Movement

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5249



Materials and Methods

All animals were handled in strict accordance with good animal

practice as defined by the National Institute of Health of the

United States and guidelines of Institutional Animal Care and Use

Committee (IACUC) and all the animal work was approved by the

IACUC committee at Stowers Institute for Medical Research,

protocol #2007-0013.

Microinjection
Metaphase II (MII) arrested eggs were collected from mice after

superovulation treatment as described [48]. To induce spindle

formation by DNA beads or sperm chromatin, 3–5 beads coated

with plasmid DNA [28,29] or an inactivated sperm head were

injected into eggs as described before [29,48]. To induce

formation of a single spindle around both DNA beads and sperm

chromatin, DNA beads and sperm chromatin were co-injected

into eggs. The DNA bead- and sperm chromatin-injected eggs

were cultured in M16 (Chemicon) for 3–4 h to allow microtubules

to assemble into a bipolar spindle.

To assess the role of dynein during chromosome poleward

movements, an antibody against dynein intermediate chain, clone

70.1 (Sigma), was injected into eggs at a final intracellular

concentration around 1 mg/ml before induction of anaphase (see

below). Recombinant dynamitin p50 prepared as described [36]

was injected at a final concentration around 0.4 mg/ml. To

visualize DNA bead and meiotic chromosome poleward move-

ments during anaphase in live eggs, rhodamine-labeled tubulin

(Cytoskeleton) was injected into eggs at a final concentration of

0.1 mg/ml.

Egg activation
To induce anaphase onset, eggs were activated parthenogenet-

ically by culture in 10 mM SrCl2 in Ca2+, Mg2+ free CZB [32,33]

or by in vitro fertilization [34]. The anaphase chromosome

poleward movements were evaluated 1.5 h after egg activation by

fixation and immunofluorescence (see below).

Live imaging of chromosome poleward movements and
polar body extrusion during meiosis II

To observe chromosome poleward movements during ana-

phase, eggs containing both a DNA bead-spindle and a maternal

meiotic spindle were injected with rhodamine-labeled tubulin as

described above and activated with SrCl2. To visualize chromo-

somes, Hoechst33342 (Sigma) was added to the medium at

concentration of 5–10 ng/ml. Confocal Z-series sections spanning

both the DNA bead spindle and the meiotic spindle were collected

on a Zeiss 510 NLO with a time interval of 7 min. During the

course of imaging, 5% CO2 was supplied and temperature was

maintained at 37uC.

Immunofluorescence confocal microscopy analysis
Eggs were fixed in 3.7% paraformaldehyde and processed as

described [29]. Microtubules were visualized by staining with a

mouse beta tubulin antibody (1:500) (Sigma). Kinetochore

structure was detected by using a rabbit polyclonal CENP-A

antibody (1:200) (Abcam). A rabbit polyclonal survivin antibody

(1:250)(Abcam) was used to stain spindle midzone. Cytoplasmic

dynein was stained by a mouse dynein antibody (1:300) (74kd,

Chemicon). Microtubule organization centers (MTOCs) were

stained by a phospho-MARCKS (myristoylated alanine-rich C-

kinase substrate) antibody (1:400, Sigma). A mouse p150Glued

antibody (BD Transduction Laboratory) was used to stain

dynactin p150 (1:300). Corresponding secondary antibodies

conjugated with Alexa Fluor 488, 633 were used to reveal the

primary antibody-staining (1:400). F-actin was visualized by

staining with Alexa Flour 546 conjugated phalloidin (Molecular

Probes) at a concentration of 6.6 mM. DNA was counterstained by

DAPI (Sigma) at a concentration of 1 mg/ml.

All images were acquired by using a 406or 636oil objective on

a Leica confocal microscope or the Zeiss LSM510 confocal

microscope. To construct 3D images and movies, a stack of 50 Z-

section images spanning all the observed structures was collected

and reconstructed using Leica confocal software and Zeiss LSM-

CFS. The reconstructed Z-series images were exported as AVI

movies to show 3D structures. For chromosome poleward motility

analysis, the timelapse Z-stack images were analyzed using Imaris

(Bitplane AG). The figures were assembled in Adobe Photoshop

7.0.

Supporting Information

Figure S1 Time course of poleward movements of DNA beads

and meiotic chromosomes during the anaphase of meiosis II.

Microtubules are shown in red, DNA in green. DNA bead-spindle

is at the 11 o’clock position and the meiotic chromosome/spindle

is at the 4 o’clock position. The numbers in the red squares at the

upper left corners indicate the timing.

Found at: doi:10.1371/journal.pone.0005249.s001 (9.70 MB TIF)

Movie S1 Poleward movements of DNA beads and meiotic

chromosomes during anaphase of meiosis II. Note the white

circled eggs which show DNA bead (white arrows) poleward

movement and polar body extrusion. Microtubules are shown in

red, DNA in blue.

Found at: doi:10.1371/journal.pone.0005249.s002 (15.73 MB

AVI)

Movie S2 Disruption of dynein blocks DNA bead poleward

movement (arrow) but not meiotic chromosome segregation.

Microtubules are shown in green, actin in red and DNA in blue.

Found at: doi:10.1371/journal.pone.0005249.s003 (29.10 MB

AVI)
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